
Coordinated Searching and Target Identification Using Teams of
Autonomous Agents

Christopher Lum

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Aeronautics & Astronautics

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Christopher Lum

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Juris Vagners

Reading Committee:

Juris Vagners

Rolf Rysdyk

Dieter Fox

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington

Abstract

Coordinated Searching and Target Identification Using Teams of Autonomous
Agents

Christopher Lum

Chair of the Supervisory Committee:
Professor Emeritus Juris Vagners

Aeronautics & Astronautics

Many modern autonomous systems actually require significant human involvement. Often,

the amount of human support and infrastructure required for these autonomous systems

exceeds that of their manned counterparts. This work involves increasing both the tactical

and strategic decision making capabilities of various autonomous systems. The application

considered is the problem of searching for targets using a team of heterogeneous agents. The

system maintains a grid-based world model which contains information about the probability

of a target being located in any given cell of the map. Agents formulate control decisions

for a fixed number of time steps using a modular algorithm that allows for capabilities

and characteristics of individual agents to be encoded in several parameters. The resulting

search patterns executed by the agents guarantee an exhaustive search of the map in the

sense that all cells will be searched sufficiently to ensure that the probability of a target

being located in any given cell is driven to zero. This system was simulated using high

fidelity simulations with heterogeneous agents in complex and dynamic environments. After

performing successfully in simulation, these algorithms were then verified and validated

on a distributed human-in-the-loop simulator. This system allows a human operator to

handle low level tasks such as state stabilization and signal tracking while preserving the

contributions of the autonomous algorithm. Finally, flight test results are presented showing

the benefits of augmenting a human system with these types of autonomous algorithms.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . vii

Glossary . viii

Chapter 1: Introduction . 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions of this Research . 4
1.4 Document Layout . 5

Chapter 2: Literature Review . 7
2.1 Autonomous Systems . 7
2.2 Autonomous Algorithms . 11
2.3 Target Identification . 14
2.4 Belief Maps . 15
2.5 Human Interface and Simulators . 15

Chapter 3: Target Identification . 17
3.1 Sensor Capabilities and Models . 18
3.2 Target Models . 24
3.3 Generating Data . 27
3.4 Feature Extraction . 32
3.5 Autonomous Target Identification . 42
3.6 Simulated Results . 44

Chapter 4: Belief Maps . 47
4.1 Occupancy Based Maps . 47
4.2 Updating Maps . 50

i

Chapter 5: Multi-Agent Searching . 57
5.1 Algorithm Overview . 58
5.2 (℘1) Predictive World Model . 59
5.3 (℘2) Desirable Location Selection . 64
5.4 (℘3) Path Planning . 89
5.5 Modifications for Explicit Cooperation . 111

Chapter 6: Simulation Implementation . 126
6.1 Simulation Architecture . 126
6.2 Simulation Results . 131

Chapter 7: Human-in-the-Loop Simulation . 160
7.1 Distributed Simulator . 161
7.2 Hardware and Software . 164
7.3 Operator Results . 167

Chapter 8: Flight Testing . 173
8.1 Hardware . 173
8.2 Mission Description . 175
8.3 Flight Test Results . 177

Chapter 9: Conclusions . 182
9.1 Concluding Remarks . 182
9.2 Future Research . 183
9.3 Final Remarks . 184

Bibliography . 185

Appendix A: Publication List . 196

Appendix B: Min Path/Max Tension Algorithm . 198

Appendix C: Research Civil Aircraft Model . 200

Appendix D: Voronoi Diagrams . 204

Pocket Material: CD of Simulation Movies

ii

LIST OF FIGURES

Figure Number Page

2.1 Different levels of autonomy. 8
2.2 Possible agents of a heterogeneous team involved in searching mission. 10
2.3 Supporing infrastructure for ScanEagle and Georanger operations. 11

3.1 Predicted magnetic field at the Boardman, OR test range. 21
3.2 Self induced magnetic field effects. Courtesy of Boeing/Insitu. 22
3.3 Total magnetic intensity maps. 23
3.4 Submarine signature modeled with ModelVision Pro. Courtesy of Fugro Air-

borne Surveys. 25
3.5 Magnetic signature of submarine. 26
3.6 Possible false anomaly signatures. 26
3.7 The total magnetic intensity map and trajectory over area with corresponding

magnetometer readings. 29
3.8 Generating approximately uniformly distributed anomaly encounters. 30
3.9 Removing insufficient trajectories from Monte Carlo simulation. 31
3.10 Raw sensor measurements from both a true and false anomaly encounter. . . 32
3.11 Particle filter progression during a target encounter. The solid line indicates

actual aircraft position relative to target signature, while the particles con-
centrate about possible positions. 38

3.12 Transformed particles now representing position and orientation of target
with respect to the agent in the agent’s frame of reference. 39

3.13 Sum of all particle weights during a true target encounter and a false anomaly
encounter. 41

3.14 Flow diagram for traditional classification system. 43
3.15 Flow diagram for proposed classification system. 43
3.16 Decision tree generated by C4.5 Revision 8 algorithm. 45

4.1 Discretization of search region into an occupancy based map. 48
4.2 Abstraction of marine environment using occupancy based maps. 49
4.3 Abstraction of urban environment using occupancy based maps. 49
4.4 Contour plots of the sk() function. 52

iii

4.5 World estimates decaying back to the nominal score over time. 55

5.1 Flow diagram for single agent search strategy. 58

5.2 Gimballed camera system on ScanEagle and associated screen shot of video
feed. 61

5.3 Estimated target state and control vectors for λ = 0.15. 62

5.4 Estimated world states at different times for estimated target moving to the
left. 63

5.5 Differences between using Eq. 5.14 and 5.15 for choosing zH 67

5.6 Various functions which compose the reward function, J0(). 69

5.7 Progression of probability collective process. True minimum is located in
upper left corner of reachable cells. Note that figure shows minimizing −J0()
which is equivalent to maximizing J0(). 75

5.8 Example with α = 0.15, β = 0.95, γ = 0.85, δ = 0.10 showing a map not
being covered due to Assumption A.7 violation. 79

5.9 Scenario A: 3 agents with near perfect sensors (h ≈ 1) using Eq. 5.14 to
choose zH . 84

5.10 Scenario B: 3 agents with near perfect sensors (h ≈ 1) using Eq. 5.15 to
choose zH . 86

5.11 Scenario C: 3 agents with typical sensors using Eq. 5.14 to choose zH 87

5.12 Scenario D: 3 agents with typical sensors using Eq. 5.15 to choose zH 88

5.13 Optimal solution w? to (℘3) zoomed into area of interest with d = 10. 93

5.14 Spatial Network Algorithm for solving the (℘3, a) problem. 95

5.15 A single path generated using the Spatial Network Algorithm by choosing
xi ∈ Ri where xi has the minimum possible y value. Situation shown for
d = 5, rmax = 3. 98

5.16 An example network with d = 3 and N = 3. 99

5.17 Progressive Frontier Algorithm flowchart for solving (℘3,b). 102

5.18 Ratio of M ′/M approaching d for d =4, 8, and 12. 103

5.19 Arcs added for d = 5, N = 3, and rmax = 1.5. 104

5.20 Example showing where differences in Eq. 5.52 and Eq. 5.53 affect span interval.107

5.21 Effects of choosing different functions to assign span intervals. 108

5.22 Optimal path through environment with d = 7, rmax = 1.06, N = 6. Optimal
path P ∗ shown in red. 109

5.23 Optimal path through environment with d = 5, rmax = 1.5, N = 6. Optimal
path P ∗ shown in red. 110

5.24 Example with 3 agents showing di and zHi . 114

iv

5.25 Relationships between sets B, B̃, B̃max, BRi , and B̃Ri 114

5.26 Situation showing B̃Ri

⋂
V (zagti) = ∅. 117

5.27 Situation showing ζi = 1. 118

6.1 High Level code flow of simulation application. 128

6.2 Pseudo code for process which recomputes expired paths. 129

6.3 Timing diagram with N = 3, d = 3, K = 4. 130

6.4 Difference between greedy algorithm and planning algorithm showing smooth
convergence to a moving target. 132

6.5 Single agent in a harbor patrol mission showing revisiting of locations. 134

6.6 Several test scenarios used to verify algorithm performance. 135

6.7 Examples showing connected components and range/domain partitioning of
xw() function. 137

6.8 Example raster scan trajectory. 140

6.9 Pseudo code for lawn mower algorithm. 141

6.10 Pseudo code for randomized Voronoi partitioning algorithm. 141

6.11 Lawn mower trajectories for 3 agents with scenario 2. 142

6.12 Full algorithm trajectories for 3 agents with scenario 2. 143

6.13 Full algorithm with Voronoi partitioning trajectories for 3 agents with sce-
nario 2. 145

6.14 S(i, k) and V (i, k) for scenario 2. 146

6.15 Save(k) and Smax(k) for scenario 1. 147

6.16 Save(k) and Smax(k) for scenario 2. 148

6.17 Save(k) and Smax(k) for scenario 3. 149

6.18 Vave(k) for scenarios. 150

6.19 Have(Qs) and Hmax(Qs) for scenario 3. 151

6.20 Have(νs) and Hmax(νs) for scenario 3. 152

6.21 Coverage metrics for varying number of agent using scenario 3. 152

6.22 Settling time for various number of agents using full algorithm and full algo-
rithm with explicit cooperation. 153

6.23 Time to 1st, 2nd, and 3rd target detection for scenario 2 using full algorithm
with cooperation. ‘x’ = not applicable for this scenario. 154

6.24 I(νo, νs) vs. time for scenario with full algorithm strategy. Bars denote times
that targets are detected. 158

6.25 I(νo, νs)ave and I(νo, νs)min for scenario 3. 159

7.1 Desired system architecture for fully autonomous flight. 161

v

7.2 System architecture for human-in-the-loop flight test of strategic controller. . 163
7.3 System architecture for ground based distributed human-in-the-loop simulation.164
7.4 Multi-vehicle implementation using HiL and Distributed Computing Facility

(DCF). 165
7.5 Physical setup of Distributed Human-in-the-Loop Simulator and screen shot

of operator visualization. 165
7.6 Simulator results from human-in-the-loop simulation. 169
7.7 Improvement of human operator performance over 4 runs. 171

8.1 Flight test hardware connection diagram. 174
8.2 Flight test hardware in test vehicle. 175
8.3 1993 Kitfox Classic IV flight test vehicle. 176
8.4 Flight test area of interest. 177
8.5 GPS and recorded agent position during flight test. 178
8.6 Flight test results with 4 simulated agents and 1 real agent. 181

B.1 Flow diagram of the Min Path Algorithm. 199

C.1 Simulink block diagram of aircraft simulation. 200
C.2 Expanded view of the ‘DataHub Write’ block. 201
C.3 Expanded view of the ‘Sensors and Navigation’ block. 202
C.4 Expanded view of the ‘FlightGear Visualization’ block. 203

D.1 Example Voronoi Diagram with n = 4. 206

vi

LIST OF TABLES

Table Number Page

2.1 ScanEagle performance specifications. 9

3.1 Classification results for various learned algorithms. 44

5.1 Parameters of agents in team during search missions (d = 3 for all agents). . . 83

6.1 Function of major classes in monolithic simulation. 126
6.2 Rankings of search strategies using Save(k) and Smax(k) as metrics (1 = best).146
6.3 Rankings of strategies using Have(Qs) and Hmax(Qs) as metrics (1 = best). . 149
6.4 Average number of agents which find target and number of scenarios where

at least 1, 2, or 3 agents finds the target (30 scenarios each). 155
6.5 Average time to target detection by first, second, and third agent (30 scenar-

ios each). 156

7.1 Hardware and software components used by various machines in distributed
simulator. 167

8.1 Kitfox Classic IV specifications. 175
8.2 Parameters of agents in team during Flight Test. 177

vii

GLOSSARY

A Original set of arcs (edges) in network

Ã Arcs to add in network

A′ Total arcs in network

B Set of z values defining spatial domain of occupancy based map

BR Locations reachable by agent in d steps

B̃ Set of z values defining center of occupancy based map cells

B̃R Cell centers reachable by agent in d steps

b Total magnetic field

Cs Node subset at step s

Ct Sum of particle filter weights at time t

D(j) Span interval of arc j

d Prediction horizon, number of waypoints in path

di Minimum distance from generator i to set B̃max

d−(j) Lower span interval of arc j

d+(j) Upper span interval of arc j

E Incidence matrix of network

f Feature vector

f0() Instantaneous cost function for path following problem

fC() Returns cumulative score of occupancy map cells covered by arc j

fχ() Reward function for course deviation in (℘2)

fd() Reward function for distance in (℘2)

fG() Returns node coordinate (fG : i ∈ I → <2)

fh() Reward function for high score cell in (℘2)

fM () Returns minimum occupancy map score covered by arc j

viii

g() Sampling function

H(Q) Entropy of partition Q

H(Qs, Qo) Joint entropy between partition Qs and Qo

h Sensor reliability factor in range [0, 1]

h() Target magnetic signature function

h̃i() False anomaly i signature function

I Set of nodes (vertices) in network

I Index of agent closer to B̃max than any other agent

I(Qs, Qo) Perspectives mutual information between partitions Qs and Qo

In Set of integers from 1 to n

In̂(m) Indices corresponding to runs where at least m agents find the target

j ∼ (i, i′) Arc starting at node i and ending at node i′

J() Total cost for path following performance

J0() Total reward function for (℘2)

K Number of data points between waypoints

Lx, Ly Width and height of map cell in x-direction and y-direction, respectively

l Lower bound for box set in (℘2)

M Total number of particles

M Number of function range partitions

M Number operations for (℘3,b) w/ Progressive Frontier Algorithm

M ′ Number operations for (℘3,b) w/ combinatorial approach

N Number of times spatial network algorithm is run

N Number of function domain partitions

N(µ, σ2) Gaussian distribution with mean µ and variance σ2

N+, N− Starting/ending node sets in min path algorithm

Nx, Ny Number of columns and rows, respectively, of occupancy based map

Ñ(i) Number of agents who find target in run i

Ñave Average number of agents who find target

ix

n Dimension of particle state in (℘2)

n[m](t) Noise added to particle m at time t in (℘2)

n̂(m) Number of runs where at least m agents find the target

PE , PN East and north position of agent, respectively

P Path of arcs from N+ to N−

P Set of Voronoi generator points

Pi Set in (℘3,a)

(℘1) Subproblem of creating future world state estimates

(℘2) Subproblem of finding desirable cells for agent to search

(℘3) Subproblem of finding trajectories for agent’s flight path

(℘3,a) Problem of finding feasible waypoints

(℘3,b) Problem of adding arcs to network

(℘3,c) Problem of finding optimal path in network

p(A|B) Conditional probability of A given B

pA Starting waypoint of current track segment

pB Ending or active waypoint of current track segment

pi Waypoint i of path

pi Voronoi generator point i

Q Domain partition of function

Qi Set in (℘3,a)

Qj Element j in partition Q

q(a, b) Calculates absolute angular difference between angles a and b

Ri Set in (℘3,a)

Rmax Maximum distance agent can travel in a d steps

r Radius of radial occupancy map update

r̂ Distance agent can estimate target state

rmax Distance agent can travel in a single step

rand(l, u) Function which produces a uniformly distributed random number in the range [l, u]

x

S(i, k) Cumulative map score at step k for run i

Save(k) Average cumulative map score at step k

sj Limit of range partitioning defining δj

sk Score of given occupancy map cell at step k (p(Xk = xB) at step k)

T Number of particle filter updates for a trajectory

Tm(i) Time when the mth agent finds the target for run i

Tm,ave Average time when the mth agent finds the target

ti Desired arrival time at waypoint pi

u Upper bound for box set in (℘2)

u Control vector

u0 Initial potential on nodes

V Voronoi diagram

Vtgt Actual velocity of target

Va Airspeed

Vmax Max velocity of agent

Vmax,tgt Max velocity of target

Vt Variance of weights at time t

V (i, k) Variance of map scores at step k for run i

Vave(k) Average variance of map scores at step k

Wt Weight set at time t

w Decision vector in <2·d

w? Optimal solution to (℘3) (path from current location to z?)

w
[m]
t Weight on particle m at time t

X A box set

x State of agent for target identification purposes

x Spatial coordinate

x0 Agent’s starting coordinate in (℘3)

xd Agent’s desired ending coordinate in (℘3)

xi

xagt(t) Agent’s location at time t (∈ <2 or <3)

xA, xB Event of target not in cell and target in cell states, respectively

xmin, xmax Minimum and maximum x value of occupancy based map

xp(t) Point on path segment closest to xagt(t)

xw(k, z) Actual state of the world at time step k and location z

x̂w(k, z) Estimated world state at time step k and location z

xagt(k) Agent state (PE PN χ)T at step k

xtgt(k) State of the target at time step k

x̂tgt(k) Estimated target state at time step k

x[m](t) Particle m at time t in (℘2)

x̃[m](t) Resampled particle m at time t (no noise added yet) in (℘2)

xw,nom Nominal score of occupancy based map

x? Average of all particles after particle filter terminates

ymin, ymax Minimum and maximum y value of the occupancy based map

z (x, y) coordinate (PE PN)T

z? Most desirable location in (℘2)

zagt Agent’s current (x, y) position

zt Sensor measurement made by agent at time t

z
[m]
t Sensor measurement expected by particle m

zA, zB Observation of target not in cell and in cell, resectively

z0 Agent’s current coordinate

zH Location of cell center with highest score in map and closest to agent

zh Location of cell center in agent’s reachable set closest to zH

zs Location of cell center of same cell that agent is currently in

α Scalar tradeoff parameter for x̂w(k + d, z)

β Scalar tradeoff parameter for fχ(z)

χt Particle filter set at time t

χtgt Course angle of target

xii

∆ Range partitioning of function

∆ψ Change in heading

∆t Time step used to record data

∆T Time between steps/waypoints

δj Element j of range partition ∆

ε Small number

η Maximum score of cell within agent’s reachable set

γ Scalar tradeoff parameter for fd(z)

Γ() Predicted future state function

κ? Scalar parameter used when computing pilot path following performance

λ Scalar in [0, 1] denoting agent’s capability to estimate target state and control

µ(Q) Lebesgue measure of set Q

µ center of radial occupancy map update

ν max fC() over all j

ν Domain partition of function using connected components

νi Element i in partition ν

ψ Heading

σsensor Standard deviation of sensor

τ Time constant for occupancy based map scores

ϕ Distance from agent to target

ξ Confidence factor in radial occupancy map update

ζi Flag used in definition of zhi

xiii

ACKNOWLEDGMENTS

This dissertation is the product of many years of research at the University of Washington

in the Department of Aeronautics and Astronautics. This department has been instrumental

in fostering and furthering my academic career and I am very grateful for my positive

experiences and supportive peers and advisors. First and foremost, I would like to thank

my advisors, Professor Juris Vagners and Dr. Rolf Rysdyk. Both individuals provided

invaluable guidance and motivation throughout my career in graduate school. They created

an environment conducive to learning and focused on both theory and application. Without

their influences, I would not be where I am today. This sentiment extends to the other

members of my committee, Professor Dieter Fox, Professor Mehran Mesbahi, and Professor

Nathan Kutz. These individuals were sources of inspiration and exposed me to many new

ideas in their perspective fields, much of which I have incorporated into this dissertation.

