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Abstract—We consider the problem of characterizing and
predicting the condition of pediatric patients in intensive care
units (ICUs). This population is often typified by rapid changes in
patient conditions which necessitate predictions that can capture
transition in patient states. While the assessment of patient’s
condition is currently usually done using domain based scoring
systems, we employ machine learning models for predicting the
state of the pediatric patient. Additionally, we explore how model
explainability could affect the usage of predictive models in a real
world settings.

Index Terms—Pediatric ICU, Pediatric Patient Deterioration,
Patient Deterioration

Clinical deterioration is the often rapid change in the
condition of a patient. A delay in recognizing the change
in patient condition can lead to worse clinical outcomes,
decline in quality of life and in extreme cases, even death.
Consequently, better prediction of clinical deterioration is a
priority as many patients today get harmed when precursors
go unrecognized, leading to potentially preventable morbidity,
mortality, and cost. Providing care to very seriously sick or
injured children may require intensive care. While less than
2% of pediatric patients require intensive care services, those
that do typically experience significant morbidity. Reducing
this morbidity is highly contingent on the timely recognition
of changing clinical needs. In the hospital setting, errors and
delays in beginning effective therapies contribute to patient
morbidity. Better, more accurate predictions of a patient’s
criticality of illness, supplied via machine learning algorithms
that take time into account, could save valuable lives.

Patients in ICUs require high level of care as compared to
patients in other units in the hospital. The condition of certain
patients can deteriorate quickly which require sudden attention
from the medical staff. This can often times prove challenging
especially if risk stratification is needed for resource allocation
for the medical staff, a problem that has especially become
prominent in the post COVID-19 world. To support this,
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we propose the use of machine learning models that can be
used to characterize patient state (i.e., the relative condition
of pediatric patients), predict future states of patients (being
in ICU, not in ICU or in transition) and algorithmically
generate explanations for why the patient is in the ICU. The
insights generated from these models could be used for patient
prioritization and care optimization.

Several factors make such a risk prediction among critically
ill pediatric patients even more challenging. Normal vital
signs ranges change with age, and thus must be compared
to age appropriate referent values. Pediatric patients generally
have highly effective physiologic compensatory mechanisms,
which can obfuscate early markers of hemodynamic instability.
Finally, while children have good physiologic compensation,
they have smaller reserves, which means that decomposition
can progress from subtle to overt quickly. In this paper, we
consider the problem of criticality of illness as a key concept.
Criticality is the combination of physiologic variables and
therapeutic intensity. We present preliminary results from a
project where the long term objective is to establish criticality
as a conceptual framework for severity of illness by predicting
that patient’s current care location using physiologic variables
and therapies.

Interpretable machine learning models have become an
integral part of creating responsible and accountable machine
learning systems [1]. Since the long term goal of the current
work is to create an adaptable machine learning based scoring
system to predict patient risk of mortality in pediatric ICUs,
it is important to know how the machine learning models
work as it would be necessary to determine what factors
are contributing to the prediction. This would enable the
healthcare personnel to make quick informed decisions and
also improve upon current risk scoring systems. The main
contrition of the current work is to address the problem of
criticality in the context of patient risk prediction in pediatric



Category Feature Example Total Features
Demographics Race, Gender, Age 16
Temporal Sliced Hour, Stay Length 3
Labs WBC, Bun, Calcium 434
Medications Antidepressants, Vitamins etc. 580
Vitals Heart Rate, Temperature, Systolic 98
Total 1,131

TABLE T
SUMMARY OF MAXIMAL FEATURE SET CATEGORIES

ICUs and laying the groundwork for models that can be used
for risk stratification in a real world setting.

I. RISK SCORING IN HEALTHCARE

In the healthcare domain, risk scoring is used to assess
the risk associated with respect to a particular outcome.
Risk scoring can be defined with respect to a population,
the feature/predictor space and the outcome space. Another
dimension of interest is whether the risk scoring setting is
static or dynamic. Static risk scoring is a well studied problem
and a relative scale for risk scoring can be defined and assessed
on historical data. Dynamic risk scoring is needed in scenarios
where patient prioritization is needed in relatively short spans
of time e.g., in the matter of hours vs. days. Prioritization
implies addressing questions like can the clinician use the risk
scores to prioritize and characterize the relative degrees of risk
for their patients. In a hospital setting physicians making the
rounds have a list of patients on their units and having a list
of high risk patients can help them to prioritize patients who
are likely to need transition into ICU at some point in their
encounter. Reducing this morbidity is highly contingent on the
timely recognition of changing clinical needs.

