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Introduction

Maritime search and surveillance-type missions typically require heavy human
involvement. A set of unmanned aerial vehicles (UAVs) has the potential to pro-
vide a “sensor network” to greatly increase efficiency and effectiveness of these
surveillance type missions. However, limited autonomy is still a bottleneck to
networked UAV applications. High operator involvement is required in logistics
and operation, for example, distributing assignments such as which regions to
search and coordinating subsequent sensor measurements. In a noisy environ-
ment, it becomes difficult for a human operator to classify sensor readings and
assign confidence in these readings. Determining regions of high target-location
probability and coordinating nearby agents to converge on a particular spot
while allowing other vehicles to continue searching is also difficult. Therefore,
the primary limitation to concurrent operation of multiple vehicles remains lack
of autonomy of these vehicles.

The current work aims to develop target identification and searching al-
gorithms for the Georanger UAV [1] for aero-magnetic surveying. A specific
application is the detection of a submarine in littoral waters based on its mag-
netic signature. Eventually, these algorithms would be developed to operate
with a team of heterogeneous vehicles. This team would be comprised of indi-
vidual vehicles known as agents. Each agent could have different capabilities
and sensors which dictates that algorithms be easily adaptable to accommodate
these differences.

A summary of the completed, current, and future research activities with
this project include:

Completed Research
e Creation of task and path-planning control architecture.

e Preliminary system and sensor (magnetometer) modeling for simulations.
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e Integration of high fidelity total magnetic intensity (TMI) maps from Fu-
gro Airborne Surveys.

e Development of target identification using particle filter state estimation
technique.

e Development of simple occupancy map based searching algorithm for het-
erogeneous teams of agents.

Current Research

e Refinement of searching algorithm using model predictive control tech-
niques.

e Implementation of simulation on high fidelity hardware-in-the-loop (HiL)
simulator using embedded processor running INTEGRITY real time op-
erating system.

Future Research

e Analysis of communications relay logic between multiple Georangers and
one or more ground stations.

e Integration of searching and target identification algorithms into the task
and path-planning architecture [2].

e Distributed simulation heterogeneous team of agents using distributed
test-bed.

e Flight test of algorithms using Insitu GeoRangers and/or ScanEagles.

1 Completed Research

1.1 Task and Path-Planning Architecture

In the simplest form, the task and path-planning architecture can be visualized
in a block diagram as shown in Figure 1.

The inner loop controller (also known as the autopilot) is assumed to be
provided. The target identification and searching algorithms that are being
developed reside on the guidance controller. Section 3 contains more discussion
regarding its development and the hardware-in-the-loop simulation.
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Figure 1: Block diagram of task and path-planning architecture

1.2 Total Magnetic Intensity Maps

When an actual search is executed, differences between the ground station map
of the magnetic field and the actual magnetic field will appear as magnetic
anomalies. In this work, to minimize the number of false anomaly encounters
and to increase the accuracy of the evaluation, actual magnetic survey data is
used as a local TMI map. This data is provided by Fugro Airborne Surveys.
The data was collected by a manned aircraft equipped with a magnetometer to
measure the TMI. This information, coupled with a GPS position, provides the
TMI in “line data” form. This data can then be interpolated into a 100x100
meter grid. TMI readings at locations other than survey points are linearly
interpolated from this grid. A magnetic map of a region in the Gulf of Mexico
and a simple grid search trajectory are shown below in Figure 2(a). Here, the
data is acquired in an approximate 60x50 km grid. The regions of uniform
color denote areas where survey data is not available, creating the “staircase”
appearance. Assuming that there are only permanent fixtures in the region
when the map is acquired, this map now makes up the reference set of data on
the ground station.

In addition to a local magnetic map, a magnetic model of the desired tar-
get is also required. In the following example, the magnetic signature of the
target (an idealized submarine) is modeled as a simple two dimensional Gaus-
sian distribution, shown in Figure 3. The magnetic signature of the target is
a function of many variables, namely depth of target, sensor altitude, etc. For
current purposes, the target is assumed stationary and at a fixed depth, thereby
rendering the magnetic signature static. Assuming that the magnetic signature
of the target simply adds to the total magnetic intensity of the local region in a
linear fashion, anomalies can easily be identified by simply subtracting the mag-
netometer reading from the local reference map which is stored on the ground
station.

The described approach can be used to compare magnetometer readings
with the reference data to create a differential measurement. Large differential
measurements imply the presence of a new magnetic anomaly and possible tar-
get. If the agent does not fly over any targets, the magnetic anomaly should
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(a) Total magnetic intensity map. (b) Associated magnetic traces.

Figure 2: The total magnetic intensity map and trajectory over area with cor-
responding magnetometer readings.