Additionally, I would like to thank other excellent faculty and staff in the Department of

Aeronautics and Astronautics, including Professor Uy-Loi Ly, Professor Kristi Morgansen,

Professor Adam Bruckner, Wanda Frederick, and Robert Gordon. All of these individuals

played a large positive role in my academic journey.

I would also like to extend my gratitude to my labmates in the Autonomous Flight

Systems Laboratory. Dr. Anawat Pongpunwattana, Dr. Richard Wise, and Matthew

Rowland were extremely helpful during many projects. But of all my peers, my greatest

thanks goes to Dr. Daniel Klein. He was one of the most helpful, knowledgable, and

intelligent individuals that I had the pleasure of meeting during my tenure at the UW. He

served as a great research accomplice and companion.

Financially, I would like to thank the George E. Solomon Academic Award, University of

Washington Aeronautics and Astronautics Alumni Scholarship, the Andris Vagners Memo-

rial Fellowship, the Washington Technology Center (grants F04-MC2 and F04-MC3), the

xiv

Osberg Family Trust fellowship, the NASA Space Grant Consortium Graduate Fellowship,

and the Air Force Office of Scientific Research (grant FA-9550-07-1-0528) for their generous

support. Additionally, I would like to thank the Boeing Company, the Insitu Group, and

Fugro Airborne Surveys for their collaborative efforts and data sharing.

I would like to thank my family and friends, including my mother, Judy, and my brothers,

Jonathan and Timothy. They always supported my decisions and provided me with many

needed opportunities to relax and focus on other things besides research. Research projects

may come and go, but I know they will always be there for me.

Finally, I would like to thank my father, Matthew. He is the one who originally motivated

me to become an engineer and he continues to inspire me and my family with his endeavors

and leadership. He serves as my role model of what an engineer and father should be. I am

extremely proud to be your son.

xv

DEDICATION

To my wonderful wife, Alison. You are all I have ever wanted and all I will ever need.

xvi

1

Chapter 1

INTRODUCTION

This chapter serves as an introduction to the main dissertation. A brief background

section reports on some current autonomous systems and the state of the art in various

fields. Some of the major contributions of this work are also presented along with the

general layout and structure of this dissertation.

1.1 Background and Motivation

The field of modern unmanned systems is a very well studied and engaging subject. It is also

an extensive field that spans many subcategories. It encompasses topics such as machine

learning, artificial intelligence, path planning, task allocation, human factors, systems inte-

gration, and many more. The study and application of these disciplines is required in order

to develop a viable autonomous system with a large set of capabilities. For an autonomous

system to be a useful system, it must be capable of deployment in a wide variety of missions

and able to perform required tasks competently. The situations that these systems en-

counter in their missions often require that the non-human components must execute tasks

or make strategic decisions that are typically handled by humans. For example, search-

and-surveillance type missions typically involve many tasks which are currently handled by

human operators. Tasks of assigning regions to search and coordinating sensor measure-

ments are usually left to human decision making and analysis. In a noisy environment, it

becomes difficult for a human operator to classify sensor readings and assign confidence in

these readings. Determining regions of high target-location probability and coordinating

nearby agents to converge on a particular spot while allowing other vehicles to continue

searching is also difficult. These missions are often complex and difficult operations due

to dynamics in the environment. Targets may not be stationary and observations become

less reliable as time progresses. In addition, many of these search missions are initiated

2

with a poor estimate of the target’s actual position. To aggravate matters, often the target

is moving or evading. These problems illustrate some of the challenges encountered by an

autonomous system during a mission. The current state of the art is such that in many

cases, human operators still outperform autonomous systems. Maximizing performance of

these systems often leads to many situations where humans are required to interact with

these systems and the size of the crew required to operate these “unmanned” systems ex-

ceeds that of traditional manned systems. Therefore, the primary limitation to concurrent

operation of multiple vehicles remains the lack of autonomy of these vehicles. This lack of

autonomy when performing tasks such as path planning and target identification in the face

of rapidly changing conditions severely increases operator workload. In order to minimize

human interaction, an efficient method for adding autonomy to these systems is required.

The potential application and utility of these types of autonomous systems is almost

limitless. These agents can be used in situations which may be too dull, dirty, or dangerous

for a manned system. For example, the functionality of such systems will be extendible to a

wide variety of system configurations such as forestry patrol, border patrol, maritime search,

and ISR (intelligence, surveillance, and reconnaissance) missions. Homeland Security Pres-

idential Directive (HSPD)-5 directed the development of a national plan for response to

manage radiological, hazardous chemical, or biological release incidents. The algorithms

developed in this dissertation have direct application to hazardous substance detection and

tracking tasks. The Environmental Protection Agency and Department of Energy have indi-

cated interest in evaluation of unmanned aerial vehicles (UAVs) for these applications. The

development of autonomous algorithms will increase the performance of these agents, thus

providing a direct outlet for military and commercial market demands requiring multiple

vehicles. Currently, these types of operations are restricted to the experimental robotics

research community.

In 2004, there were over 250 models of UAVs in production. In the United States alone,

there were over 160 models manufactured by over 40 different companies ranging in size

from Boeing to small businesses sustained by small business innovation research (SBIR)

grants. The annual world wide expenditures on UAV systems exceeded $2 billion [84].

These numbers have since increased dramatically and the demand for capable autonomous

3

systems continues to grow.

However, at the present time, the autonomous decision making capabilities of these

systems are insufficient to meet the demands of many complex missions. Many of the

subsystems and algorithms have limitations which hinder the performance of the overall

system. Removing or ameliorating these limitations is the goal of this research.

1.2 Problem Statement

The overwhelming majority of current missions tasked to autonomous systems revolve

around intelligence, reconnaissance, and surveillance (ISR). These are tasks such as track-

ing or loitering to observe or searching a domain for a target. This work seeks to increase

the autonomy and capabilities of a heterogeneous team of agents involved in a search and

surveillance type mission. The system maintains a world model which includes an estimate

of possible target states and the state of the environment. The issue of compelling agents

to converge on possibly moving targets and continuing to search new regions is formulated

as a model predictive control problem. The world model is propagated forward in time and

autonomous strategic decisions are made based on the predicted future state of the world.

Agents formulate control decisions for a fixed number of time steps by optimizing a team

based objective function which allows for control and timing constraints.

The overall objective of this work is to develop robust and scalable control laws to ap-

ply to a heterogeneous group of agents so that they operate in a cooperative fashion to

achieve a common goal. To sharpen the research focus, we consider the specific mission of

coordinating a group of agents to search a two dimensional space for a target based on its

magnetic signature. Although this goal may seem narrow in scope, many of the technolo-

gies developed for this application are easily adaptable to more general tasks encountered

in autonomous systems. Developing a strategic level searching algorithm often requires de-

veloping and implementing lower level algorithms to support it. Several of these algorithms

do not exist and must be developed for this application. For example, methods to perform

target identification and path planning must be developed and implemented to support the

searching algorithm. However, other lower level algorithms such as a state stabilization

system are not the main focus of the research, so methods to test the strategic algorithm

4

while circumventing these low level algorithms is also needed.

1.3 Contributions of this Research

A multitude of algorithms currently exists that allow many autonomous systems to perform

a wide variety of tasks. The state of the art and works of others are presented in Chap-

ter 2. This section serves to outline the unique contributions of this research to the field of

autonomous systems.

This dissertation describes the development of several autonomous algorithms which

are used to solve the problem of searching for a target using a team of heterogeneous

agents. The main contribution of this work is a modular, autonomous algorithm which

manages a group of heterogenous agents involved in a search and surveillance mission. This

algorithm is scalable to a large number of agents and maintains a single belief of the state

of the world at any given time. The algorithm has several unique characteristics, such as

guaranteed performance and coverage, which make it suitable for these types of missions.

The algorithm captures a search strategy that can be used to coordinate a searching mission

for a static or dynamic target. The resulting search strategy ensures that the team of agents

will exhaustively search the map for the target in the sense that the target will be found or

the probability that the target is located in any given cell of the map approaches zero.

In addition to the main searching algorithm, this dissertation discusses several algo-

rithms that are used in the overall searching strategy but can be applied to different sit-

uations with equal success. These include an algorithm for autonomous path planning in

an complex environment. This is a graph based approach that provides paths which meet

timing constraints and are guaranteed to be feasible for a given agent. Although the re-

sults presented here do not guarantee accuracy within a user defined limit, the advantages

over previous work by others include the ability to satisfy agent performance and timing

constraints and extensions to path planning in three dimensional space.

Another major contribution is the development of an autonomous target identification

algorithm. This system uses low dimensional, simple sensor measurements and adds sys-

tem consistency and temporal smoothness by incorporating information about the agent’s

motion and sensor model to develop a highly accurate classifier which allows the agent to

5

determine if it has encountered the target or not. This is a system that processes the output

from a low dimensional sensor and extracts relevant features from which to train a classifier.

We investigates the use of particle filters instead of the traditional hidden Markov models

to incorporate temporal smoothness and regularity into the target identification system.

These algorithms were verified and validated using a high fidelity and human-in-the-loop

simulator developed in the course of the research. This simulator isolates the contributions

and functionality of a strategic algorithm by allowing a human operator to handle lower level

tasks. This system can be used to expedite the testing of strategic algorithms without the

burden of developing low level control laws. The simulator can be used to train operators

in preparation of flight tests and field deployment of strategic algorithms. Results from

simulation, human-in-the-loop simulation, and actual flight tests are presented as well.

1.4 Document Layout

This dissertation is partitioned into several chapters. Chapter 2 reviews previous work in

the field of autonomous systems and algorithms in general. It also defines the distinctions

between different types and classes of autonomous algorithms. In this application, there are

two main tasks that the team of agents must perform. One is the tactical task of performing

autonomous target identification based on sensor readings from the agents. Chapter 3 details

the autonomous target identification algorithm and includes results and simulations.

Once the agents are able to perform tactical target identification, the system requires a

high level strategy for searching the domain for the targets. The framework for representing

environmental states is presented in Chapter 4. This lays the foundation for the overall

strategic searching algorithm which is discussed in detail in Chapter 5. This is a large

chapter which is broken down into several smaller sections which mirror the algorithm’s

modularity.

Chapter 6 provides simulation results and performance analysis of the search strategy

including comparisons with alternative searching methods. Once the searching algorithm

was proven in simulation, it was used in conjunction with the human-in-the-loop simulator

to prepare for deployment. This process is discussed in Chapter 7. After passing verification

and validation on the simulator, final flight test results are presented in Chapter 8. Finally,

6

conclusions and future research directions are presented in Chapter 9.

7

Chapter 2

LITERATURE REVIEW

The work presented in this dissertation covers many fields of research. Many of these

subjects are well studied and extensive literature exists regarding pertinent methods and

techniques. This chapter serves to highlight some of the related work done by others in

specific areas related to this research. The limitations of these approaches are not detailed

here. Instead, as the corresponding topic is discussed in the dissertation, the deficiencies

of these methods are outlined which illustrate the advantages and need for the methods

developed in this dissertation.

2.1 Autonomous Systems

The majority of this work falls under the umbrella classification of autonomous systems.

This is a fairly broad classification in the sense that an autonomous system may refer

to any system which contains decision making capabilities on some level. These systems

typically start with a vehicle such as an aircraft or boat. These vehicles are augmented

with autonomous algorithms to modify their behavior. A vehicle augmented in this manner

with basic decision making capabilities is referred to as an agent. An autonomous agent is

a complex system comprised of many separate algorithms. It is useful to define a metric for

determining the class of a given autonomous algorithm. One common metric is to classify

an autonomous algorithm by the level of autonomy it achieves and types of tasks it handles.

Three common classifications are shown in Figure 2.1.

Figure 2.1 shows the first level of autonomy as the strategic level. These algorithms

often operate at a low bandwidth and may be in charge of tasks such as mission planning.

They are sometimes referred to as “high level control schemes.” Next, the tactical level

of control operates underneath the strategic level. This level of control is concerned with

more specialized tasks such as path following or orbit coordination. Lastly, the dynamics

8

Figure 2.1: Different levels of autonomy.

and control level consists of the classical control problems such as state stabilization or

signal tracking. These are the most specialized and “narrow-minded” and operate at a high

bandwidth. A successful autonomous system uses algorithms from all different levels to

work together to achieve a common goal. This hierarchical structure of automation and the

challenges it entails has been studied and analyzed by groups such as Passino et al [12].

Others such as Clough [27], Huang et al [49], and Sholes [107] have proposed more

detailed metrics for measuring a system’s level of automation that operate in a similar

fashion but provide a more detailed classification system.

Often, the terms “autonomous systems” and “autonomous algorithms” are used inter-

changeably. The distinction made in this work is that autonomous algorithms are the

routines which manage specific tasks without human interactions and autonomous systems

are comprised of many sub-systems including hardware and autonomous algorithms. The

autonomous system may refer to a single actual agent or the entire team and infrastructure

to manage a group of agents.

An example of a modern autonomous system is the Boeing/Insitu ScanEagle UAV.

The ScanEagle is a medium sized unmanned aerial vehicle (UAV) that evolved from the

9

Aerosonde, the first aircraft to autonomously cross the Atlantic [79]. The original mission

for the Aerosonde was the collection of weather data for meteorological purposes [47], [80].

The ScanEagle continues this tradition of data gathering and is used in a variety of missions.

Variations of this system include models with a gimballed camera mounted in its nose which

is used extensively for ISR missions [5], [1]. An alternative configuration swaps the nose

mounted camera for a cesium vapor magnetometer. This variation is called the Georanger

and is shown in Figure 2.2(a). This system is used for magnetic anomaly surveys [11], [88],

[108]. The performance specifications of a typical ScanEagle are shown in Table 2.1.

Table 2.1: ScanEagle performance specifications.

Specification Value
Max Takeoff Weight 41.9 lb /19 kg
Payload 15.4 lb / 7 kg
Endurance 15 hours
Service Ceiling 16400 ft / 5000 m
Max Level Speed 70 knots / 36 m/s
Cruise Speed 49 knots / 25 m/s
Wing Span 10.2 ft / 3.1 m
Fuselage Diameter 7.0 in / 0.2 m
Length 4.9 ft / 1.5 m

Currently, these systems have basic autonomous flight capabilities such as waypoint fol-

lowing, altitude and airspeed hold, and automated launch and retrieval. In some situations,

the camera is able to lock onto pixels and track them autonomously.

Agents in a heterogeneous team are not only restricted to aircraft; unmanned systems

such as the SeaFox unmanned surface vehicle, the Seaglider unmanned underwater vehicle,

and the Mule unmanned ground vehicle could potentially make up a heterogeneous team.

These vehicles are shown in Figure 2.2.

More well known and larger scale autonomous systems includes the Predator which

is manufactured by General Atomics Aeronautical Systems and the Northrop Grumman

Global Hawk. These systems are also used extensively in ISR type missions and can be

equipped with a variety of sensors such as infrared cameras and synthetic aperture radar.

10

(a) The Georanger autonomous air vehicle (b) The Mule autonomous ground vehicle

(c) The SeaFox autonomous surface vehicle (d) The Seaglider autonomous underwater vehicle

Figure 2.2: Possible agents of a heterogeneous team involved in searching mission.

Although the capabilities of these systems are formidable, the key distinction is that these

are integrated systems rather than merely aircraft. They require a support infrastructure

which contains ground stations, communication links, and human operators. In the case of

the ScanEagle, the system requires at least two human operators for flight operations: one

to manage flight paths and the avionics systems and another to operate the camera system.

Personnel required for launch, retrieval, and ground tasks may further increase this number.

A portion of the supporting infrastructure for the ScanEagle system is shown in Figure 2.3.

The Predator and Global Hawk each require a flight crew of three operators [6], [7]. For

the Global Hawk, there is a pilot for the mission control element, a pilot for the launch and

recovery element, and a sensor operator. Although these systems succeed in shielding the

human operator from the danger present in these missions, the amount of human interaction

11

required for these autonomous systems exceeds that of their manned counterparts.

(a) ScanEagle pilot and sensor operator interface (b) Ground control station

Figure 2.3: Supporing infrastructure for ScanEagle and Georanger operations.

Cooperation between agents in a heterogeneous team is under development for systems

such as the U.S. Military Cooperative Operations in Urban Terrain (COUNTER) program

[53]. This system uses agents with varying sensors and capabilities to provide cooperative

surveillance for military bases. Although this integrated system is in the later stages of

development, it still relies on human operators to process the vast amounts of data gathered

by the agent’s sensors [37].

2.2 Autonomous Algorithms

The intelligence of autonomous systems stems from the various autonomous algorithms em-

ployed by the agents. Autonomous algorithms can be thought of as procedures or strategies

which govern the behavior and mission related judgements made by the agent. A complex

autonomous system is typically comprised of many autonomous algorithms which handle

specific tasks required for a mission. The capabilities of autonomous algorithms run the

spectrum from simple algorithms that stabilize a system about an operating point to al-

gorithms that perform task allocation between agents in the team. Some major aspects of

this work are in the field of autonomous searching, path planning, and target identification

algorithms.

12

2.2.1 Search Algorithms

Searching for a target in a two dimensional domain is a common problem for modern au-

tonomous systems. Determining regions of high target-location probability and coordinat-

ing nearby agents to converge on a particular spot while allowing other vehicles to continue

searching is also difficult. Open problems such as these limit the number of agents that

can participate in any given mission due to the high level of human interaction required to

manage these systems. Many of these types of schemes are often referred to as “lawnmower”

algorithms due to the fact that the search patterns they tend to generate resemble how one

might choose to mow a rectangular lawn. For simple environmental geometries, heuristic

strategies such as these work well and often can be trusted to search the entire map for

the target. However if the environment is complex, such as containing areas which may be

more or less desirable to search or require avoidance of areas posing threats to the search

vehicles, the performance and guarantees of these heuristic patterns deteriorate and even-

tually disappear. The main research in this dissertation investigates a modular algorithm

which can efficiently coordinate a team of possibly heterogeneous agents and ensure that

the team performs an exhaustive search of the map.