Modifiable factors and/or preemptive measures that may
improve care can affect/decrease risk of the patient needing
care in the ICU setting. Physicians or advanced practice
provider often have a list of patients to cover and round on.
Knowing which patients have recently shown higher risks
of needing ICU care and/or transition can help to prioritize
different treatment plans to lower the risk of needing ICU
or transitioning to higher acuity care. Additionally House
Supervisors or similar staffing personnel may use such models
for resource optimization i.e., right place, right time, right
level of care (nurse ratios), and right level of clinical ex-
pertise. Similarly, House Supervisors have a limited number
of resources in staffing and beds and thus having a list of
patients who may be at higher risk of transitioning to ICU
can help to prioritize where the high risk patients may go
and also facilitate discharge of patients who are improving
and no longer need ICU levels of care. To summarize, the
problem of risk scoring of patients is an important problem
in healthcare which affects multiple stakeholders in the care
continuum spectrum.

What the examples above illustrate is that dynamic risk
scoring is needed in settings like ICU where the risk of a
patient can change rapidly. It should however be noted that
dynamic risk scoring can be defined in a number of ways

depending upon the requirements for a use case. The main
possible scenarios are as follows:
1) The underlying population may be changing
2) The availability of features/predictors may change over
time
3) The nature of the features/predictors may change over
time
4) The target variable may change over time
5) Combination of all of the above factors
In the current study we address the problem of dynamic risk
scoring when the predictors or the targets may change over
time. We formally define the prediction problem as follows:
Problem: Given a set of patients p; IS P
with  historical data comprising of the predictor
variable set v,; = {vo,v1,v2,...,v,} and the target

variable O; = {011, 090,03i,...,0,4} in the output
space o; € {ICU,notinICU,transition} at time
t = {to,t1,ts,...tx} predict the target variable at times

., t, where n > k.
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Fig. 1. Correlation between the current and the future patient states

II. RELATED WORK

Risk scores for determining the condition of a patient are
widely used in the healthcare domain especially for determin-
ing the risk of mortality. One of the oldest scoring system
in healthcare which is still used today is the AGPAR Scoring
System which is a risk score for newborns [2]. Glasgow Coma
Scale is a commonly used scale that is used to assess an
individual’s neurologic status by evaluating three subscores:
eye, verbal, and motor responses [3]. The APACHE score is
another commonly used scale that link the risk of mortality
to the number of organs failed [4] [S]. The most widely used
pediatric mortality risk score is the PRISM score developed by
Pollack et al [6] [7]. PRISM is a physiologically based score
used to quantify the physiologic derangement of a pediatric
patient. When combined with other variables, it can be used
to compute expected mortality risk [6]. The current version of
PRISM is PRISM III score which has 17 physiologic variables
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Fig. 2. Summary of results for predicting Future State 1

subdivided into 26 ranges [7]. The PRISM III variables include
vital signs, blood gas measures, and lab results from metabolic
tests, blood counts, and clotting studies. The Pediatric Index
of Mortality (PIM) is another metric that is used for mortality
prediction for pediatric ICU populations [8] [9].

There are a number of studies on using machine learning
models for predictive models in pediatric ICUs. Kamaleswaran
et al [10] and Le et al [11] use machine learning for predicting
sepsis in PICU. Che et al [12] considered the problem of
predicting 60 day after admit mortality and also predict
ventilation Free Days using data from Children’s Hospital Los
Angeles. Ghassemi et al [13] studied predicting 30 day post-
discharge and 1 year post-discharge mortality using informa-
tion extracted from clinical notes. Nguyen et al [14] used deep
learning to asses risk in ICUs for 3-hour mortality prediction.
The work of Rubin et al [15] is also relevant to this work
as they focus on predicting transfer in PICU using machine
learning models. Given the limitation of space it is not possible
to cover all of relevant literature on machine learning in PICU,
we refer the reader to literature survey papers in this field [16]
[17].