Figure 3: Magnetic signature of target. Magnetic signature given by z = h(z,y).

be near zero. Small non-zero anomaly encounters can be attributed to tempo-
ral variations in magnetic field and sensor noise. A simple grid search pattern
was shown previously in Figure 2(a). The location of the target is shown as a
dashed red box and the trajectory of the agent is shown in the solid red line
(starting in the lower left corner). The associated total magnetic intensity trace
and differential measurement trace is shown in Figure 2(b). The total magnetic
intensity reading as the agent flies over this trajectory is shown in the upper
trace and the differential measurement is shown in the lower trace. As the agent
flies this search trajectory, the sensor measurement is constantly compared to



the reference data set to generate a differential measurement. As can be seen
in Figure 2(b), given the differential magnetometer reading, it is obvious how
to detect where the anomaly occurred (two spikes at approximately 2700 and
3700 seconds) even though the actual range of absolute measurements may be
large.

1.3 Target Identification

Magnetic anomalies can be caused by many factors such as temporal variations
in the magnetic field or false targets encounters (i.e. boats/vessels). Once
a magnetic anomaly is encountered, it must be identified and classified. On
simplistic level, the overall goal is to either classify the anomaly as the desired
target or a false reading. Obviously, it would be simple to identify the anomaly
if the entire magnetic signature of the anomaly is obtained (the UAV flies over
the entire boxed region in Figure 2(a)). However, this requires many passes over
a potential target, and significant time to make the necessary measurements. If
the anomaly is moving or evading, this may not be feasible. The question now
becomes, given only one or two passes over the target, is it possible to correctly
identify or provide a probability that this anomaly is indeed the target being
sought after? To address this issue, a particle filter method is used [3].

A particle filter is a recursive, non-parametric Bayes filter technique which
estimates the states of a system using a finite number of state hypotheses [4].

GPS allows the position of the agent in the earth frame to be computed, but
the target location and orientation in the earth frame is not known. The goal of
the particle filter is to estimate the state of the agent (position and orientation
with respect to the target, expressed in the target’s frame of reference).

When an agent encounters an anomaly whose magnitude exceeds the noise
threshold (approximately 1 nT in this case), the particle filter is started in an
attempt to estimate the state of the agent with respect to the target. The par-
ticle filter’s progression as the agent flies diagonally over the target is displayed
over a top down view of the target signature (Figure 3) and is shown below in
Figure 4.

In this sequence, the large red circle represents the actual location of the
agent and the solid red line represents the agent’s trajectory over the target.
The smaller purple dots represent the particle filter’s many different hypotheses
of the possible state of the agent (position north, position east, and heading).
The actual agent crosses over the target starting in the lower left corner and
flies over it to the upper right corner.

As the agent obtains more and more sensor measurements (at a simulated
rate of 1 Hz), the particle filter is able to eliminate particles which are incon-
sistent with the current measurement and resample these particles to regions
which have a higher probability of producing the actual sensor reading. This
is why as time progresses, the particles become concentrated around the actual
UAYV location. Near the end of the simulation, there are four distinct groups of
particles. This is due to the symmetry of the underlying target signature. Each
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Figure 4: Particle filter progression during a target encounter. The solid line
indicates actual aircraft position relative to target signature, while the particles
concentrate about possible positions

of these four groups of particles are equally likely because each group would
produce the correct actual sensor readings.

A quantitative measure of the particle filter’s confidence for an encounter
with the actual target and an encounter with a false anomaly is shown below in
Figure 5.

In Figure 5, the difference between a true target encounter and a false
anomaly encounter is fairly clear. In the situation where the agent encoun-
ters the true target, the confidence measure increases initially as the particles
are quickly resampled to locations which are consistent with the actual sensor
measurements and then stays fairly constant. However, in the case where the
agent encounters a false anomaly, the particle filter regularly “loses confidence”
as inconsistent sensor measurements are obtained. This is characterized by the
sharp drops in the sum of the particle weights. Current research is directed
towards training a neural net to recognize these features and thus provide a
qualitative measure to the target identification problem. In the end, the parti-
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Figure 5: Sum of all particle weights during a true target encounter and a false
anomaly encounter.

cle filter will provide the trace of the sum of the weights over time (Figure 5)
and the neural net will process this trace. In combination, the particle filter
and neural network provide a mapping from magnetic sensor measurements to
a single scalar value which represents a measure of how confident the particle
filter is that the encountered anomaly is the desired target or not.

1.4 Simple Team Searching

The particle filter method is used to identify anomalies once they are encoun-
tered. A method to actively search for targets and anomalies is now considered.

As can be seen in Figure 2(a), one search pattern that can be used is a simple
grid search pattern. However, for a team of autonomous agents, a more intel-
ligent approach is desirable. In this situation, an occupancy based map search
is employed. In this scheme, the search domain is discretized into rectangular
cells. Each cell is assigned a score based on the probability that the target is
located in that grid. This is similar to a two dimensional, discretized probability
density function [5]. This centralized occupancy based map is shared and up-
dated by all agents involved in the search. At each time step, guidance decisions
for each agent are chosen based on this map. Controls for each agent are chosen
based on maximization of a team utility function.