This type of search mission has been studied before by several other groups. Classi-

cally, this has been addressed in exploration [82], [30] and search and rescue [61], [58], [51]

scenarios. A survey of classical searching techniques by Benkoski [16] provides additional

background and references.

One modern approach that has become popular is to consider possible target locations

as a continuous or discrete probability density function. Groups such as Durrant-Whyte

et al. [21], [20], [122] have studied the problem of searching for a target using a Bayesian

probabilistic approach and have investigated some of the communication issues involved

in such a search. Polycarpou et al. [89], [39], [52] have applied optimization techniques

to generate search patterns over a finite amount of steps. Many of these methods are

successful and effective for single target locations but have difficulty providing guarantees on

target detection and map coverage. To address this, Erignac [36] has developed exhaustive

searching strategies which also provide guarantees about map coverage with ideas based on

13

pheromone maps. Coverage of maps and domains have also been studied in the context of

minimum service time to spontaneously occurring targets. Many of these techniques use

Voronoi partitioning of the domain to maintain agent separation and coverage and have

been studied by Du [33], Cortes [28], [68], and Frazzoli [42], [13].

Searching and map building has been studied extensively by the robotics community as

well. Groups such as Fox et al. [41] have looked at generating searching algorithms with

the ideas of exploration and map building in mind. Others such as Baillieul et al. [14]

and Hoffman [46] have posed the searching mission in an information theoretic framework

which provide useful metrics for search effectiveness. Previous work at the University of

Washington by Rubio et al. [100] investigated searching algorithms in the context of adap-

tive algorithms. Previous work by the author’s group [75], [70] explored the use of novel

optimization techniques to address the search problem.

2.2.2 Path Planning Algorithms

The autonomous path planning problem is another subject that has been well studied in

the past. Finding a feasible path for a vehicle subject to dynamic or kinematic constraints

in a complex environment is often a difficult problem. Assuming that feasible paths exist,

optimality of the path is a subjective matter and varies with environmental conditions and

constraints. Efficient computation of optimal paths under such conditions remains an open

problem.

The path planning problem is often addressed as a nonholonomic planning problem.

Although this is accurate, Donald et al. [31] have shown that finding exact, time-optimal

trajectories for a system with point-mass dynamics and bounded velocity and acceleration

in an environment filled with polyhedral obstacles is NP-hard. In order to find solutions in a

reasonable amount of time, several approximations to this problem have been made. LaValle

and Kuffner [67] addressed the nonholonomic constraints and solved the kinodynamic plan-

ning problem using rapidly exploring random trees. Groups such as Capozzi et al. [25]

have also looked at semi-randomized methods which provide quasi-optimal solutions to the

path planning problem using evolutionary programming. Later, Pongpunwattana et al. [91]

14

incorporated these ideas into overall mission planning and task management schemes which

address an agent’s state and timing constraints. Other related work is found in [87]. Previ-

ous work by the author’s group [75] investigated classical convex optimization techniques to

generate simple paths from a starting point to a goal location for agents with constrained

velocity limits. These algorithms are most similar to work done by Sun and Reif [110] where

they introduce the concept of optimal path planning through a non-uniformly discretized

two dimensional space (referred to as a weighted region) and efficiently compute a path

which is an ε-accurate approximation of the true optimal path though this space.

In general, many groups have extensively studied the path planning problem and there

is a significant amount of literature detailing the problem and proposed solutions. For

additional material see [81], [9], [100], [92], and [66]. Difficulties with these strategies include:

extensive computational power requirements (i.e. evolutionary algorithms [91], [97]), they

are limited to generating simple paths (i.e. convex optimization techniques [75]), and many

other open problems.

2.3 Target Identification

Another major type of autonomous algorithm deals with target identification and classifi-

cation. A primary goal in a searching mission is typically to find a target in some region.

However, there may be objects in the environment other than the desired target. If the

agent encounters one of these objects, it needs to be able to discern between a false and

true target. This problem can be addressed using machine learned classifiers.

The topic of machine learned classifiers is a large and well studied field. One of the

most well known family of classification algorithms are the boosting algorithms generated

by Schapire [106] and Viola et al. [117]. Groups such as Lester et al. [69] have applied this

idea and studied the problem of fusing data from a wearable unit with multiple sensors and

extracting features from which to train boosting algorithms for automatic classification of

human activities. Raj [96] and Fox [40], [62] addressed a similar problem using standard

particle filters, Rao-Blackwellized particle filters, and hidden Markov models (HMMs) to

incorporate temporal smoothness into the task of classifying human activities from the same

wearable multi-sensor unit. Particle filters are a popular method for estimating a system’s

15

state based on non-linear motion and sensor models [112], [56] and have been successfully

applied to applications such as robust control [18] and fault detection [119]. Modern tools

such as the Weka tool set [121] have allowed for rapid training of classifiers using training

and validation data. Previous work by the author’s group [74] investigated the potential for

using particle filters for target identification on a basic level.

2.4 Belief Maps

Traditionally, possible target locations in a two dimensional region have been represented

by two dimensional probability density functions [21]. In this paper, an alternative method

referred to as an occupancy based map is investigated. This method represents the belief

of target locations by discretizing the search domain into a finite number of cells similar

to work by Elfs [35], [34]. This map represents the state of the world in the sense that

cells with high scores correspond to areas where the target is more likely to be located.

This occupancy based map is shared and updated by all agents in the team. This method

of representing the state of the environment is popular in computer science and artificial

intelligence applications [101], [112].

Alternatives to the fully populated occupancy based map involve quad-tree representa-

tions such as those studied by Kang [56] and Amin [10].

In the research reported here, the occupancy based map provides the framework for

formulating the search strategy.

2.5 Human Interface and Simulators

Another major contribution of this research is in the area of verification and validation of

strategic autonomous algorithms [71]. Once the autonomous algorithms are developed, they

need to be tested in both software simulation and hardware-in-the-loop simulation before

deployment to flight test hardware. Many other research laboratories use ground based

simulators to verify and validate control algorithms. The UAV Lab at Georgia Tech [54], [55]

has developed significant software and hardware for testing algorithms and implementing

flight tests [94]. Many of the interfaces and architecture presented in this dissertation

are based on similar ideas. Previous work at the Autonomous Flight Systems Laboratory

16

at the University of Washington by Ponpunwattana et al. [93] regarding flight testing of

autonomous algorithms has led to the development of the current ground based testing

facility.

This simulator aims to replace the inner loop control algorithms with a human operator

in order to expedite the process of verification and validation of the strategic level algorithms.

This naturally introduces the aspect of human factors into the system. Human factors with

respect to unmanned and remotely piloted vehicles have been studied by groups such as

McCarley et al. [77], [78] and Tvaryanas et al. [113], [114]. A more in depth look at

integrating human decision making capabilities into autonomous systems and strategies has

been investigated by groups such as Savla et al. [104], [105], Cao et al. [24] and Morgansen

et al. [118].

17

Chapter 3

TARGET IDENTIFICATION

A primary goal in a searching mission is typically to find a target in some region [75].

As an agent performs its search, it may encounter the target it is searching for or it may

encounter an object which produces a sensor reading but is not the desired target (a false

anomaly). The main challenge in this situation is to correctly identify or classify these

encountered anomalies. Typically, the target identification process is handled by a human

operator. It is the operator’s responsibility to monitor sensor outputs and determine if read-

ings correspond to the desired target, false anomalies, or extraneous noise. Many unmanned

systems carry optical sensors such as cameras or infra-red imaging devices. Autonomously

processing the output of these sensors and classifying readings requires significant computa-

tional resources and effort and in many cases, a human operator will outperform a computer

generated algorithm in terms of classification accuracy and reliability. This can be mainly

attributed to the fact that the output of the sensor is a complex multi-dimensional set

of data with many features being explicit and more easily extracted and recognized by a

trained human operator. As the number of agents involved in the search mission increases,

so does the required number of human operators. A large team of expensive agents with

sophisticated sensors may not be the most effective system.

A more scalable and implementable team would be comprised of several smaller agents

with less complex sensors. These more primitive sensors may output a smaller dimension

signal which a human operator may have difficulty interpreting. Automating the target

identification process may have more promise in this context. In a noisy environment, it

becomes difficult for a human operator to classify sensor readings and assign confidence in

these readings because the useful features are hidden in the signal. In this situation, the

useful features in the signal can be extracted and then used to train a machine learning

algorithm to perform the classification which may have better accuracy and reliability than

18

the human operator.

This work contributes to the large area of research in autonomous target identification.

The main research focus is to develop a system which processes the output from a low

dimensional sensor and extracts relevant features from which to train a classifier. Some

topics covered in this chapter include sensor models of environments and targets, machine

learning algorithms for autonomous target identification, and investigation of the use of

particle filters instead of the traditional HMMs to incorporate temporal smoothness and

regularity into the target identification system.

The example used in this chapter involves an agent searching for a target based on its

magnetic signature. The agent is equipped with a simple scalar magnetometer which can

measure the magnetic field magnitude at its current location. The unique contribution of

this research is a highly accurate target identification system which uses low dimensional

sensor returns to classify anomalies. Section 3.1 covers the concepts of the general sensor

used in this application as well as the model of the magnetic field and various factors which

affect it. The models of the true target and false anomalies are detailed in Section 3.2.

Section 3.3 describes the method used to generate data and training examples for this

application. The various data features that are extracted from this simulation are described

in Section 3.4. Section 3.5 explains how the autonomous target identification algorithm

is trained and implemented. Finally, Section 3.6 presents results and remarks about the

overall target identification system.

3.1 Sensor Capabilities and Models

This work focuses on identifying sensor readings made by an autonomous agent and classi-

fying these readings as either the desired target or a false anomaly. The sensor of interest

is a scalar magnetometer which measures the magnitude of the magnetic field at a given

location. This section documents the sensor platform of the autonomous agent as well as

the models of the sensor and environment.

19

3.1.1 The Georanger Autonomous Aeromagnetic Survey Vehicle

For aeromagnetic surveys, the agent (UAV) is essentially a mobile sensor. The vehicle

autonomy serves the engineering user, who simply specifies an area of interest and after

some processing, receives a corresponding set of data. In this idealized perspective, the

data analyst is unconcerned with the method in which the data was obtained. To achieve

such an objective, autonomy is required at several hierarchical levels. The current work

focuses on target detection and classification tactics. The vehicle serving as the sensor

platform in this work is the Fugro Georanger, provided by Boeing/Insitu, shown previously

in Figure 2.2(a).

Each agent is equipped with a magnetometer to measure the total magnetic intensity

at its current location. This data is relayed to a ground station. The crucial piece of

information required by the ground station is a local magnetic map of the region where the

search is taking place. This map of the total magnetic intensity (TMI) of the region may be

acquired using analytical models such as the WMM-2000 or WGS-84 model [85]. However,

since these models are coefficient-based analytical models, they do not capture temporal or

small local variations in magnetic field strength. Therefore, a more accurate map is obtained

by performing an actual survey over the area of interest to collect the necessary data. It is

worthwhile to note that a large database of these surveys are readily available from either

proprietary companies [88] or government resources such as the United States Geological

Survey [4] so it may not be necessary to perform extra missions whose sole purpose is to

obtain these maps.

3.1.2 Magnetometer Capabilities and the Magnetic Field

One of the most important pieces of equipment for this application is the sensor used

to measure magnetic field strength. In this work, each agent is assumed to be equipped

with a cesium-vapor scalar magnetometer and a fluxgate vectored magnetometer. These

sensors measure the absolute field strength and the three component magnetic field vector,

respectively. A typical fluxgate vectored magnetometer can measure fields in the range of 0

to 2,000,000nT with a resolution of better than 1nT. Furthermore, the measurement signal

20

is expected to have a noise profile of 0.1nT.

A reasonable model of the magnetic field measured by an agent is given by the linear

superposition of various sources [32].

b = btgt + bm + bagt + bvar (3.1)

The magnetic field at the sensor, b, is a linear combination of several different magnetic

fields. The magnetic field predicted by an analytical model such as the International Geo-

magnetic Reference Field (IGRF) [3] or the 2000 World Magnetic Model (WMM-2000) [85]

is given by bm; the magnetic field created by the target is given by btgt; the magnetic field

induced by the agent itself is given by bagt; and unaccountable magnetic field variations are

given by bvar. One of the main goals of this work is to be able to discern the magnetic

signature of the target, btgt, from the other sources. In order to do this, each term must be

analyzed and compared to the capabilities of the sensors.

Mean Magnetic Intensity

The magnetic field at all points on the earth is modeled fairly accurately using analytical

models such as the IGRF or WMM-2000. These models provide the three component

estimated magnetic vector at any coordinate on the planet. The mean magnetic intensity

of the magnetic field varies from roughly 30,000nT to 65,000nT. An example of the output

of one of these models at the Boardman, OR closed flight test range (coordinates 47.780◦N,

119.708◦W) is shown below in Figure 3.1.

Self Induced Magnetic Field

The agent creates its own magnetic field which is measured by the sensor. The static

effect of the agent can easily be calibrated and subtracted from the sensor readings. It is

more difficult to characterize the dynamic effects of actions such as changing engine RPM

or servo actuation on the magnetic field. These effects are shown below in Figure 3.2,

courtesy of Boeing/Insitu. In this figure, the effects of different actions on the magnetic

field are shown for different sensor locations. The red line denotes data collected when

21

Figure 3.1: Predicted magnetic field at the Boardman, OR test range.

the magnetometer was closest to the agent’s core, whereas the purple line corresponds to

moving the magnetometer as far away as possible from the agent’s core. Due to proprietary

concerns, the scale of these readings is not shown; but it suffices to show that this self-

induced magnetic field is present and may have an effect on the measured magnetic field. If

an agent is optimized to make magnetic readings, these dynamic effects can be minimized.

Total Magnetic Intensity Maps

The magnetic field also has variations due to other unaccountable factors. These can include

effects such as short period magnetic fluctuations (≈1-2nT), long term drift (≈60nT/year),

and unaccounted magnetic signatures of structures or land formations. The effect of the

short period magnetic fluctuations can be satisfactorily modeled as white noise with am-

plitude 1-2nT. The unaccounted magnetic signatures of structures and land formations are

characterized by a total magnetic intensity (TMI) map. This map is a function that maps

a z = (x, y) coordinate to an scalar representing the deviation from the predicted magnetic

field strength (T : <2 → <). The graph of this function is essentially the resultant field

22

Figure 3.2: Self induced magnetic field effects. Courtesy of Boeing/Insitu.

after correcting the observed field for a regional gradient field (using IGRF or WMM-2000).

T (z) = ||bobserved(z)− bm(z)|| (3.2)

Two examples of actual TMI maps are shown below in Figure 3.3. Since these surveys are

obtained using specialized vehicles, the self-induced magnetic field is negligible (bagt ≈ 0)

and no targets are assumed to be present during the survey (btgt = 0) so the TMI map

gives a measure of accuracy of the predictive models. The areas of light blue are where

the magnetic anomaly is near zero. This implies that the measured magnetic field is very

close to the field predicted by a regional model. However there are many regions where

the measured field is significantly different than the predicted field. In Figure 3.3(b), the

magnetic anomaly ranges from roughly -600nT to 900nT. Since the peak anomaly of the

target is expected to be around 115nT, the predictive regional models cannot be relied upon

and an actual survey of an area must be obtained in order to discern the btgt from bvar.

Once again, this map is only a function of two variables (namely the (x, y) coordinates).

This forces the agents to fly at the same altitude that the original survey vehicle flew at

when the map was acquired. This map could be corrected for altitude variations or multiple

maps at different altitudes could be obtained. This modification would make the map more

complicated (a function of three or more variables) but would increase the functionality and

23

(a) 76.4km by 57km map near the Gulf of Mexico (b) 62.5km by 48.2km map over Puget Sound

Figure 3.3: Total magnetic intensity maps.

versatility of the system. Methods to do this are beyond the scope of this dissertation.

When an actual search is executed, differences between the ground station map of the

magnetic field and the actual magnetic field will appear as magnetic anomalies. In this

work, to minimize the number of false anomaly encounters and to increase the accuracy

of the evaluation, actual magnetic survey data is used as a local TMI map. This data is

provided by Fugro Airborne Surveys. The data was collected by a manned aircraft equipped

with a magnetometer to measure the TMI. This information, coupled with a GPS position,

provides the TMI in “line data” form. This data can then be interpolated into a 100x100

meter grid. TMI readings at locations other than survey points are linearly interpolated

from this grid. A magnetic map of a region in the Gulf of Mexico and a simple grid search

trajectory are shown below in Figure 3.7(a). Here, the data is acquired in an approximate

60x50 km grid. The regions of uniform color denote areas where survey data is not available,

creating the staircase appearance. Assuming that there are only permanent fixtures in the

region when the map is acquired, this map now makes up the reference set of data on the

ground station.

24

3.2 Target Models

The last term in Eq. 3.1 is the magnetic field anomaly due to the target or false anomaly

in the environment. The effect of the target on the magnetic field is difficult to obtain

in practice. For proof of concept purposes, it is modeled as a continuous function of the

position of the sensor over the target. This type of magnetic signature model is also applied

to generate models of the false anomalies.

3.2.1 True Target Models

As stated in Section 3.1.2, accurate magnetic maps and target signatures are necessary

for a successful target identification process. The target of interest in this application is a

submerged submarine operating at a constant depth. Based on limited knowledge at the

current time, the submarine signature is modeled as an oblong, two-dimensional Gaussian

with peak of approximately 115nT. The function’s level sets are roughly ellipsoids. The

rate of decay from the peak can be tailored using the covariance matrix of the Gaussian.

Undoubtedly, this profile differs from a true submarine signature. Furthermore, this profile

is a function of depth and sensor altitude. An accurate magnetic signature of the target

is required in order to predict the target signature in different conditions. Some modeling

has been completed by engineers at Fugro Airborne Surveys. One of the models is shown

in Figure 3.4.

If modeling the complex target signature is not accurate enough or impractical, another

option is to obtain this data experimentally. This would involve first obtaining a TMI map

of the test area without the target and then mapping the same area again with the target

present in a known position and orientation. By Eq. 3.1, the difference of the two maps

should be the magnetic signature of the target.