III. DATASET

The data that we use comes from the HealthFacts dataset
created by Cerner [18]. The timespan for the data is from
January 2009 to June 2016. The dataset consists of 1,901,437
records and 42,581 encounters. We also exclude a small
number of the patients (768) who passed away during the
timespan that we considered. Data which had incorrect dates
associated associated with it was also removed. There were 69
tables after taking the union of tables which had the same type
of data but for different years. The data can be divided into

five broad categories” Pharmacy data, lab data, billing data
(codified diagnosis, procedure codes), clinical events (vital
signs, pain, sedation, coma scales, respiratory, therapy etc) and
microbiology (culture details, organisms isolated, antimicro-
bial medications, susceptibles). From a union of these sources
the final feature set consisted of 1131 features. The breakdown
of various categories of features is given in Table I.

The majority of the encounters have more than 5 or more
records associated with them. Data cleansing included: a)
eliminating duplicate and null values; and b) eliminating data
inconsistent with valid entries (e.g. admission times of zero,
data inconsistent with life, or negative values). The pediatric
population that was considered is defined as the set of ICU
pediatric patients and pediatric inpatients. The definition of
ICU pediatric patients is as follows:

o Age in years is not missing

e Age in years < 22

e Age in hours > 0 OR Age in hours is not missing

o At least one care setting in (55, 56, 57 ,59, or 60) from

source in (lab order, medication dispensed medication
request, discharge care setting)
The pediatric inpatient cohort is defined as follows:

e Age in years is not missing

e Age in years < 22

e Age in hours > 0 OR Age in hours is not missing

« Patient type id = 87 (which corresponds to inpatient).

The final cohort that was used was a union of these
two cohorts. While the definition of the cohort is relatively
straightforward, it is not possible to determine from the data
if a patient is in ICU in a straightforward manner. Thus proxies
and a complex set of rules need to be used to determine
if a patient is in ICU. These rules are based on what is



Current Future 1 Future 2 Future 3  Future 4
Accuracy 093 0.94 0.93 0.92 0.91
Precision  0.94 0.94 0.94 0.93 0.92
Recall 0.95 0.95 0.95 0.94 0.93
F-Score 0.94 0.94 0.94 0.93 0.92
AUC 0.97 0.97 0.97 0.97 0.96
MCC 0.86 0.87 0.86 0.85 0.82
TABLE 11

SUMMARY OF RESULTS FOR PREDICTING CURRENT AND FUTURE STATES

commonly known in the domain and the also the experience
of the clinicians involved in the project. The ICU entry and
exit times were determined as follows: The ICU entry time
was recorded as the earliest hour based on the laboratory
order, medication request or medication dispensed associated
with an ICU location. Following ICU entry, if there were no
laboratory orders, medication requests or medication dispersal,
the location was assumed to be the ICU.

We identified the ICU exit time using the following two con-
ditions: First, the medication request, medication dispensed, or
laboratory order came from a non-ICU location following ICU
care. If the care setting was null or not mapped, the previous
care setting was assumed. If multiple care settings including
an ICU were observed during the same hour, the care setting
was assumed to be an ICU care setting. Second, if the patient
was discharged from the hospital from the ICU, the hospital
discharge time was used as the ICU discharge time.

Since we recognized that there is imprecision in the assign-
ment of entry and exit times, we assigned a minimum of 10
hours to each ICU stay for survivors (deaths could have a
time period < 10 hours). For patients readmitted to the ICU
during a hospitalization, a minimum of 40 hours was assigned
to each non-ICU time period between ICU admissions. This
resulted in 97.0% of PICU (Pediatric ICU) patients having
only 1 ICU admission, and 2.3% have 2 ICU admissions, and
0.7% have 3 or more. For the rare patient that had more than
5 ICU admissions (0.13%), the ICU admissions after the 5th
admission were not included in the ICU admission.

The target variable is the state of these patient i.e., whether
they are in the ICU or not. There are multiple ways to define
this variable by varying the time window for definition. We use
a time window of 4 hours to define the state of the patient as
it made sense from a domain perspective and the condition of
the patients did not change as much. We considered multiple
targets for prediction by varying the timeslots: the current
state of the patient and the next four states of the patient.
The correlation between these states is given in Figure 1. As
expected the correlation between the states decreases as the
time between the states increases.