Once the controls for each agent are assigned, it becomes necessary to update
the score of each cell based on the agent’s findings. As an agent finishes searching
a cell, if no anomaly is discovered, the score of the cell can be updated using
the sensor model for each agent. In the event of an anomaly encounter, the
particle filter is used to identify and classify the anomaly. If it is determined
that it is not the target, a low score is assigned to that cell. If the anomaly is
determined to be the target, then the surrounding cells of the occupancy map
within a certain radius have their scores increased. The radius chosen can be a
function of the target identification algorithm’s confidence that the anomaly is



indeed the target. This allows for a local increase in belief of the target position
while leaving other areas unaffected.

The formulation of the utility function and the occupancy map update also
caters to the theme of heterogeneity that was introduced with the particle filter.
Both the utility function and occupancy map update equation can be adjusted
to accommodate for a heterogeneous team of agents.

In the following example, a simple two dimensional Gaussian distribution is
used to increase the scores over the two dimensional space where the target is
located. A search with three agents is shown below in Figure 6.
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Figure 6: Occupancy based map search with three agents.

In this situation, the target location is shown as the dashed, red box and
the agents are represented by red x’s. Figure 6(a) shows the initial location
of the agents relative to the target. In Figure 6(b), one of the agents is about
to encounter an anomaly. In this case, the anomaly happens to be the target
and therefore, the particle filter is able to identify and classify this anomaly
as the target and the agent makes a positive ID at its current cell. This then
updates the nearby occupancy map cells with increased scores. This causes the
second agent to converge and investigate this location as shown in Figure 6(c).



However, the third agent continues searching the other regions of the map as
seen in Figure 6(d).

2 Current Research

2.1 Refinement of Team Based Searching Algorithms

The current searching algorithm is based on updating a central occupancy map
and maximizing a team utility function. However, the utility function is some-
what simple and is limited in its predictive capabilities. Current research is
directed at formulating this as a model predictive control problem and employ
evolutionary computational methods to optimize the associated utility function
[6].

Another improvement is to implement patrol regions for each agent based
on its individual capabilities. These patrol regions could still overlap and would
dictate which possible trajectories are feasible at each generation of the evo-
lutionary computation process. The look-ahead horizon could be extended as
far as would be computationally efficient given the number of agents and the
complexity of the team based utility function. This idea is illustrated below in
Figure 7.
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Figure 7: Multi agent team with individual patrol areas.



2.2 Hardware-in-the-Loop Simulation

Once the numerical simulation is complete, the next step in this process is to run
this simulation using a hardware-in-the-loop (HiL) simulator of the ScanEagle
UAV. This involves programming the searching algorithms as embedded ap-
plications on an Embedded Planet 8260 single board computer (shown in Fig-
ure 8(a)). Current research efforts are directed towards developing real time
embedded applications using the INTEGRITY operating system. Once these
applications are created, the searching and other guidance algorithms will be
able to interface with the HiL simulator (Figure 8(b)). In addition to simply
porting the current algorithms to the new operating system, a library of inter-
face functions must be developed in order to allow for communication of data
packets between the inner loop (autopilot) and outer loop (guidance controller).

(a) EP8260 single board computer (b) SeaScan HiL simulator

Figure 8: Embedded hardware used for HilL simulation

3 Future Research

3.1 Distributed Simulation

The HiL simulator shown previously is capable of providing a high fidelity plant
model for a single agent. In the future, as the algorithms become more refined,
it becomes necessary to provide a networked simulation with several high fidelity
models. In addition to the dynamics of each model, the communication between
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agents must also be tested. An architecture for simulating the dynamics and
communication between multiple agents is shown below in Figure 9.
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Figure 9: Distributed architecture for simulation and testing of a multi-agent
team

In this setup, several high fidelity plant models can be simulated using the
Distributed Test-bed available to us at the Autonomous Flight Systems Labora-
tory. The Distributed Simulation Test Bed consists of five simulation computers
running simulation software. It is meant to be a high fidelity testing environ-
ment in that it accurately simulates the timing and data transfer required for
the cooperative planning algorithms. This system could operate in parallel with
both the HiLi simulator and actual agents in field. This would allow for simu-
lation and testing of nearly all aspects of this system including heterogeneous
teams, dynamics, and communications.

3.2 Flight Tests

Finally, we hope to be able to one day apply these guidance algorithms to the
actual Georanger and/or SeaScan UAVs and fly actual test missions. This would
be a true testament to the potential of these ideas and a way to show that they
have real-world applications and viability.
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