The magnetic field intensity created by the target is the most interesting and is also

the signature that is the most difficult to model. Modeling the submarine as an ellipsoid

80m long, 10m in diameter, at depth of 25 meters, and the sensor at an altitude of 25m

above the surface, the expected peak magnetic anomaly is approximately 115nT [45]. The

profile falls off quickly and at 100m to either side of the submarine, the magnetic anomaly

25

Figure 3.4: Submarine signature modeled with ModelVision Pro. Courtesy of Fugro Air-
borne Surveys.

is reduced to roughly 6nT. An example profile with the expected level sets is shown below

in Figure 3.5.

Currently, the submarine signature, h(), is only a function of the (x, y) coordinate (h :

<2 → <); a more sophisticated model would take depth and altitude into account. The

function would then be a function of four parameters. This formulation is easily incorporated

into the target identification algorithm described in this chapter. The magnetic signature

of the target (an idealized submarine) is modeled as a simple two dimensional Gaussian

distribution, shown in Figure 3.5(a). In reality, the magnetic signature of the target is

a function of many variables, namely depth of target, sensor altitude, etc. For current

purposes, the target is assumed to be stationary and at a fixed depth, thereby rendering the

magnetic signature static. Assuming that the magnetic signature of the target simply adds

to the total magnetic intensity of the local region in a linear fashion [32], anomalies can

easily be identified by simply subtracting the magnetometer reading from the local reference

map which is stored on the ground station.

26

(a) Magnetic intensity of sub h(x, y) = ||btgt|| (b) Level sets of magnetic profile

Figure 3.5: Magnetic signature of submarine.

3.2.2 False Target Models

The magnetic anomaly is either the true target with magnetic signature as described pre-

viously in Figure 3.5(a) or a false anomaly. To make the problem challenging, the false

anomalies are made to appear similar to the true anomaly. Example of three false anomaly

functions are shown below in Figure 3.6.

(a) h̃1(x, y) (b) h̃2(x, y) (c) h̃3(x, y)

Figure 3.6: Possible false anomaly signatures.

27

3.3 Generating Data

With the sensor model and true and false target signatures in place, data can be generated

by simulating encounters with these magnetic anomalies.

3.3.1 Agent Model

In practice, it is assumed that the agent’s orientation in the earth frame is known via

GPS. Because the anomaly’s location and orientation is not known, the anomaly’s frame of

reference with respect to the earth frame is unknown. In practice, the agent will fly over a

region and encounter an unexpected sensor reading (Figure 3.7(b)). It can be inferred from

this reading that an anomaly was encountered, but it is unknown which part of the anomaly

the agent flew over to generate this spurious measurement. One problem in this situation

is how to estimate the state of the agent with respect to the target’s frame of reference. In

this context, the agent’s state and control vectors are given by

x(t) =




x1(t)

x2(t)

x3(t)


 =




x(t)

y(t)

ψ(t)


 =




xtgt
uav/tgt(t)

ytgt
uav/tgt(t)

ψuav/tgt(t)


 u(t) =


 u1(t)

u2(t)


 =


 Vuav(t)

∆ψuav/tgt(t)




(3.3)

The agent is modeled as a simple planar kinematic vehicle with dynamics given by

x(t + 1) = u1(t)∆T


 cos(x3(t) + u2(t)) + x1(t)

sin(x3(t) + u2(t)) + x2(t)


 (3.4)

A simulation environment was developed that allowed an agent to fly over a magnetic

anomaly. A single trajectory consists of an agent flying a path over an anomaly. As the

agent flies over an environment, its sensor makes a scalar reading (z(k) ∈ <) at each time

step. Because only the differential measurement is desired, the magnetic contribution by

the environment is neglected. The sensor is modeled as

28

z(t) =





h(x1(t), x2(t)) + g(N(0, σ2
sensor)) if true target encountered

h̃i(x1(t), x2(t)) + g(N(0, σ2
sensor)) if false anomaly encountered

(3.5)

In Eq. 3.5, g() is a sampling function that simply chooses a sample from a probability

density function (in this case, a Gaussian distribution with zero mean and variance σ2
sensor).

The noise parameterized by σsensor is used to model the variation in the magnetic field and

also to model sensor noise. The anomaly function h() or h̃i() is either the true target or

one of the false anomalies described previously in Section 3.2.1 and 3.2.2, respectively.

3.3.2 Simulated Trajectories

The framework we have described can be used to generate a simulation environment which

recreates an agent flying through an environment and making measurements with a low

dimensional sensor such as a scalar magnetometer. Large differential measurements imply

the presence of a new magnetic anomaly and possible target. If the agent does not fly over

any targets, the magnetic anomaly should be near zero. Small non-zero anomaly encounters

can be attributed to temporal variations in magnetic field and sensor noise. A simple grid

search pattern is shown in Figure 3.7(a).

In Figure 3.7(a), the location of the target is shown as a dashed red box and the trajectory

of the agent is shown in the solid red line (starting in the lower left corner). The associated

total magnetic intensity trace and differential measurement trace is shown in Figure 3.7(b).

The total magnetic intensity reading as the agent flies over this trajectory is shown in the

upper trace and the differential measurement is shown in the lower trace. As the agent

flies this search trajectory, the sensor measurement is constantly compared to the reference

data set to generate a differential measurement. As can be seen in Figure 3.7(b), given

the differential magnetometer reading, the anomaly encounter can be easily detected (two

spikes at approximately 2700 and 3700 seconds) even though the actual range of absolute

measurements may be large.

Magnetic anomalies can be caused by many factors such as temporal variations in the

29

(a) Agent trajectory over TMI map. (b) Associated magnetic traces.

Figure 3.7: The total magnetic intensity map and trajectory over area with corresponding
magnetometer readings.

magnetic field or false anomaly encounters (i.e. boats or vessels). Once a magnetic anomaly

is encountered, it must be identified and classified. On a simplistic level, the overall goal

is to either classify the anomaly as the desired target or a false reading. Obviously, it

would be simple to identify the anomaly if the entire magnetic signature of the anomaly

is obtained (the UAV flies over the entire boxed region in Figure 3.7(a)). However, this

requires many passes over a potential target, and significant time to take the necessary

measurements. If the anomaly is moving or evading, this approach may not be feasible.

To further exacerbate the problem, if the agent is equipped with a simplistic sensor (like a

simple scalar magnetometer as in this case), the data obtained from a single pass may be

limited. The question now becomes, given only a single pass over the anomaly, is it possible

to correctly identify or provide a probability that this anomaly is indeed the target being

sought after using this limited sensor data? This fits the mold of a binary classification

problem.

The machine learning approach to solving the the binary classification problem requires

generating a series of training data which is then used to train an adaptive learning algo-

rithm. A Monte Carlo simulation is run with random, linear trajectories over the target.

This generates many examples of trajectories and measurements of the agent flying over

30

both the true target and the false anomalies. Of these runs, only ones that meet a certain

requirement are selected to be used as training examples.

The agent does not need to be simulated over the entire trajectory as shown in Fig-

ure 3.7(a) because for the majority of the time, the agent is not encountering an anomaly.

The anomaly is only encountered when the agent flies over the dashed red box. Therefore,

the Monte Carlo simulation only generates encounters of the agent with either a true target

or false anomaly (essentially just flying the agent over the dashed red box). Anomaly en-

counters are generated by placing M points uniformly around the boundary of the anomaly.

At each of these points, an angle is chosen from a uniform distribution between the ranges

which correspond to an inward pointing angle. This angle is then used to generate a straight

trajectory for the agent over the anomaly. This procedure is shown in Figure 3.8.

Figure 3.8: Generating approximately uniformly distributed anomaly encounters.

3.3.3 Selecting Sufficient Runs

The rate of convergence of most learning algorithms is dependent on the quality of the

training data. It is desirable to train a classifier using examples which are distinguishable

and are good representations of actual trajectories and to eliminate ambiguous examples

31

that may confuse the classifier. In this application, a run is deemed sufficient if it satisfies

several criteria. It is unlikely that a measurement trace over a false anomaly will be discern-

able from a trace over the true anomaly if there is only a small number of measurements

made. Therefore, a run is deemed sufficient only if the agent makes a minimum number

of measurements as it flies over an anomaly. Similarly, a run is deemed sufficient only if

the magnitude of the differential sensor measurement exceeds a certain threshold. This

eliminates runs where the agent flies over the edge of the anomaly parallel with the axis of

the anomaly (where the anomaly magnetic signature is nearly zero).

The runs that are used as training examples must meet both requirements. This process

helps ensure that the training examples fed to the learning algorithm are distinctive enough

to train a decent classifier. Examples of the total output of the Monte Carlo simulation and

the selection of sufficient runs is shown in Figure 3.9.

(a) All trajectories (b) Sufficient trajectories used as training examples

Figure 3.9: Removing insufficient trajectories from Monte Carlo simulation.

Despite being selective about the runs used as training data, at this point, the raw sensor

measurements from these trajectories do not provide enough distinction to differentiate the

class of anomaly. An example of the raw sensor measurements from both a true and false

anomaly encounter are shown in Figure 3.10. In this example it can be seen why it is difficult

to discern the class of the anomaly based solely on these raw sensor readings because the

traces are so similar. It is also difficult to determine the relevant features to look for in

32

Figure 3.10: Raw sensor measurements from both a true and false anomaly encounter.

order to classify the anomaly. The task of extracting the relevant features from the sensor

measurements is addressed in the next section.

3.4 Feature Extraction

This section discusses processing the raw sensor measurements in order to generate a feature

vector which can be used to train a classification algorithm.

As evidenced by Figure 3.10, the raw sensor measurements offer limited amounts of

useful data when it comes to classifying the anomaly. One option is to simply use the

sensor measurement at each time step as an individual training example. Theoretically, it

should be possible to create a classifier that is more successful than random guessing using

this simple feature. For example, if the maximum sensor reading exceeds the maximum

of the target signature, one can be fairly certain that the anomaly encountered is a false

anomaly. However, this allows for multiple classifications within the same trace. Although

this method provides an abundance of training data, it is virtually impossible to generate

a reliable classifier using this simple a feature set.

Improvements to the accuracy can be made by using the assumption that during an

33

anomaly encounter, the agent only encounters the true target or a false anomaly (it cannot

encounter both together). This means that an entire trace should be classified as one or the

other. Instead of using the sensor value at every time step, one can extract features like the

maximum/minimum sensor values over the entire trace. This yields a single training exam-

ple for each trajectory and helps incorporate some temporal smoothness to the classification

as this yields only a single classification per anomaly encounter.

Basic features such as maximum/minimum sensor readings and averages can be ex-

tracted fairly easily. These basic features help discern the classes somewhat. However,

more ambiguous cases require additional features.

3.4.1 Particle Filter Features

The previously mentioned, simple features based on the raw sensor measurements still prove

insufficient to train an accurate classifier. Further information can be gleaned by considering

both the sensor model (Eq.3.5) and the dynamic motion model (Eq.3.8) of the agent. Since

the data traces are generated using these models, a method that considers these temporal

aspects has a much greater potential to yield useful features.

Typically, temporal smoothness is incorporated using Hidden Markov Models or Dy-

namic Bayesian Networks. These are useful to reduce classification noise in continuous

traces. Some applications are classifying human activities [69], [96] where the classification

can switch between different activities in a reasonable manner (for example, humans might

transition from walking to sitting but typically do not rapidly transition between sitting

and riding a bike). In effect, this makes use of the agent’s motion model to predict the

state and thereby augment the classification. Although this method can be used in this

application to smooth the data, it does not explicitly use information regarding how the

sensor measurements are gathered (the sensor model in Eq. 3.5). In this application, the

temporal aspects of both the motion and sensor model are addressed using particle filters

[62].

A particle filter is a recursive, non-parametric Bayes filter technique that estimates the

states of a system using a finite number of state hypotheses [112]. In this situation, the state

34

vector being estimated is the position of the agent with respect to the target, expressed in

the target’s frame of reference and the relative heading of the agent with respect to the

target.

x
[m]
t =




xtgt
uav/tgt

ytgt
uav/tgt

ψuav/tgt


 (3.6)

Each individual state hypothesis, x
[m]
t , is referred to as a particle, and together they

make up the particle filter set, χt.

χt =
⋃

M

x
[m]
t =

{
x

[1]
t , x

[2]
t , . . . , x

[M]
t

}
(3.7)

Historically, particle filters have been employed in this manner to perform tasks such

as localization [111] and state estimation [38]. In this situation, the goal of the filter is to

estimate the state of the agent (position and orientation with respect to the target, expressed

in the target’s frame of reference). The particle filter performs this estimate using two main

steps, a prediction and correction step.

Prediction

In the prediction step, each particle is propagated forward in time using a motion model of

the individual agent.

x
[m]
t = g

(
p

(
x

[m]
t |ut, x

[m]
t−1

))
(3.8)

Each new particle is created from the old particle and the current control (applied to

transition particle at time t−1 to time t). The term p
(
x

[m]
t |ut, x

[m]
t−1

)
is a multi-dimensional

probability density function of the new state given the old state and current control. Notice

that in this formulation, the state transition is not a deterministic process. This stochastic

aspect actually has important implications regarding the robustness of the particle filter

[112].

35

Although p
(
x

[m]
t |ut, x

[m]
t−1

)
may be difficult to compute analytically, Eq. 3.8 is imple-

mented in simulation by simply adding noise to the control and then propagating the state

forward using a deterministic motion model in Eq. 3.8. In simulation, the noise added to

each element of the control vector is obtained by sampling from a normal, Gaussian distri-

bution with a variable standard deviation, σ. The standard deviation is a function of the

actual control applied to the agent, ut. In effect, as ||ut|| increases, so does σ. Physically,

this translates into a model whose state transition becomes more uncertain as the agent

moves faster or executes larger heading changes.

In addition to the control input at each time step, the actual sensor measurement ob-

served by the agent, zt, is made available to the particle filter. Each particle is then assigned

a weight, w
[m]
t , based on how likely it is to make the same sensor measurement at its current

state
(
w

[m]
t ∝ p

(
zt|x[m]

t

))
. In effect, a higher weight should be assigned to particles whose

states are close to the actual state, xt. Notice that this does not require a sampling function

like Eq. 3.8 because zt and x
[m]
t are known at this point. This is another description of the

sensor model of the agent. It allows for the fact that even though a particle’s state may be

vastly different than the true state of the agent, if the sensor is poor or unreliable, it has

the possibility of still making the same sensor reading as the agent.

The sensor model used in simulation calculates the weights by creating an error between

the particle sensor measurement and the true sensor measurement and then using this as

the argument of a Gaussian distribution.

w
[m]
t = (2πσ2

sensor)
− 1

2 exp

(
−1

2
(zt − z

[m]
t)2

σ2
sensor

)
(3.9)

In Eq. 3.9, z
[m]
t is the predicted sensor measurement made by particle m computed using

the same sensor model in Eq. 3.5. As stated previously, σsensor is a measure of the sensor’s

accuracy. A larger σsensor implies an unreliable sensor; therefore, particles that do not make

the same measurement as the true agent still receive high weights. Note that the weight is

not a probability, but this system still achieves the goal of assigning high weights to particles

that are more likely to have states that are similar to the true agent state. Similar to the

particle set, χt, the weight set at a given time step t is given by

36

Wt =
⋃

M

w
[m]
t =

{
w

[1]
t , w

[2]
t , . . . , w

[M]
t

}
(3.10)

Correction

Now that each particle has been propagated forward and assigned a weight, it becomes

necessary to correct the particle filter set so that it comes closer to representing the actual

state of the agent. This process is known as resampling.

As stated before, the particle filter’s estimate of the state is made up of all the particles.

Currently, the particle filter set contains particles that have both high and low weights. As

more and more sensor measurements are acquired, it is desired that high scoring particles

are replicated and kept in the next generation population whereas low scoring particles

are discarded. The important feature in this evolutionary process is that the particles are

resampled with replacement so that the total number of particles remain constant at each

cycle. Any type of evolutionary scheme, such as survival of the fittest, can be used to evolve

the current population to the next.

In simulation, a roulette wheel method is used. This is a popular method in many

computer science applications where M bins are created (one for each particle). The size of

each bin is directly proportional to the weight of the associated particle. The bins are placed

next to each other and a random number is then generated. The bin in which the random

number falls then has its associated particle included in the next population. This process

is repeated M times and is synonymous to spinning a roulette wheel M times where the

number and size of the slots on the wheel are directly proportional to M and the weights,

respectively.

Using the roulette wheel method yields resampling proportional to the weights. This

allows for a particle to be copied multiple times in the next generation. This also generates

a small probability that particles with low weights have the possibility to survive to the

next generation as well.

One important feature of the particle filter is the ability to use different motion and

sensor models. This allows for a team of agents to be comprised of different types of

37

vehicles and sensors. This simply requires modifying the motion and sensor models of each

particle filter for each member of the heterogeneous team.

Execution

When an agent encounters an anomaly whose magnitude exceeds the noise threshold (ap-

proximately 1nT in this case), the particle filter is started in an attempt to estimate the

state of the agent with respect to the target. The particle filter’s progression as the agent

flies diagonally over the target is displayed over a top down view of the target signature

(Figure 3.5) and is shown below in Figure 3.11.

In this sequence, the large red circle represents the actual location of the agent and the

solid red line represents the agent’s trajectory over the target. The smaller magenta dots

represent the particle filter’s many different hypotheses of the possible state of the agent

(North position, East position, and heading). The actual agent crosses over the target

starting in the lower left corner and flies to the upper right corner. Also note that the

initial distribution of particles is not simply random over the domain. Since the algorithm

is recursive, the number of iterations before convergence is based on its initial condition.

Incorporating a priori knowledge that the particle filter is started when the anomaly mag-

nitude exceeds 1nT suggests that initially, the particles should be clustered along the level

curves where the target signature is 1nT with inward pointing headings.

As the agent obtains more and more sensor measurements (at a simulated rate of 1Hz),

the particle filter is able to eliminate particles that are inconsistent with the current mea-

surement and resample these particles to regions that have a higher probability of producing

the actual sensor reading, zt. This is why as time progresses, the particles become concen-

trated around the actual UAV location. Near the end of the simulation, there are four

distinct groups of particles. This is due to the symmetry of the underlying target signature.

Each of these four groups of particles are equally likely because each group would produce

the correct actual sensor readings. In effect, z
[m]
t ≈ zt ∀m. Due to this symmetry, the

particle filter is not able to uniquely identify the position of the agent with respect to the

target. This would require multiple passes over the target and more sensor measurements.

38

(a) Initial particle distribution, χ0 (b) χ98

(c) χ198 (d) χ248

Figure 3.11: Particle filter progression during a target encounter. The solid line indicates
actual aircraft position relative to target signature, while the particles concentrate about
possible positions.