IV. EXPERIMENTS

We pose the problem of predicting patient states as two
classification problems where in the first problem the two
classes that need to be predicted are: ’patient in ICU’ and
“patient not in ICU’ and in the second problem the additional
class to be predicted is ’in-transition. This is the state where
the patient is being moved from ICU to outside of ICU or

Metric State Baseline LR RF
ICU 0.54 0.88  0.88
Precision | not-ICU 0.45 0.83  0.88
Transition 0.01 0.01  0.60
ICU 0.53 0.85 091
Recall not-ICU 0.45 0.89  0.87
Transition 0.01 0.01 0.10
ICU 0.53 0.86  0.90
F-Score not-ICU 0.45 0.85 0.87
Transition 0.01 0.01 0.17
TABLE TIT

SUMMARY OF RESULTS FOR TERTIARY PREDICTION FOR FUTURE STATE 1

vice versa. The data for this state is limited and corresponds
to around one percent of all the states. We employ standard 10-
fold cross validation with additional constraints to ensure that
there is no data leakage as follows: Since a patient may have
multiple records which indicate that they are in the hospital,
we exclude records in the training set for the patient for whom
prediction needs to be made. We employed a set of standard
set of classifiers (Decision Trees, AdaBoost with Decision
Stump, Naive Bayes, SVM, Random Forest and XGBoost)
to choose the algorithm with the best performance. For each
of these algorithms, whenever applicable, we applied grid
search to find the optimal set of hyperparameters. In addition
to these algorithms we also employ two baseline models: A
dummy stratified classifier which randomly predicts based on
the relative distribution of the classes and Logistic Regression
as the baseline. We note that it was not possible to use any of
the rule based scoring models currently being used in clinical
settings since all the variables data that are used to create these
scoring models are not available in HealthFacts.

A summary of prediction results for predicting the next
future state are given in Figure 2 which shows the Calibration
Plot, the ROC plot, the threshold tuning plot and Sensitivity vs.
Low Alert Rate plot. Due to limitations in space we only report
the results for the best model which corresponds to Random
Forest. We also note that the performance from Random Forest
is slightly better than what we get from the RNN model.
This implies that having a deep learning model may not be
advantageous in this case. The plots in Figure 2 reveal that
the Random Forest model is sufficiently calibrated, although
model calibration can be improved further. The AUC of the
model is 0.97 and the threshold tuning plots also reveal that
the model has sufficiently good predictive power as measured
by precision and recall. Lastly, the SLA (Sensitivity vs. Low
Alert Rate) plots reveal that the model does not degrade when
the model confidence is low.

In Table IIT a summary of results for predicting the current
and future states is given. The tables demonstrate that the
sufficiently high results are obtained across the board for
predicting future states. We also computed the Matthews
Correlation Coefficient for the results in Table III since this
metric is generally regarded as a good way to capture different
aspects of a Confusion Matrix in a single number [19]. The
overall performance gives us confidence that the models per-
form sufficiently well. For the tertiary classification problem



we used the same exact prediction setup i.e., the same set
of classifiers were used with 10-fold cross validation. The
summary of results for tertiary classification is given in Table
III. Due to limitations of space we only show the results from
the best model and the baselines. Here the baseline refers
to the stratified baseline where the prediction is based on
random prediction with respect to the relative distribution of
the classes. LR corresponds to Logistical Regression which
is being used as another baseline. Lastly, RF corresponds to
Random Forest which is the model with the best results. The
main thing to note here is that while the results are much
better than the baseline and the model is doing well for the
two main classes, the results for the minority ’transition’ class
can be improved greatly.

As described in the previous sections a pivotal aspect of
assessment of PICU models described here is the transparency
of the models. Towards this end we computed the global
factors that drive the overall prediction of the models as
well as local predictions which are responsible for individ-
val predictions. The factors are computed using the SHAP
framework [20], a summary of the top factors is given in
Figure 3. The global factors that were identified by the model
was a mix of expected and unexpected features e.g., pCO2
(partial pressure of carbon dioxide is the measure of carbon
dioxide within arterial or venous blood) is an important factor
with the population bifurcated into two subsets, one with
high importance and another with low importance. Vital signs
(heart rate, max respiratory rate etc) are highly represented
as top features. Receiving medications from the following
classes were present: narcotic analgesics, CNS stimulants, and
anti-infectives are associated with future ICU care. Higher
levels of Albumin are negatively associated with the positive
class. Additionally, very young age (age measured in hours)
is associated with increased risk for ICU care.