Although the goal of the particle filter is to estimate the position of the agent with

respect to the target in the target frame of reference, in the larger picture, the location of

the target with respect to the agent in the agent frame of reference is more useful because

it then becomes simple to locate the target in the earth frame of reference (agent’s position

and orientation in the earth frame of reference is known via GPS). Each particle can be

transformed using Eq. 3.11.

39




xuav
tgt/uav

yuav
tgt/uav

ψtgt/uav


 =




− cos(ψuav/tgt) sin(ψuav/tgt) 0

− sin(ψuav/tgt) − cos(ψuav/tgt) 0

0 0 −1







xtgt
uav/tgt

ytgt
uav/tgt

ψuav/tgt


 (3.11)

When each particle is transformed in this fashion, the distribution of the target location

with respect to the agent in the agent’s frame of reference becomes as shown in Figure 3.12.

(a) Distribution of transformed particles (b) Histogram distribution of xuav
tgt/uav, yuav

tgt/uav, and
ψtgt/uav

Figure 3.12: Transformed particles now representing position and orientation of target with
respect to the agent in the agent’s frame of reference.

In the first two plots in Figure 3.12(b), it appears that the particle filter now has a

somewhat unique estimate of the location of the target relative to the agent as shown by

an approximate unimodal distribution in xuav
tgt/uav and yuav

tgt/uav centered at approximately

0 and -2250, respectively. However, notice that the distribution of ψtgt/uav is obviously a

multimodal distribution. This distribution is actually the sum of four peaks which should

ideally be centered at ±11.3 degrees and ±168.7 degrees. Since the number of particles

was not large enough and since the motion and sensor models of the particle filter were

not highly accurate, the two peaks centered at ±11.3 degrees appear as a single peak at 0

degrees.

40

This multimodal distribution in ψtgt/uav reflects the four distinct state hypotheses shown

previously in Figure 3.11(d). However, if the orientation of the target is not desired, then

by transforming the particles, it is possible to obtain a unique estimate of simply xuav
tgt/uav

and yuav
tgt/uav. Note that this is only the case when the agent happens to fly directly over

the target as shown in this example. In a more general case where the agent passes over

the target off-centered, then even with the transformation of the particles, the location of

the target cannot be determined uniquely (but the number of possible locations may be

reduced).

3.4.2 Generating a Feature Vector

In the majority of this section, we discussed the state estimation problem using the particle

filter method. Deviating from the standard usage of the filter, a closer look at the weights,

w
[m]
t , is warranted in the context of target identification.

A scalar quantity which collectively measures the overall accuracy of the particle filter

can be obtained by simply summing all the weights. If most of the particles are in locations

that are similar to the true state, then the sum of the overall weights should be large.

Ct =
M∑

m=1

w
[m]
t (3.12)

This trace of a Ct vs. t might be considered a side-effect of estimating xt, but as will be

shown later, this is the primary piece of information that will be used to address the target

identification problem.

The particle filter will attempt to estimate the agent’s state regardless of whether the

anomaly encountered is the actual target or a false anomaly. A method to identify the

target is now required. The sum of all the particle weights, Ct, provides a quantitative

measure of how confident the particle filter is that the anomaly encountered is the actual

target. If all or most of the particles are resampled to areas that are near the actual state of

the agent, then most of the weights will be fairly high. The sum of the particle weights for

an encounter with the actual target and an encounter with a false anomaly is shown below

in Figure 3.13.

41

(a) True target encounter (b) False anomaly encounter

Figure 3.13: Sum of all particle weights during a true target encounter and a false anomaly
encounter.

In Figure 3.13, the difference between a true target encounter and a false anomaly

encounter is fairly clear. In the situation where the agent encounters the true target, the

confidence measure increases initially as the particles are quickly resampled to locations that

are consistent with the actual sensor measurements and then stays fairly constant. However,

in the case where the agent encounters a false anomaly, the particle filter regularly “loses

confidence” as inconsistent sensor measurements are obtained. This is characterized by the

sharp drops in the sum of the particle weights.

The variance of the particle weights also is a good indicator of filter confidence. If the

variance is high, this implies that the weight of the particles is spread out. Since a high

weight indicates a good state estimate, if the filter is not very confident in its state estimate,

the variance is high. The variance at each time step of a single trajectory is recorded to be

used in generating features later.

Vt = Var(Wt) (3.13)

Using the raw sensor readings and the particle filter outputs, an eleven dimensional

feature vector is generated.

42

f =




T

M(2πσ2)−1/2

maxt=1,...,T (zt)
1
T

∑T
t=1 zt

1
T

∑T
t=1 Vt

1
T

∑T
t=1 Ct

1
T

∑T
t=1

Ct

M(2πσ2)−1/2

maxt=1,...,T (Vt)−mint=1,...,T (Vt)

maxt=1,...,T (Ct)−mint=1,...,T (Ct)

maxt=1,...,T−1 |Vt+1 − Vt|
maxt=1,...,T−1 |Ct+1 − Ct|




(3.14)

The first two features are constants that are functions of the particle filter execution.

The first feature is simply the number of measurements made by the agent. The second

feature is the maximum sum of the weights possible at any point during the particle filter

execution. The third feature is simply the maximum sensor reading encountered and is

included for reasons discussed previously. The next three features are the average sensor

reading, variance of weights, and sum of weights, respectively. The seventh feature is the

average weight proportion which is somewhat redundant but helpful when visualizing data.

The next two are the changes in variance of the weights and sum of the weights over the

entire particle filter execution. Finally, the last two features are the maximum change in

variance of the weight and sum of the weights in a single step, respectively.

A single feature vector is generated for each measurement trace and represents a single

example for training a classifier. Using these features with various learning algorithms are

discussed in the next section.

3.5 Autonomous Target Identification

As mentioned previously in Section 2.3, the field of autonomous target identification is a

well studied discipline. A traditional classification scheme [121] is shown in Figure 3.14.

In this situation, the agent and sensor interacts with the environment. Feature are

43

Figure 3.14: Flow diagram for traditional classification system.

then extracted from the sensor measurements and passed to a trained classifier which then

decides on the class based on these features. Typically, this signal is noisy since it has not

taken into account how the measurements were generated. System consistency is added

using some type of Bayes filter or HMM to smooth the signal and output the final anomaly

class. Notice that in this system, information about the system models is incorporated once

the classifier has decided on a class. An alternative to this strategy involves integrating the

system consistency via a Bayes filter at the feature level and is discussed in the next section.

3.5.1 Training Classification Algorithms

The flow chart for the proposed classification system is shown in Figure 3.15. A simulated

trajectory over an anomaly is generated using the specified sensor and motion model. If this

trajectory is deemed sufficient, the particle filter is run using the controls and measurements.

Features are then extracted from these controls and measurements and the outputs from the

particle filter algorithm. This system offers benefits over the system shown in Figure 3.14

because the system models are able to influence the classifier instead of being applied to

the output of the classifier since motion and sensor models are incorporated at the feature

level.

Figure 3.15: Flow diagram for proposed classification system.

To generate training examples, 1700 random trajectories were flown over both the true

44

target and various false anomalies (roughly equal proportions). Of these 1700 trajectories,

836 were deemed sufficient for feature extraction. Once the features are extracted from

these sufficient runs, a set of 836 training/testing examples are generated. This data set is

evaluated with several different learning schemes as described in the next section.

3.6 Simulated Results

The main focus of this chapter is generating an autonomous target identification algorithm.

The actual classification algorithm is highly dependent on the features used to train it.

Once discernable features are extracted (Eq. 3.14) they can be used to train any number

of classifiers. To evaluate the effectiveness of these features, several different classifiers are

trained using the Weka Toolkit [121].

3.6.1 Results

Each classifier was trained and tested using a stratified 10-fold cross-validation scheme. The

results for four learning methods [121] are displayed in Table 3.1.

Table 3.1: Classification results for various learned algorithms.

C4.5 Decision Alternating Multi-Layer
Revision 8 Stump Decision Tree Perceptron

Classified As Classified As Classified As Classified As
True False True False True False True False

Actual True 232 40 0 272 197 75 247 25
Actual False 70 494 0 564 57 507 59 505

Accuracy 86.84% 67.46% 84.21% 89.95%

As can be seen from Table 3.1, most of the learning algorithms perform very well with

an average accuracy of 87% (excluding the overly simplistic decision stump method). These

results are encouraging considering that there are only 11 features in each example. Of-

ten times, hundreds of features are extracted for each example in order to obtain these

accuracies. Of course, of these large feature sets, only several features are useful for the

classification. This leads to the conclusion that the 11 features described in Eq. 3.14 are

45

discernable and therefore valuable in this application. Extracting more features might serve

to increase accuracy but most likely not by a large margin.

The decision tree generated by the C4.5 Revision 8 algorithm [95] is shown in Figure 3.16.

Although there is not much to be learned by looking at the individual nodes and leaves of

the tree, the structure illustrates why this method of extracting a low number of features is

desirable. The computational cost of executing the particle filter (and extracting the feature

vector) is relatively high. However, once the features are extracted, the actual classification

is fairly simple. The resulting decision tree is small enough to illustrate. Therefore, this tree

can be implemented easily for a real-time application. Once the features are extracted from

the data, the actual classification is not computationally intensive (in this case requiring at

most eight if-statements).

Figure 3.16: Decision tree generated by C4.5 Revision 8 algorithm.

3.6.2 Remarks

The main challenge in searching for a target in a noisy environment is identifying the

anomalies that are encountered by the agent. This is challenging because in many cases,

the agent is equipped with a simple sensor that captures a limited amount of data. The

particle filter method gracefully captures the temporal aspects of how the data was obtained

by using both the motion and sensor model of the agent and maximizes the amount of

information gained from the sensor returns. The outputs from the particle filter and the

46

sensor data are then used to generate a low dimensional feature vector. This feature vector

is able to distinguish between the true target and a false anomaly very effectively and can

be used to train any number of machine learning algorithms for classification.

Training and learning a classifier off-line saves computational resources which can instead

be directed towards feature extraction during a real time mission. Current research is

directed toward optimizing the particle filter routine or finding other less computationally

intensive methods for incorporating temporal smoothness and consistency into the feature

vector. The high classification accuracies are very encouraging and efforts to find other

features that may increase the accuracy even further are also being investigated. Previous

research on this topic can be found in [72].

47

Chapter 4

BELIEF MAPS

In this chapter, we changes topics and look at some of the components that are required

in order to address the more strategic problem of coordinating a multi-agent search mission.

One of the most important aspects of any search mission is to create a representation of

the environment that contains information about the target and world in which the agents

operate. Section 2.4 detailed some representations such as two dimensional probability

density functions and the like. This chapter focuses on an uncoupled, discrete representation

of the world known as an occupancy based map.

4.1 Occupancy Based Maps

In order to effectively search a two dimensional domain for a target, the system must keep

track of the state of the world in terms of possible target locations. To do this, an occupancy

based map is employed. Recall that these constructs were originally formalized by Elfs [35],

[34] but we add functionality such as Bayesian score updates and time varying models to

the maps to accommodate our algorithm.

4.1.1 Occupancy Based Maps Definition

The search domain is discretized into rectangular cells. Each cell is assigned a score which

is the probability that the target is located in that cell. This is similar to a two dimensional,

discretized probability density function [21]. The spatial domain of the occupancy based

map consists of a box where x is between xmin and xmax and similarly for the y dimension.

B =



z =


z1

z2


 | z1 ∈ [xmin, xmax], z2 ∈ [ymin, ymax]



 (4.1)

The occupancy based map is a function defined over the set B×< which assigns a score

48

in the range [0, 1] to each element z ∈ B ⊂ <2 at a certain time step k ∈ <. In other words,

xw : B × < → <. The score of a given cell represents the probability that the target is

located in that cell.

The occupancy based map is shared and updated by all agents involved in the search.

At each time step, guidance decisions for each agent are computed based on this map.

The state of the map at any time k is also referred to as the world state. This reflects

the fact that the map represents the possible locations of targets and other objects in the

environment. In essence, the system’s belief of the state of the world is embedded in the

state of the occupancy based map. A TMI map is shown in Figure 4.1(a) and an example

of an occupancy based map over the same domain is shown below in Figure 4.1.

(a) Total magnetic intensity map of region to search (b) Initial occupancy based map

Figure 4.1: Discretization of search region into an occupancy based map.

In Figure 4.1(b), the blue sections represent cells with zero scores whereas the green

sections represent scores of 0.5. This is the initial state of the occupancy based map. It

represents the situation where no a priori knowledge of the target’s location exists other than

it cannot be in a section where no real data exists (sections of uniform blue in Figure 4.1(a)).

The map can contain information about other aspects of the world rather than the

presence or lack of magnetic data in that region. For example, the map can represent the

world state with locations of obstacles and reward areas in the environment. The idea of

49

embedding obstacles in the map is similar to defining obstacles in a configuration space

[65]. The agent’s belief of the world state is embedded in the occupancy based map. In

this application, the occupancy based map only provides information about two states of

the agent’s pose (i.e. the planar position). An example of embedded obstacles and reward

areas in an occupancy based map is shown below in Figures 4.2 and 4.3.

(a) Physical environment with hard obstacles

0 1 2 3 4 5

x

Occupancy Map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Occupancy based map representation of environ-
ment

Figure 4.2: Abstraction of marine environment using occupancy based maps.

(a) Physical environment with soft and hard obsta-
cles

0 1 2 3 4 5

x

Occupancy Map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Occupancy based map representation of environ-
ment

Figure 4.3: Abstraction of urban environment using occupancy based maps.

50

Figure 4.2(a) represents a marine environment that an agent may be forced to navigate

through. In this scenario, there are two islands that are considered hard obstacles. This

environment can be abstracted using an occupancy based map as shown in Figure 4.2(b).

Here, the dark blue sections represent cells with zero scores (hard obstacles) and the green

sections represent scores of 0.5 (neutral values).

An example of an urban environment with hard and soft obstacles is shown in Fig-

ure 4.3(a). The idea is the same except there are regions which correspond to soft obstacles

that should be avoided if possible but entering these regions does not violate a constraint.

These sections are represented by the lighter blue shades with scores ranging from 0 to 0.5.

If there were regions that were beneficial to the agent, these could be assigned scores greater

than 0.5.

It is useful to define the cell center set, B̃, as all values z which correspond to the center

of a cell in the occupancy based map.

B̃ =



z

∣∣∣∣∣∣
z =


xmin + Lx(i− 1/2)

ymin + Ly(j − 1/2)


 , i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny



 (4.2)

The occupancy based map and its associated features provides a versatile framework

from which to build a searching algorithm.

4.1.2 Combining with Geo-Referenced Images

The occupancy based maps can be combined with geo-reference imagery to create maps

which correspond to real locations. Various software manipulation libraries such as OpenCV

can be used to manipulate geo-referenced images and assign the domain of the occupancy

map to correspond to locations on satellite images. Examples of these are shown in Chap-

ter 8, Figure 8.4.

4.2 Updating Maps

Now that the occupancy based maps have been defined, it becomes useful to look at how

these maps are updated. The world state is constantly changing and the maps must be able

to reflect a dynamic environment.

51

4.2.1 Updating Map Cell Scores

The occupancy based map is dynamic and can be updated either by agents involved in

the mission, external sources, or other means. The agents are able to modify the map to

reflect their findings during the search mission. Each agent in the team is able to search

the cell at its current location using its sensor. The discrete state space of the cell is simply

Xk = {xA, xB} where Xk = xA corresponds to the target not in the cell and Xk = xB

meaning that the target is in the cell. In a similar fashion, the agent may make one of two

sensor measurements, Zt = zA (observe target not in cell) and Zt = zB (observe target in

cell). As mentioned previously, the score of a given cell in the occupancy based map reflects

the scalar probability that the target is located in that cell at the current time step k. For

convenience, the score of the cell at time step k is denoted sk = p(Xk = xB).

To model a heterogeneous team of agents with stochastic sensors, each agent’s sensor is

assigned a reliability factor h ∈ [0, 1]. A value of h = 0 implies that the sensor is completely

unreliable and no information can be gained from this sensor. Conversely, h = 1 corresponds

to a completely reliable sensor that can ascertain if the target is or is not located in the

agent’s current cell in a single measurement. The probabilistic sensor model can be formed

as

p(Zt = zA|Xt = xB) = 1− 1
2(h + 1)

p(Zt = zB|Xt = xB) = 1
2(h + 1)

(4.3)

Assuming that the state of any given occupancy map cell score is not affected by the

action of taking a measurement, the probabilistic score of a given occupancy based map

cell can be updated using the sensor model of Eq. 4.3 which yields the following Bayesian

update rule.

sk =





sk−1(1−h)
1+(1−2sk−1)h

if Zk = zA

sk−1(1+h)
1+(2sk−1−1)h if Zk = zB

(4.4)

In Eq. 4.4, sk represents the score of the occupancy map cell (sk = xw(k, z) for z in

some cell region). Contour plots of this function are shown in Figure 4.4.

52

0.
00

1

0.
1

0.
2

0.3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

s
k−1

h

s
k
 for Z

k
 = z

A

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) sk(sk−1, h) for Zk = zA

0.001
0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9

1 1

1

s
k−1

h

s
k
 for Z

k
 = z

B

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) sk(sk−1, h) for Zk = zB

Figure 4.4: Contour plots of the sk() function.

This update rule has several interesting properties. We show that the scores of each cell

either monotonically increase or decrease with each sensor measurement for the majority

of values of h and sk−1. It is trivial to see that if sk−1 = 1 then sk = 1 and if sk−1 = 0,

then sk = 0 for either case of Zk = zA or Zk = zB and for all values of h. The physical

significance of this is that if the target is absolutely certain to either be in the cell or not,

then no further updates will change this fact. Similarly, for Zk = zA, if h = 0 then sk = sk−1

and if h = 1 then sk = 0. This implies that if the sensor is completely unreliable (h = 0),

making a measurement with this sensor will not change the state of the cell. Conversely,

if the sensor is completely reliable with h = 1, then only a single measurement of Zk = zA

is all that is required to change the score of the cell to 0. A similar situation arises for

Zk = zB where if h = 0 then sk = sk−1 but if h = 1 then sk = 1. This is because zB with

h = 1 is the event of detecting the target with a 100% reliable sensor. The more interesting

cases are when sk−1 and h are in the interval (0, 1).

Theorem 4.2.1. Under the update rule of Eq. 4.4, sk < sk−1 if Zk = zA and sk > sk−1 if

Zk = zB ∀sk−1, h ∈ (0, 1).

Proof. For the case of Zk = zA the burden is to now show that sk < sk−1 ∀k for the cases

where sk−1, h ∈ (0, 1).

53

One can examine the denominator of Eq. 4.4 and note that ∀sk−1 ∈ (0, 1) the term

1− 2sk−1 > −1. Therefore, the denominator term must be greater than 1− h. Noting that

for all h ∈ (0, 1) the term 1 − h > 0. Therefore, the denominator term must always be

positive.

Furthermore, it is easy to see that 1− sk−1 > 0 and 2h > 0 for these conditions. So one

can write

0 < 2h(1− sk−1) (4.5)

1− h < 1 + h− 2hsk−1 (4.6)
1− h

1 + h− 2hsk−1
< 1 (4.7)

(4.8)

Multiplying both sides by sk−1 yields the final result

sk−1(1− h)
1 + (1− 2sk−1)h

= sk < sk−1 ∀h, sk−1 ∈ (0, 1) (4.9)

It is trivial to show that sk > 0 ∀k. This in conjunction with Eq. 4.9 shows that with

enough sensor measurements of Zk = zA, the score of a given cell will proceed monotonically

towards 0.

A similar proof can be applied for the case of Zk = zB with the result showing that with

enough sensor measurements of Zk = zB, the score of a given cell will proceed monotonically

towards 1.

Although the occupancy map cells scores are assumed to be independent, a common

operation with the map is to increase or decrease scores within a certain radius according

to a given function. This may be used when the map cells are smaller than the size of the

anticipated target or the target identification process is not highly accurate or certain. In

this case, it is desired to add some coupling to model the fact that if an agent identifies that

a target may be at a certain location, it is also likely that it may also be located nearby.

The update rule of Eq. 4.4 can be applied with Zk = zB and h set to be a function of radial

distance to increase scores around the point µ. Similarly, if the scores are desired to be

54

decreased within the radius, the update rule may be used with Zk = zA. Eq. 4.10 is used

to compute the corresponding value of h to use in this radial update function.

h =





ξ(1− 1
r2 (z − µ)T (z − µ)) if ||z − µ|| ≤ r

0 otherwise
(4.10)

The update equation given in Eq. 4.4 can model an agent with a single point sensor.

The radial update function of Eq. 4.10 is useful for modeling a wide area sensor that can

search several cells simultaneously such as a wide angle camera similar to one shown in

Figure 5.2(a).

A standard Markov assumption is used to remove the dependence of the next score on

past scores, and therefore only one version of the occupancy based map must be maintained

at any given time step.

4.2.2 Time Varying Maps

In addition to updating individual occupancy map cell scores or regions of scores, the entire

map can be updated simultaneously. This can be used for situations where the map is time

varying. The map can be time varying to model the fact that target location estimates

become more uncertain as time progresses [14]. One modeling choice is to use a simple

linear dynamic model of the form

xw(k + 1, z) = τxw(k, z) + (1− τ)xw,nom for z ∈ B (4.11)

In Eq. 4.11, xw,nom is simply the nominal score (typically 0.5) and τ ∈ [0, 1] is the time

constant governing how fast the score decays back to the nominal. The other stable region

of τ ∈ [−1, 0] for the discrete system in Eq. 4.11 is excluded because although τ ∈ [−1, 0]

does lead to a system that decays to the nominal score, it does so in an oscillatory manner,

which does not make physical sense in this application.

The time varying effect using Eq. 4.11 is shown below in Figure 4.5. There is no estimate

of target velocity so the regions of high probability do not translate in the x and y directions.

However, as time progresses, the estimates return to their nominal values to model the

55

phenomenon that old measurements cannot be relied upon to judge if the target is still

located in a certain cell or not.

8.5
8.6

8.7
8.8

8.9
9

x 10
5

3.17

3.18

3.19

3.2

3.21

x 10
6

0

0.2

0.4

0.6

0.8

1

y
x

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) xw(k, z)

8.5
8.6

8.7
8.8

8.9
9

x 10
5

3.17

3.18

3.19

3.2

3.21

x 10
6

0

0.2

0.4

0.6

0.8

1

y
x

z
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) xw(k + 1, z)

8.5
8.6

8.7
8.8

8.9
9

x 10
5

3.17

3.18

3.19

3.2

3.21

x 10
6

0

0.2

0.4

0.6

0.8

1

y
x

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) xw(k + 2, z)

Figure 4.5: World estimates decaying back to the nominal score over time.

Note that the results shown in Figure 4.5 have some minor heuristics included. Namely,

if the score of the cell is zero, then Eq. 4.11 is not applied. If it was applied, these scores

would decay to the nominal value as well. Notice that Eq. 4.4 naturally incorporates this

behavior. Therefore, another option for implementing a time varying map is to use Eq. 4.4

to define the probabilistic update rule of

xw(k + 1, z) =





max
(
xw,nom, sk(1−h)

1+(1−2sk)h

)
if xw(k, z) > xw,nom

min
(
xw,nom, sk(1+h)

1+(2sk−1)h

)
if xw(k, z) < xw,nom

xw(k, z) otherwise

(4.12)

When Eq. 4.12 is applied for all z ∈ B̃, the effect is similar to that shown in Figure 4.5 but

no additional heuristics are required and the result is consistent with the Bayes probabilistic

rule used to update the map.

One final aspect of system modeling that concerns updating the map is how the agents

update the map when they encounter a target. If the agent searches the cell where the

target is located and successfully finds the target, it can update the scores of its current

cell and those around it using the radial update equation of Eq. 4.10. The sensor reliability

factor is also used to model a sensor which may miss a positive target identification. If h

is low, there is a high probability that the agent will not find the target even if it searches

56

the correct cell. This behavior affects several performance metrics such as the average time

to target detection, which is discussed later in Chapter 6, Section 6.2.4.

57

Chapter 5

MULTI-AGENT SEARCHING

With the occupancy map framework in place, the strategic searching strategy can be

addressed in this chapter. The problem of searching an area using a team of possibly

heterogeneous, autonomous agents is still an open problem. Many of the sources listed

in Section 2.2.1 provide methods to perform this mission with varying degrees of success.

For example, randomized coverage methods [42], [68] are unable to provide guarantees

regarding map coverage and target detection. Other approaches such as Bayesian searching

[21], [20], [122] have difficulties embedding information about a complex environment into

the algorithm. In terms of sub-tasks such as path planning, methods such as evolutionary

computation [92], [25] may prove to be prohibitively expensive in terms of computational

resources. This chapter focuses on addressing these issues and developing a modular and

scalar algorithm that can be applied to this situation [76].

The search algorithm is modular in the sense that it is comprised of three main steps.

Each step is somewhat independent of the others and different algorithms can be used

to accomplish the same goal within any of the three main steps. The first step involves

propagating the world state (the occupancy map) forward in time. By providing a predictive

aspect to the problem, each agent can then make control decisions based on the predicted

future state of the world rather than only using the current information. Once the system

generates a predicted future world state, each agent determines a desirable coordinate to

visit in the future. The desirability of a location is measured using a complex objective

function. This formulation allows for each agent in the team to have a different set of

parameters and therefore, each agent can have its own notion of desirability. Finally, once

this desirable coordinate is determined, a path through the environment that transitions

the agent from its current location to the desirable coordinate can be applied.

58

5.1 Algorithm Overview

It is desired that agents in the team exhibit certain behaviors and achieve several goals

during a mission. One desired behavior is that the agent is to converge on regions of high

score (a high probability that the target is located in a given location). Once an agent

locates an anomaly, it should loiter there until a positive identification can be made by

techniques such as discussed in Chapter 3. While this occurs, other agents who are farther

away will continue searching. A search strategy for a single agent is developed with these

goals in mind and then applied to each agent in the team. The overall flow of the search

strategy for a single agent is shown in Figure 5.1.

Figure 5.1: Flow diagram for single agent search strategy.

The single agent search strategy is comprised of three subproblems which are referred

to as (℘1), (℘2), and (℘3). The process starts by finding the agent’s state at the current

time, xagt(k). Next, (℘1) is solved to obtain the estimated world state at time k + d. Next,

(℘2) is solved to find a desirable coordinate, z?, which the agent will visit within the next d

steps. Finally, (℘3) consists of finding an optimal set of waypoints/controls, w?, which will

take the agent from its current location to the location of the desirable coordinate found in

(℘2).

Each agent in the team follows this same policy without information or explicit knowl-

edge of other members of the team. This approach has several advantages and disadvantages.

The major benefit of this strategy is that the computational resources needed for this

59

algorithm grow linearly with the number of agents. Each agent does not require explicit

knowledge of other agents to compute its own control law. This allows the algorithm to be

scalable to a large number of agents. Furthermore, although the algorithm is centralized

in the sense that there must be a star communication topology where each agent is in

communication with a centralized base, the computation for the algorithm can be performed

in a decentralized manner in the sense that each agent can make its own decisions based on

information from the base without consulting other agents in the team.

The primary disadvantage of this policy is that there is no explicit cooperation between

agents. As shown in many situations, explicit cooperation has the potential to improve

performance of the system at the cost of increased complexity and computational resources

[90], [60], [122]. Some modifications to allow for explicit cooperation are presented in Sec-

tion 5.5.

5.2 (℘1) Predictive World Model

The main goal of problem (℘1) is to provide an estimate of the world state at a future time.

This gives the algorithm an aspect of model predictive control [26], [57]. If an agent comes

close to a target, it makes an estimate of the target state and the estimated target state is

then propagated forward in time. Scores of the map are updated to reflect the future state

of the world based on this target state estimate.

5.2.1 Target State Estimation

The estimated future world state is based on the estimated future state of the target. The

target is assumed to have simple, planar kinematic dynamics. The estimated target state

dynamics is assumed to have the form of

x̂tgt(k + 1) = Atgtx̂tgt(k) + Btgtûtgt(k) (5.1)

In Eq. 5.1, x̂tgt = (x̂tgt ŷtgt χ̂tgt)T . In other words, it is assumed that the agent is able

to estimate the position and course angle of the target. The estimated control vector is

ûtgt = (V̂x,tgt V̂y,tgt)T , meaning that the agent is able to estimate the planar velocity of the

60

target. Situations where these are not realistic assumptions are beyond the scope of this

research and it is assumed that a secondary, tactical level algorithm (perhaps similar to that

described in Chapter 3) has already be realized and implemented on the agents in order to

accomplish this goal. For simulation implementation, the estimated target input, ûtgt, is

assumed to be the true value of the control plus additive Gaussian noise. Each agent has

an effective radius for target state estimation. This is used to model agents which may be

equipped with wide area sensors such as visual or infrared cameras. If the target is located

within this radius, the agent is able to make an estimate of the target’s state and control

vectors. The estimated target state and control vectors are given as

x̂tgt =




g(N(xtgt, σ
2
x))

g(N(ytgt, σ
2
x))

g(N(χtgt, σ
2
χ))


 (5.2)

ûtgt = g(N(utgt, σ
2
V)) (5.3)

It is assumed that the maximum velocity of the target, Vmax,tgt is known. This is a

realistic assumption given some basic pre-mission intelligence. With this knowledge, the

standard deviations for the target state and control noise are computed as

σx =
(1− λ)

2r̂
ϕ (5.4)

σV =
(1− λ)Vmax,tgt

2r̂
ϕ (5.5)

σχ =
(1− λ)π

2r̂
ϕ (5.6)

This model is useful for modeling a wide area sensor such as a camera system [50].

For example, the inertially stabilized camera system on the ScanEagle UAV is shown in

Figure 5.2(a). A screen shot from the associated video feed is shown in Figure 5.2(b). Notice

that the edges of the screen are blurry from the vibrations in the camera and the resulting

61

software stabilization. This provides motivation for using a model where the accuracy of

the sensor readings deteriorate as the distance from the center of the camera focal point

increases.

(a) ScanEagle camera system (b) Screen shot with software stabilization

Figure 5.2: Gimballed camera system on ScanEagle and associated screen shot of video
feed.

Here, ϕ = ||zagt − ztgt||. Therefore, the estimated target state and control noise are a

function of the distance from the agent to the target. Increasing the standard deviation

linearly with distance models the fact that the sensor measurements are less reliable as

distance increases. The parameter λ ∈ [0, 1] is used to model the sensor reliability. A value

of λ = 0 implies an unreliable sensor that cannot be heavily trusted. In this case, the error

in the position estimate of the target can vary with 95.45% of the samples falling within

±ϕ. This means that the variation in position estimate may be of the same magnitude as

ϕ. A similar behavior is exhibited for the variation in the control velocity and course angle.

These will most likely vary up to the maximum velocity of the agent and ± 180 degrees,

respectively. An example of this estimation is shown in Figure 5.3.

In Figure 5.3 the blue ‘x’ represents the location of the agent and the triangles are

locations of targets. The dashed red circle represents the agent’s radius of target estimation,

r̂. The red airplane represents the estimated target state, x̂tgt and the red arrow represents

the estimated target control vector, ûtgt. Figure 5.3 shows that when the agent is closer to

the target, the estimates are in general more accurate (due to smaller standard deviations

62

0 50 100 150 200 250
−50

0

50

100

150

200

250

300

350

400

1

2

3

x

y

Agent
Target 1: INSIDE
Target 2: outside
Target 3: outside
Effective Radius

(a)

0 50 100 150 200 250
−50

0

50

100

150

200

250

300

350

400

1

2

3

x

y

Agent
Target 1: INSIDE
Target 2: outside
Target 3: outside
Effective Radius

(b)

0 50 100 150 200 250
−50

0

50

100

150

200

250

300

350

400

1

2

3

x

y

Agent
Target 1: outside
Target 2: outside
Target 3: outside
Effective Radius

(c)

0 50 100 150 200 250
−50

0

50

100

150

200

250

300

350

400

1

2

3

x

y

Agent
Target 1: outside
Target 2: INSIDE
Target 3: INSIDE
Effective Radius

(d)

Figure 5.3: Estimated target state and control vectors for λ = 0.15.

on the noise). Furthermore, if there are no targets within the radius of target estimation,

then no estimates of the target state or controls are made (Figure 5.3(c)).

5.2.2 World State Estimation

The target state and control vector are estimated using the method described in Sec-

tion 5.2.1. These estimates can be used to propagate the estimated target state forward to

an arbitrary time in the future. Using this information, the estimated state of the world

can be updated as well. This is done by taking the current state of the world, xw(k, z),

and then modifying it using the estimated future state of the target. The world estimate

63

at time k + p is then a function of the estimated target state at time k + p and the world

state at the original time k.

x̂w(k + p, z) = Γ(x̂tgt(k + p), xw(k, z)) for p = 0, ..., d (5.7)

Eq. 5.7 is a fairly general representation of the estimated future world state. Γ() can

be implemented using several methods. One method is to simply add a two dimensional

Gaussian centered about x̂tgt(k + d) to xw(k, z). An example of this is shown below in

Figure 5.4 when the estimated target state is observed to be moving to the left at a constant

velocity.

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.17

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 1. p = 0

 t = 1 p = 0

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) x̂w(k, z) = xw(k, z)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.17

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 1. p = 1

 t = 1 p = 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) x̂w(k + 1, z)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.17

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 1. p = 10

 t = 1 p = 10

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) x̂w(k + 10, z)

Figure 5.4: Estimated world states at different times for estimated target moving to the
left.

A more robust alternative is to update the scores of the map using the radial update

function previously described in Eq. 4.10. The estimate of the future world state is similar

to that shown in Figure 5.4 except it incorporates the current world scores. In other words,

the scores of the region near x̂tgt are increased but they are done so in a probabilistic fashion

instead of simply replacing the scores with a given value.

In the event that the agent is not able to estimate the target state, the estimated future

world state is the same as the current world state, x̂w(k + p, z) = xw(k, z) ∀p.

64

5.2.3 (℘1) Remarks

This strategy benefits the agent in several ways. The main purpose of (℘1) is to add an

element of model predictive control to the algorithm. The most obvious is that the agent is

choosing control actions which will benefit it d steps in the future rather than “only thinking

one step ahead.” This effect is illustrated later in Section 6.2.1, Figure 6.4.

Another advantage is that external sources other than agents may influence the agent’s

behavior. For example, human operators who may have access to additional mission intel-

ligence can easily update the state of the world through (℘1). They can thereby influence

the autonomous team while remaining relatively removed from the low level planning algo-

rithms.

Now that the state of the world can be estimated at step k + d, the system attempts to

find a coordinate that has desirable properties and is within the agent’s reachable set. This

is addressed in (℘2).

5.3 (℘2) Desirable Location Selection

The agent now needs to choose a location that it must travel to based on the estimated

future state of the world. In this section we describe several modular methods that can be

used to choose a desirable cell to search.

5.3.1 Defining the Reward Function

In (℘1), the state of the world is propagated forward in time by d steps. The subproblem

(℘2) concerns finding a desirable location (a desirable z value) for the agent to travel to in

d steps. The desirability of a location is determined by a reward function of the following

form

J0(z) = αx̂w(k + d, z) + η (βfχ(z) + γfd(z)) + δfh(z) (5.8)

The reward function is a combination of terms which model both the environment and

agent states. For example, the term x̂w(k + d, z) measures the estimated state of the world

d steps into the future. The function fχ() is a function which penalizes heading changes.

65

In a similar fashion, fd() rewards locations which are farther away from the agent. Finally,

fh() is an indicator function which serves to drive the agent towards the highest score in

the map. This describes the general behavior of the cost function, but a more detailed look

at its construction is necessary.

With the cost function defined, the most desirable location is then found via an opti-

mization scheme using Eq. 5.8 as an objective function. Typically, the set over which one

optimizes Eq. 5.8 is the set of all locations that the agent can reach in d steps. This set

is determined by parameters such as its maximum velocity and time step. The set of all

locations that the agent can reach in d steps is referred to as the agent’s reachable set,

BR ⊆ B. This application defines BR as

BR = {z ∈ B | ||z − zagt|| ≤ Rmax} (5.9)

Eq. 5.9 assumes that the agent has no turn rate limits and the agent has simple planar

kinematics. In a practical application where there may be saturation concerns, it is possible

that BR may not be a perfect circle as described in Eq. 5.9. In this case, it simply becomes

more difficult to define and compute BR but the following analysis is not affected by the

geometry of BR.

It is useful to also define the set of cell centers that the agent can reach in d steps. This

is simply

B̃R = BR

⋂
B̃ (5.10)

In Eq. 5.8, the function fχ() is given by

fχ(z) =





0 if z in same cell as current agent

1− q(χagt,π/2−atan2(z2−yagt,z1−xagt))
π otherwise

(5.11)

In Eq. 5.11, the function q(a, b) computes the absolute angular difference between the

two angles, a and b. A simple absolute value of the difference of a and b is not sufficient and

66

some simple heuristics are included in the function η() of Eq. 5.8 to take care of situations

such as where a = 1 · π/180 radians and b = 359 · π/180 radians. A simple absolute value

of the difference would return an angle of 358 · π/180 radians, which is incorrect. However,

the function η() returns the correct angular difference of 2 · π/180 radians. Note that the

range of fχ() is [0, 1]. An example of this function is shown in Figure 5.6(c).