From this set of features we tried to create a set of minimal
features that could be used to create a minimal model that
could be used in the real world. From a usability perspective
features like ’stay length” cannot be used in a model if it
is predicting at the admit time or if length of stay is not
available at the time of prediction, thus it was excluded. The
variables related to the stimulants were also excluded since
they could show up because of over-representation of certain
sub-populations like newborns. We had three physicians who
were involved in this study review the top factors to determine
if the factors made sense and if they could be used in a
minimal model for prediction. We then used the features from
the global model as well as input from the domain experts to
create a minimal model consisting of 20 features. A summary
of the results of the minimal model are given in Table IV
which shows only a small decrease in performance except for
predicting Future State 1. This indicates that a large number
of features may not be needed for prediction to create a
sufficiently good model that can be used in practice.

Current Future 1 Future 2 Future 3  Future 4
Accuracy 0.87 0.91 0.89 0.89 0.85
Precision  0.84 0.89 0.88 0.87 0.81
Recall 0.86 0.90 0.87 0.86 0.82
F-Score 0.85 0.90 0.87 0.87 0.82
AUC 0.91 0.94 0.88 0.89 0.83
TABLE IV
SUMMARY OF RESULTS FOR MINIMAL MODEL
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Fig. 3. Top factors for prediction model for Future State 1 as determined by
the SHAP model

V. DISCUSSION

The prediction results obtained from the binary classifica-
tion version of the problem are quite good, however for the
tertiary prediction the results can still be greatly improved as
both the precision and recall of for the transition class was
relatively low. One surprising result from the experiments is
that a traditional machine learning model slightly better than a
deep learning model. It has been noted in other studies [21] as
well that while there are a number of applications in healthcare
and medicine where deep learning has proven to be greatly
effective, it is not a panacea for machine learning problems.
One limitation of this work is that the data used in the study
came from a general hospital setting (HealthFacts) and not
from a pediatric hospital.

Data on ICU patients is much more comprehensive and
complete than other patient populations thus there is lots of
high quality data to build and validate predictive models. There
is a great deal of room for extending the current models
since massive resources of data - real-time telemetry, real-time
ventilator data, frequent laboratory studies etc. are frequently
under-utilized within models, and indeed most of this data
never enters the EHR where it can be used. On the flip-



side, it is also important to acknowledge the bias inherent
in curated datasets like HealthFacts since they may not be
true representations of ICU patients. This would limit the
generalizability of the results. To address this issue we plan
to use pediatric ICU data from other source in future follow
up work.

VI. CONCLUSION AND FUTURE WORK

The problem of predicting the future state of a pediatric
patient in ICU is an important problem with far reaching
consequences for patient quality of life and even patient
survival. Methods that are currently being used for gauging
pediatric mortality risk and thus for risk stratification are
mostly scoring based systems. One limitation of the current
methods is that they cannot be customized to particular settings
and cannot make use of rich data that is now being captured
and analyzed in the healthcare domain which was not available
when these methods were first proposed. To address these
issues, we proposed a machine learning approach the problem
of predicting a patient’s state in pediatric ICUs in this paper.

The predictive models showed sufficiently high predictive
performance performed (AUC = 0.97) which was significantly
higher than the baseline models. The descriptive explanation
models characterized what are the main factors for predicting
the next state at the population at the patient level. In addition,
the current work has demonstrated that a minimal set of
features can produce a highly accurate model as compared
to other models that use the entire feature set. This is both en-
couraging and exciting and gives us confidence that access to
additional pediatric ICU data will help develop a dynamic risk
scoring solution using machine learning that is able to identify
critical attributes that contribute to predicting deterioration in
the pediatric population.

For the purpose of assigning patients to ICU, the current
models may be sufficient. We hope to these these models in
a follow up study in the future. However ICUs often require
risk stratification if they are resource constrained. In such use
cases relative ordering of severity or criticality of patients
would be needed for risk stratification. For this purpose we
plan to modify and extend the current set of models so that the
probability scores could be used as risk scores for the patients.
This would of course require the presence of highly calibrated
prediction models. Our long term goal is to create a risk
scoring system that can be used in lieu of current risk scoring
systems used in PICUs. One advantage of using machine
learning approaches as compared to traditional risk scoring
systems is that the later can be adapted for particular hospital
settings and populations. Additionally, for future work, we
propose to integrate the models described in this manuscript
in a platform that may be integrated into the workflow of
physicians and other healthcare personnel.
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