The function fd() of Eq. 5.8 is given by

fd(z) =





||z−zagt||
Rmax

if z ∈ BR

0 otherwise
(5.12)

The function fd() effectively rewards locations that are farther away from the current

agent position until the distance Rmax is reached; past this point, the function returns 0.

An example of this function is shown in Figure 5.6(d).

Finally, the function fh() of Eq. 5.8 is an indicator function. To define this function, it

becomes necessary to first define some intermediate variables. The first of these variables

is given by

B̃max =
{

z ∈ B̃ | x̂w(k + d, z) is maximum ∀z ∈ B̃
}

(5.13)

The set B̃max is simply the set of cell centers that have the highest score in the map.

Note that this set may have more than one cell center. For example, in Figure 4.1(b), the

set B̃max would include all the centers of the green cells since they all have the highest score

in the map. For further clarification, the relationship between the sets B̃max, B, BR, and

B̃R are shown later in Section 5.5.1 Figure 5.25.

A single cell center from B̃max can be chosen using one of two methods. The first method

involves choosing the point in B̃max which is closest to the agent. This location is designated

as zH

zH ∈ arg minimize
z∈B̃max

||z − zagt|| (5.14)

An alternative method for choosing zH is to use

67

zH ∈





arg minimize
z∈B̃max

||z − zagt|| if B̃max
⋂

B̃R = ∅

arg maximize
z∈B̃max

⋂
B̃R

||z − zagt|| otherwise
(5.15)

The method for choosing zH in Eq. 5.15 entails first checking if the set B̃max
⋂

B̃R = ∅.
If this is true, this implies that there are no cells that have the highest score of the map in

the agent’s reachable set. If this is the case, Eq. 5.14 and Eq. 5.15 will choose the same point

for zH . This can be seen in Figure 5.5(a). The two methods deviate if there is a cell with

the highest score of the map within the agent’s reachable set. In this case, Eq. 5.14 would

still choose the cell in B̃max which is closest to the agent as shown in Figure 5.5(c). On the

other hand, Eq. 5.15 would instead choose the cell with the maximum score that is farthest

from the agent, but is still in the agent’s reachable set as shown in Figure 5.5(b). Either

method can be used and each has advantages and disadvantages that will be discussed in

Section 5.3.3.

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Agent
z

h

(a) zh using either Eq. 5.14 or 5.15

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Agent
z

h

(b) zh using Eq. 5.15

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Agent
z

h

(c) zh using Eq. 5.14

Figure 5.5: Differences between using Eq. 5.14 and 5.15 for choosing zH .

With the point zH defined, the point in the agent’s reachable cell centers that is closest

to zH is given by

zh ∈ arg minimize
z∈B̃R

||z − zH || (5.16)

With zH and zh defined, the function fh() is simply given as

68

fh(z) =





1 if z is in cell containing zh

0 otherwise
(5.17)

An example of the fh() function is shown in Figure 5.6(e).

The final parameter in the reward function is the variable η which is the maximum score

within the agent’s reachable set.

η = max
z∈B̃R

x̂w(k + d, z) (5.18)

An example of the various functions that make up the reward function are shown below

in Figure 5.6.

Figure 5.6(a) shows the state of the world at the current time. This is the system’s belief

of the world without making any estimates of the target location.

Figure 5.6(b) shows the estimated state of the world in d steps. In this case, an external

source has provided information that the target is likely located in the lower right corner.

This estimate can be made by a team member or another source in the system. The dashed

red line shows the maximum distance the agent can reach in d steps. Maximizing this

function over B̃R requires choosing the cell with the highest score within the dashed red

line.

Figure 5.6(c) shows the fχ() function for the particular case of the agent having a course

angle of 243◦. Maximizing this function requires picking a location z which minimizes the

course change required to visit this location (z locations which are in line with the pink

arrow).

Figure 5.6(d) shows the fd() function. Maximizing this function corresponds to choosing

a z location which is farthest away from the current location.

Figure 5.6(e) shows the indicator function fh(). In this scenario, the set B̃max is the

set of cell centers which maximize x̂w(k + d, B̃). These correspond to the cell centers of

the dark red rectangle in Figure 5.6(b). From the set B̃max, zH is chosen as the cell that

is closest to the agent (the lower left corner point). Finally, the point zh is determined as

the point within the agent’s reachable cell centers which is closest to zH . As can be seen,

69

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) xw(k, z)

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) x̂w(k + d, z). α = 0.5

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) fχ(z).χagt = 243◦. β = 0.5

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) fd(z). γ = 0.5

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) fh(z). δ = 0.05

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) J0(z)

Figure 5.6: Various functions which compose the reward function, J0().

70

maximizing fh() requires simply choosing z in the same cell as zh.

Figure 5.6(f) shows the normalized total reward function. The reward function can

typically exceed 1 but it is normalized so that the max value is 1 for plotting purposes.

The parameters α, β, γ, and δ can be chosen differently to reflect different agent capa-

bilities. For example, small α values yield agents which will not be adverse to large course

changes. This may be appropriate for more agile agents such as small UAVs. Conversely,

large α values correspond to agents which may deem a coordinate more desirable if it has

a somewhat low score but is in line with its current course. This may be appropriate for

cumbersome agents like large boats. One important aspect of Eq. 5.8 is that α, β, γ, δ, x̂w(),

fχ(), fd(), and fh() are all in the range [0, 1]. This is explained further in Section 5.3.3.

5.3.2 Quasi-Optimal Solution Via Adaptive Sampling

With the reward function J0() fully defined, the problem of finding the most desirable coor-

dinate to search within the agent’s reachable set may be posed as a standard optimization

problem where the goal is to maximize J0() (Eq. 5.8) over the agent’s reachable set.

(℘2) z? ∈ arg maximize
z∈BR

J0(z) (5.19)

Although this formulation is straightforward, its solution is not. (℘2) is far from a well

posed, convex program. Although the feasible set BR is typically a convex subset of <2

(a perfect circle), the objective function is not as agreeable. The objective function J0()

is interesting for several reasons. First, the function is the combination of a numerical,

discontinuous function (the world state, x̂w()) and a continuous, functional representation

of potential fields (i.e. the course penalty, fχ()). This combination of numerical lookup

tables and analytical functions creates a unique situation requiring a numerical algorithm

for solutions. In this situation, it may not be possible to find the true optimal to (℘2).

Instead, the primary objective becomes finding a feasible solution and then adding some

notion of optimality as a secondary goal. This defines the concept of quasi-optimality. We

now present a general method which provides a quasi-optimal solution to the problem of

optimizing an arbitrary cost function over a box set. This mixes the ideas of probability

71

collectives [48] and particle filters [40]. Recall the particle filter in the context of target

identification was detailed in Section 3.4.1. This approach innovates from these methods

by applying the particle filter/adaptive sampling method to a general optimization problem

over a box set while guaranteeing feasible solutions despite the stochastic nature of filter.

Theory

In this situation, we consider finding a feasible minimizer to the following general optimiza-

tion problem.

(℘) minimize f0(x) over x ∈ X = a box (5.20)

Recall that a box is defined by each element xk of x ∈ X ⊆ <n being in a certain

interval Ik = [lk, uk].

X =





x

∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ I1 = [l1, u1]

x2 ∈ I2 = [l2, u2]
...

xn ∈ In = [ln, un]





(5.21)

The difficulty in solving Eq. 5.20 arises from the fact that the objective function is

arbitrary and may not be well behaved (i.e. non-convex, non-differentiable, etc.). This is

especially true in (℘2). It may be difficult or impossible to find an optimal solution. An

algorithm to find a quasi-optimal, feasible solution is now proposed.

1. Generate M particles (instances of x ∈ X ⊆ <n) distributed over X in some fashion.

2. Assign weights to each particle based on its objective function value.

3. Resample the particles proportional to the weights.

4. Repeat step 2 and 3 until some stopping criterion is reached.

72

This algorithm can be interpreted as a type of evolutionary algorithm that employs

adaptive sampling. Each particle represents a sample and each generation of particles is

adaptively moved to locations where they matter the most.

Initial Particle Distribution

To find a quasi-optimal minimizer of f0(), a finite set of possible minimizers is used. Each

individual guess of a minimizer, x[m](t) is called a particle and together the particles make

up the particle set, χ(t).

χ(t) =
⋃

M

x[m](t) =
{

x[1](t), x[2](t), . . . , x[M](t)
}

(5.22)

To initialize the algorithm, it is necessary to assign actual values to the initial particle set.

Since there is no a priori knowledge regarding the minimizer of f0(), the initial distribution

of the particles is chosen as a uniform distribution over the set X.

x
[m]
k (0) = rand(lk, uk) for

m = 1, . . . ,M

k = 1, . . . , n
(5.23)

Assign Particle Weights

A weight is now assigned to each particle based on its objective function value.

w[m](t) = −f0(x[m](t)) for m = 1, . . . , M (5.24)

Note that this assigns a higher weight to particles which yield a smaller objective function

value.

Resample Particles

The next particle set is generated by first sampling from the current particle set proportional

to the weights.

x̃[m](t) = g(χ(t), w(t)) for m = 1, . . . , M (5.25)

73

Here, g() is a sampling function which samples elements from the particle set, χ(t), pro-

portional to the weights, w(t). One popular method is the roulette wheel method described

previously in Section 3.4.1.

As with many evolutionary-type algorithms, a mutation process must be performed when

evolving one population to another. This is true here as well and the mutation operation

is simply adding noise to each sample x̃[m]. Note that in order for each minimizer to be

feasible, it is required that x[m](t) ∈ X ∀t. Care must be taken so that the noise added

to each particle does not “push the particle out of X”. The noise must therefore be in the

interval

n[m](t) ∈ [l − x̃[m](t), u− x̃[m](t)] for m = 1, . . . ,M (5.26)

Finally, the new particle set is determined by

x[m](t + 1) = x̃[m](t) + n[m](t) for m = 1, . . . , M (5.27)

Eq. 5.26 and Eq. 5.27 ensure that each particle is feasible and therefore, this optimization

scheme can be classified as an interior point method. In other words, this formulation

guarantees that each particle x[m](t) ∈ X ∀ t (each particle represents a feasible solution

to (℘)).

This scheme has the feature that as the particle set evolves from generation to generation,

the particles with a higher weight (i.e. lower objective function value) are more likely to

continue on to the next population.

Stopping Criterion

Steps 2 and 3 are repeated until some stopping criterion is reached. An example stopping

criterion could be: “terminate when the variance of the particles is reduced below some

threshold.” In this case, the process is simply repeated for T steps. The quasi-optimal

minimizer is then computed from the average of the final particle set.

74

x̄? =
1
M

M∑

m=1

x[m](T) (5.28)

Application to (℘2)

The above described method can be applied to the searching problem by parameterizing

the reachable set BR using a radius and an angle [70]. By placing an upper and lower

bound on the radius and angle, the set BR can be represented as a box set. An example of

applying the probability collective/particle filter method to solve (℘2) is shown in Figure 5.7

for β = γ = δ = 0.

The individual particles are shown as red circles and the centroid of the particles is

shown as a green triangle. After 40 iterations, the quasi-optimal minimizer settles near the

true optimal solution. Note that it does not achieve the true optimal but it does achieve a

feasible solution which is near the true optimal solution.

The above method is suitable for solving a general optimization problem over a box.

Although (℘2) can be solved using this method, it is computationally intensive due to

the relatively large number of particles required and the necessity to evolve the population

through several generations. The benefit of this method is that it is able to produce a quasi-

optimal solution z? ∈ BR. This method may be suitable for slower agents which may have

more time to plan/compute between waypoints. But in light of the computational intensity

of the above method, an alternative approximation is desired for faster agents which operate

at a higher bandwidth. An approximation is to use an exhaustive search of the objective

function over the set B̃
⋂

BR (the occupancy based map cell center set intersected with the

reachable set). This amounts to evaluating J0() at the center of each cell inside in BR (i.e.

inside the green circle in Figure 5.7) and choosing the argument that produces the largest

objective function value as z?. Although this method is less computationally intensive, the

resulting approximate solution, z? is at the center of an occupancy map cell. If the cells are

large, this may not be desirable since the resolution is greatly reduced using this method.

This exhaustive searching method is described in the following section.

75

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

Reachable Cells

 t = 0

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) χ(0)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 11

 t = 11

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) χ(11)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 24

 t = 24

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) χ(24)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 40

 t = 40

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) χ(40)

Figure 5.7: Progression of probability collective process. True minimum is located in upper
left corner of reachable cells. Note that figure shows minimizing −J0() which is equivalent
to maximizing J0().

5.3.3 Exhaustive Searching

The previous section investigated adaptive sampling methods to provide quasi-optimal so-

lutions over the feasible set BR [75]. Although this method worked well for most cases,

it was nondeterministic. The stochastic nature when selecting z? makes analysis difficult.

Therefore, instead of optimizing J0() over the compact set BR, the problem is reduced to

optimizing over the feasible set of B̃R. With this approximation, the most desirable cell is

then given by

76

(℘2) z? ∈ arg maximize
z∈B̃R

J0(z) (5.29)

The problem formulated in Eq. 5.29 differs in that the feasible set is manageably finite.

Therefore, the optimization is reduced to an exhaustive search over the set B̃R. An addi-

tional benefit of this method is that it can be easily implemented by evaluating the reward

function at each cell center in the set B̃R.

The primary goal of a search mission is to find one or more targets which are located

somewhere in the domain. One would be concerned if there are conditions where the target

might be able to hide in the environment and avoid detection by the agents. We will show

that under a reasonable set of assumptions, the agents are guaranteed to visit all cells in the

map with non-zero score sufficiently often to drive the cell scores to zero. In other words,

they will exhaustively search and cover the entire area of interest. The assumptions are

Assumptions: h ∈ (0, 1) (A.1)

δ ∈ (0, 1] (A.2)

Rmax ≥ max(Lx, Ly) (A.3)

Zk = zA ∀k (A.4)

x̂w(k + d, z) = xw(k, z) ∀k (A.5)

xw(0, z) ∈ [0, 1) ∀z (A.6)

δ > β + γ (A.7)

The physical meaning of assumption A.1 is to ensure that each agent has a sensor that

can be relied upon to some degree. Eliminating the possibility that h = 0 ensures that

with each sensor measurement, the score of the searched cell decreases. Note that the case

of h = 1 implies an infinitely reliable sensor which is actually the best scenario. However,

this requires rewording several following theorems so it is simply excluded using this set

of assumptions. All of the following analysis can apply for the case of h = 1 with slight

changes.

Recall from Section 5.3.1, the scalars α, β, γ, and δ are in the range of [0, 1]. Assumption

A.2 ensures that δ 6= 0. Its significance will become clear in Section 5.3.3.

77

Assumption A.3 effectively specifies a minimum size of the set B̃R. This states that there

must be more than one cell center in B̃R. Furthermore, this guarantees that B̃R includes

the cells centers to the North, East, South, and West of the current agent location and

ensures that the agent can move in any direction and eventually reach any other cell under

an appropriate control law.

Assumptions A.4, A.5, and A.6 deal with the nature of the complete coverage of the

map. Complete coverage implies the agents will search each cell in the map sufficiently to

drive its score to zero. In a scenario involving complete coverage of the map, the target is

located in the last cell that the agents would search or is simply not located in the map at

all. These assumptions ensure that the scores of the map are never increasing and can in

fact decrease under Eq. 4.4.

Assumption A.7 is crucial for the proof of complete coverage and is explained in Sec-

tion 5.3.3.

All of these assumptions are reasonable and can be implemented easily. Under these

assumptions we will show that the agents operating under this strategy will exhaustively

search the map and drive all cell scores towards zero given sufficient time.

Decreasing Scores

As the agents search a cell, it is desired that the score of the cells decrease. We show that

the scores of each cell monotonically decrease with each sensor measurement.

Theorem 5.3.1. Under assumptions A.1, A.4, A.5, and A.6 and the previously described

and search strategy, the score of any given occupancy map cell with a score not equal to 0

or 1 will monotonically decrease towards 0.

Proof. Recall that the score of the cell is updated via Eq. 4.4 with Zk = zA ∀k. It is trivial

to see that if sk−1 = 1 then sk = 1 and if sk−1 = 0, then sk = 0. The burden is to now

show that sk < sk−1 ∀k for the cases where sk−1 ∈ (0, 1). This was already proved in

Theorem 4.2.1

It is trivial to show that sk > 0 ∀k. This, in conjunction with Eq. 4.9, shows that with

enough sensor measurements of Zk = zA, the score of a given cell will proceed monotonically

78

towards 0.

Guaranteed Coverage

Theorem 5.3.1 shows that if a cell is searched a sufficient number of times, its score will

decrease towards zero. In order to show that the agents exhaustively search the map, the

burden is to show that under the given control law, the agent will visit each cell enough

times to decrease the scores to zero.

Theorem 5.3.2. Under assumptions A.3, A.4, A.5, and the previously described search

strategy, if an agent is not currently in the cell containing zH , the agent must move to a

new cell once the quantity αxw(k, zagt) decreases below the value δ.

Proof. If the agent is not in the cell containing zH , then it cannot be at the location zh

either since A.3 ⇔ |B̃R| > 1 and by definition of zh, zh must be closer to zH than the

current agent position. This implies that fh(zagt) = 0. Similarly, by definition in Eq. 5.11,

fχ(zagt) = 0. The maximum possible reward gained by choosing the same cell as the current

agent (denoted zs) is

J0(zs) = αxw(k, zs) + ηγfd(zs) (5.30)

By definition, zh ∈ B̃R. It is possible that xw(k, zh) = fχ(zh) = 0 (if the score is already

zero and the cell is located directly behind the agent) so the minimum possible value of the

reward function at this point is

J0(zh) = ηγfd(zh) + δ (5.31)

If the control solution from (℘3) performs correctly, the agent should be located at the

point z? from (℘2) and fd(zs) = 0. However, the proof can be applied for the case where the

agent is not necessarily located on a cell center at all times. From a geometric perspective,

the maximum value of fd(zs) = (L2
x + L2

y)
1/2/Rmax which corresponds to the agent located

in the corner of the cell. The distance to any other cell in B̃R must be at least that if not

79

greater, so fd(zh) ≥ fd(zs). This result, combined with Eq. 5.30 and Eq. 5.31, yields the

result that

{αxw(k, zs) < δ} ⇒ {J0(zh) > J0(zs)} (5.32)

This shows the existence of a point with a higher score than the agent’s current cell.

This gives a lower bound of the score when the agent must choose to leave the current cell.

It is possible that the agent will chose a different cell before αxw(k, zs) < δ.

Theorems 5.3.1 and 5.3.2 ensure that an agent searching a non-zero score cell will de-

crease the score consistently and an agent cannot remain at a given cell indefinitely. Com-

bined, these two ensure movement of the agent to different cells but does not guarantee

that the map is covered. In fact, there are counter examples where an agent can constantly

choose cells of nearly zero score and never search all of the map, thereby ignoring certain

cells which have non-zero scores. So far, the previous theorems only required assumptions

A.1 - A.6. The example in Figure 5.8 shows that although assumptions A.1- A.6 may be

satisfied, this is not sufficient to guarantee exhaustive map coverage.

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) t = 0

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) t = 195

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) t = 325

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) t = 520

50 100 150 200 250 300 350

50

100

150

200

250

300

(e) t = 845

Figure 5.8: Example with α = 0.15, β = 0.95, γ = 0.85, δ = 0.10 showing a map not being
covered due to Assumption A.7 violation.

In this example, the agent continues to fly around the perimeter of the map and never

explores the interior. This is due to the fact that the cost of changing heading to turn into

the interior of the map is too high relative to the other terms in the cost function. In order

to guarantee complete coverage of the map, the restriction of A.7 must be enforced.

80

Theorem 5.3.3. Under assumption A.7 and the previously described search strategy, the

agent must choose either a cell which has non-zero score, contains zh, or both as the solution

to (℘2).

Proof. Assume there exists a point z0 which has a score of zero and is not zh. In this case

xw(k, z0) = fh(z0) = 0. The maximum value of the reward function at this point is

J0(z0) = η(β + γ) (5.33)

The minimum value of the reward function obtained by choosing zh is

J0(zh) = δ (5.34)

Since η ∈ [0, 1], these two results along with the assumption δ > γ + β ensures that

J0(zh) > J0(z0). This guarantees that the agent will not choose a cell if it has zero score

and is not zh. Therefore, the only other options are to choose a cell which has a non-zero

score, contains zh, or both.

Theorem 5.3.4. Under assumptions A.4, A.5 and the previously described search strategy,

if Eq. 5.14 is used to choose zH and the agent chooses zh as the solution to (℘2) and

zh 6= zH , then at the next time step the point zH will remain unchanged unless it is searched

by another agent.

Proof. Consider the distance between zH and zagt at a given time step k (||zH − zagt||).
By definition, zh 6= zH ⇔ zH /∈ B̃R. So if the agent chooses zh as the solution to (℘2)

and zh 6= zH , the agent must move closer to the point zH in the sense that ||zH − zagt||
cannot increase. Since the point zh is not equal to zH then the agent cannot search the cell

containing zH and score at zH will not change. Therefore, at the next time step, the same

point zH ∈ B̃max. Furthermore, since the distance between the agent and the same point

zH has decreased, it will be chosen again as zH using Eq. 5.14.

Of course, if the point zH is searched first by another agent, its score may decrease and

it is possible that at the next step the same point is no longer in B̃max due to the fact that

the score decreased.

81

A similar theorem can be stated for the case where zH is chosen using Eq. 5.15.

Theorem 5.3.5. Under assumptions A.4, A.5 and the previously described search strategy,

if Eq. 5.15 is used to choose zH and the agent chooses zh as the solution to (℘2) and

zh 6= zH , then at the next time step the point zH will either remain unchanged or be located

in the agent’s reachable set, B̃R unless it is searched by another agent.

Proof. Recall that if B̃max
⋂

B̃R = ∅ (there are no cells with maximum score within the

agent’s reachable set), then both Eq. 5.14 and Eq. 5.15 choose the same cell center for zH ,

so the proof of Theorem 5.3.4 applies and shows that as long as B̃max
⋂

B̃R = ∅, the point

zH will remain unchanged under these assumptions. The difference between Eq. 5.14 and

Eq. 5.15 occurs when B̃max
⋂

B̃R 6= ∅.
Assume at step k, the B̃max

⋂
B̃R = ∅ ⇒ zH /∈ B̃R. Assuming that the agent chooses

zh as the solution to (℘2) and zh 6= zH , the previous analysis shows that zH does not

change. However, at the next step k +1, if the same point zH ∈ B̃R, then it is possible that

Eq. 5.15 will not choose the same point zH again because there might be another member of

B̃max
⋂

B̃R which is farther away from zagt. However, it is guaranteed that B̃max
⋂

B̃R 6= ∅
since the same point zH from step k is in B̃max and B̃R under these assumptions, thus

ensuring that zH ∈ B̃R.

Of course, if the point zH is searched first by another agent, its score may decrease and

it is possible that at the next step the same point is no longer in B̃max due to the fact that

the score decreased.

Figure 5.5 can be used as a visual aid for understanding the proofs of both Theorems 5.3.4

and 5.3.5. These theorems can be used to guarantee that the team performs an exhaustive

search of the map given the proper conditions.

Theorem 5.3.6. Under the previously described assumptions and search strategy, xw(k, z) →
0 ∀z ∈ B (the scores of all cells in the map will approach 0).

Proof. Theorem 5.3.2 guarantees that an agent cannot remain in a single cell indefinitely

and Theorem 5.3.3 ensures that it must choose either a cell of non-zero score, zh, or both

82

as the solution to (℘2) at any given time step. If the agent chooses a cell of non-zero score,

Theorem 5.3.1 ensures that the score of that cell is monotonically decreased towards 0.

If the agent does not choose a cell of non-zero score, the only alternative scenario allowed

by Theorem 5.3.3 is that the agent chooses zh and xw(k, zh) = 0. By definition of zH , if

xw(k, zH) = 0, then the map has been completely covered since all scores are at most 0.

Therefore, assuming that the map has not been entirely searched yet, xw(k, zh) = 0 ⇒ zh 6=
zH .

Theorem 5.3.4 and Theorem 5.3.5 ensure that if zh 6= zH , choosing zh as the solution to

(℘2) does not change the value of zH at the next time step or if zH does change, zH ∈ B̃R

at the next time step.

At this next time step, the agent once again must choose a cell with non-zero score,

zh, or both. If the agent continues to choose zh, eventually zH ∈ B̃R and at this point,

choosing a cell with non-zero score, zh, or both guarantees that a cell of non-zero score is

chosen. Therefore, the score of some cell will be ensured to decrease and given sufficient

time, xw(k, z) → 0 ∀z ∈ B.

Note that the results of Theorem 5.3.6 yield a stronger result than simply ensuring that

each cell is visited during the mission. In the specified framework, visiting a cell once may

not be enough to guarantee that the target is not located in that cell. In the case where the

agent has an unreliable sensor, the amount of information obtained from a single visit to

a cell may not decrease the score of that cell sufficiently. Theorem 5.3.6 and its associated

proof show that the map will be exhaustively searched for the target using any number of

agents in the sense that each cell is visited a sufficient number of times to drive the scores

of all cells in the map to zero.

Note that only one agent must be constricted by Assumption A.7 in order to guarantee

an exhaustive search by the team. Performance may be increased by relaxing Assumption

A.7 for some agents but it cannot be guaranteed that the map will be covered by the agents

who do not satisfy Assumption A.7

83

Exhaustive Searching Results

A heterogeneous team of agents can be simulated in different environments using the frame-

work we have described. A heterogeneous team can be modeled by varying parameters such

as α, β, γ, and δ. The parameters such as ∆T and d can also be varied but are held constant

for these simulations. A table summarizing the parameters used for the different agents in

two scenarios are listed below in Table 5.1.

Table 5.1: Parameters of agents in team during search missions (d = 3 for all agents).

Scenario Agent α β γ δ h A.7 zH method
A 1 (purple) 0.75 0.40 0.95 0.15 0.99 No Eq. 5.14
A 2 (red) 0.90 0.50 0.90 0.05 0.99 No Eq. 5.14
A 3 (gold) 0.10 0.05 0.25 0.35 0.99 Yes Eq. 5.14
B 1 (purple) 0.75 0.40 0.95 0.15 0.99 No Eq. 5.15
B 2 (red) 0.90 0.50 0.90 0.05 0.99 No Eq. 5.15
B 3 (gold) 0.10 0.05 0.25 0.35 0.99 Yes Eq. 5.15
C 1 (purple) 0.75 0.40 0.95 0.15 0.25 No Eq. 5.14
C 2 (red) 0.90 0.50 0.90 0.05 0.35 No Eq. 5.14
C 3 (gold) 0.10 0.05 0.25 0.35 0.55 Yes Eq. 5.14
D 1 (purple) 0.75 0.40 0.95 0.15 0.25 No Eq. 5.15
D 2 (red) 0.90 0.50 0.90 0.05 0.35 No Eq. 5.15
D 3 (gold) 0.10 0.05 0.25 0.35 0.55 Yes Eq. 5.15

The first scenario involves three agents equipped with near perfect sensors (h ≈ 1).

This implies that the score of the cell can be reduced to effectively 0 in a single sensor

measurement. The results of the simulation are shown in Figure 5.9.

The ‘x’ shows the location of the agent. The ‘o’ marks illustrate the agent’s path, w?.

Recall that these are the waypoints which are determined to be the solution to (℘3). In this

situation, the prediction horizon is d = 3, so there are 3 ‘o’ marks for each agent. Recall that

the only constraint is that the last location of w? must be equal to z?. In scenario A, the

occupancy map is initialized so that there are 4 distinct regions that need to be searched.

These green areas are initialized with score of 0.5. The dark blue areas correspond to cells

with scores of 0. Notice that in this situation, Rmax (the distance the agent can travel in d

84

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw(k, z) at t = 0

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw(k, z) at t = 900

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw(k, z) at t = 2100

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw(k, z) at t = 3100

Figure 5.9: Scenario A: 3 agents with near perfect sensors (h ≈ 1) using Eq. 5.14 to choose
zH .

steps) is less than the width of the dark blue bands which run North/South and East/West

across the entire map. Since the agents are initially located in the lower left green quadrant,

at no point does the set B̃R include cells in the other three green quadrants as long as the

agent remains in the lower left quadrant. In this situation, the behavior of the agents is to

search the lower quadrant exhaustively before Theorem 5.3.3 forces the agent to choose the

point zh and therefore begin to migrate to the other quadrants. A simple algorithm such as

a gradient climb algorithm would not be able to guarantee coverage in a situation like this.

Note that only agent 3 (gold) meets the requirement that δ > β +γ. Having one such agent

85

is sufficient to guarantee complete coverage and eventually the team of agents exhaustively

searches the entire map.

The effect of using Eq. 5.14 to choose zH is most evident when looking at the trajectories

for agent 3. Notice that the map is initialized as all green cells have a value of 0.5 which

happens to be the highest score in the map. This means that at any given time step, it is

likely that zH ∈ B̃R. Furthermore, Eq. 5.14 chooses zH as the point with maximum score

which is closest to the agent, so it is likely that the point zH = zh is the cell center directly

next to the current agent’s location. Depending on the situation, this can be a benefit or

detractor. Since δ > β + γ for agent 3, it is more likely to choose z? = zh as the solution to

(℘2). In the event that z? is the cell directly adjacent to the agent, the agent then has d steps

to move only a single cell. This gives the agent a large amount of freedom in choosing how

it transitions from the current cell to z?. Ultimately, this transition problem is addressed

in (℘3). Notice that in Figure 5.9, agent 3 does not cover much ground quickly. In fact,

the stair stepping and back tracking patterns that are generated by the agent are due to a

suboptimal solution of (℘3), not of (℘2). Solutions to (℘3) are addressed in previous work

[73] and are covered in Section 5.4.

The alternative is to use Eq. 5.15 to choose zH . This is shown with the identical scenario

in Figure 5.10.

In this situation, although it is likely that zH ∈ B̃R at each time step, Eq. 5.15 chooses

zH as the point in the reachable set which is farthest away from the agent. The result is

that agent 3 must move farther from its current location in d steps than what was shown in

Figure 5.9. In this situation, the agents search the map faster than previously achieved in

Figure 5.9. Once again, it should be reiterated that the fact that agent 3 searches faster is

because Eq. 5.15 is used rather than Eq. 5.14. The results are further influenced depending

on how (℘3) is solved. In this case, the solution to (℘3) does not make use of the fact that

if z? is close to the current agent location (which happens frequently when using Eq. 5.14

to solve (℘2)), it has a large degree of freedom in choosing its path. For example, it could

use longer, more indirect paths which search the neighboring cells before arriving at z? at

the end of d steps.

The next scenario involves three agents equipped with less robust sensors (h << 1).

86

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw(k, z) at t = 0

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw(k, z) at t = 900

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw(k, z) at t = 1900

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw(k, z) at t = 2800

Figure 5.10: Scenario B: 3 agents with near perfect sensors (h ≈ 1) using Eq. 5.15 to choose
zH .

This implies that a cell must be visited more than once in order to drive the score to zero.

The results of the simulation are shown in Figure 5.11.

This scenario is similar to the first scenario except the agent’s sensors are considerably

degraded. Due to their decreased reliability, a single visit to a cell only decreases the score

to slightly less than the original score. This can be seen since the cell colors change from

green to a light blue instead of a dark blue. Multiple visits to the same cell are required

to change the color to dark blue (a score of near 0). The algorithm routes the agents to

initially search the cells of high probability and then revisits cells as required to drive the

87

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw(k, z) at t = 0

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw(k, z) at t = 780

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw(k, z) at t = 2340

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw(k, z) at t = 5070

Figure 5.11: Scenario C: 3 agents with typical sensors using Eq. 5.14 to choose zH .

scores to zero, guaranteeing an exhaustive search of the map.

5.3.4 (℘2) Remarks

The centralized occupancy based map represents the system’s belief of the state of the world

at a given time. The map can be propagated forward in time to provide the estimate of the

future state of the world at step k + d. Each agent then decides which coordinate is the

most desirable to search in the next d steps. The team can be comprised of different types

of agents with different capabilities. This formulation allows each agent to determine what

is desirable for its individual capabilities. Each agent then computes control decisions based

88

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw(k, z) at t = 0

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw(k, z) at t = 780

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw(k, z) at t = 2080

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw(k, z) at t = 3640

Figure 5.12: Scenario D: 3 agents with typical sensors using Eq. 5.15 to choose zH .

on the predicted future state of the world. Although these actions may not be optimal in a

single step, they will benefit the agent in the future.

Although there is no explicit cooperation between agents in the team, the agents are

implicitly coupled through the centralized occupancy map. This portion of the modular

algorithm remains scalable because each agent does not need to explicitly know about the

existence of other agents. Each agent executes the searching algorithm and the emergent

behavior is that the team performs a coordinated search. Explicit cooperation can be

included in (℘2) and is discussed in Section 5.5.

The modularity of the algorithm allows the user to tailor specific parts of the algorithm

89

to address individual agent capabilities. This section focused primarily on the solution for

(℘2) and showed that under the proposed solution, the agents are shown to perform an

exhaustive search of the map regardless of the methods used to provide solutions to (℘1)

and (℘3).

As mentioned previously, it has been observed that using parameters which violate

Assumption A.7 may yield paths that cover more ground quicker and in a seemingly more

efficient manner. Although an exhaustive search of the map is guaranteed under the current

conditions, Assumption A.7 appears to hinder performance of the system. Performance may

be increased by tailoring the reward function and finding additional constraints which may

be more relaxed than Assumption A.7 and still guarantee coverage. The issue of system

performance is tied tightly to the way that (℘3) is solved. A closer look at the relationships

between (℘2) and (℘3) is the focus of the following section. An additional challenge is that

the target may be moving or evading the searching agents. Therefore, the assumption of a

static environment may not be valid.

5.4 (℘3) Path Planning

The final subproblem involved in the single agent search strategy can be posed as a path

planning problem. The algorithm in Section 5.3 details how to find a location for the agent

to search in the next d steps. It does not specify how to transition the agent from its current

location, zagt = z0, to the desirable cell location found in (℘2). The general path planning

problem is a well studied field and previous work in this area is detailed in Section 2.2.2.

The current section investigates several methods which can be used to plan paths for the

agent within the given framework.

5.4.1 Path Planning Using Convex Optimization

The final subproblem, (℘3), concerns finding feasible waypoints which take the agent from

the current location, z0, to the desirable cell location found in (℘2). This may be formed

as a convex optimization problem. From an optimization standpoint, the corresponding

decision vector w̄ ∈ <2·d is

90

w̄ =




w1

w2

w3

w4

...

w2·d−1

w2·d




=




z1(k + 1)

z2(k + 1)

z1(k + 2)

z2(k + 2)
...

z1(k + d)

z2(k + d)




(5.35)

The goal is to move the agent from its current position to the desired position z?, so the

objective function for (℘3) is formulated as

f0(w) :=
d∑

t=1

||z̄(k + t)− z̄?||2 (5.36)

In Eq. 5.36, each coordinate z̄(k) is a waypoint which dictates where the agent should

be located at time k. Obviously, the minimum of this function is zero. This corresponds to

all the waypoints being placed at z̄?. However this in general would not be feasible. The

agent can only travel a distance rmax = ∆T · Vmax in a single step. So in order for the

waypoints to be feasible, it becomes necessary to introduce constraints of the form

f1(w) := ||z(1)− z0||2 − r2
max ≤ 0 (5.37)

fi(w) := ||z(i)− z(i− 1)||2 − r2
max ≤ 0 for i = 2, . . . , d (5.38)

Physically, these constraints enforce that each waypoint must be within a distance rmax

of the previous waypoint. This ensures that the path generated is a feasible one. The

problem can now be formally stated as

(℘3) minimize f0(w) over w ∈ <2·d (5.39)

subject to fi(w) ≤ 0 for i = 1, . . . , d

91

In order to analyze what type of optimization problem this is, a closer look at the

objective function and constraint functions is required. The objective function can be

written as

f0(w) =
1
2
wT Hw + fT w + r (5.40)

where H = 2Id×d

fT = 2
(
z̄?
1 z̄?

2 z̄?
1 z̄?

2 . . .
)

r = d||z̄?||22

This is a strictly convex function since it is in a quadratic form and the Hessian is equal

to H which is positive definite (all eigenvalues are equal to 2).

The constraint functions can be analyzed in a similar fashion. The first constraint f1(w)

can be written as

f1(w) =
1
2
wT H1w + fT

1 w + r1 (5.41)

where H1 = diag(2I2×2, 0d−2×d−2)

fT
1 =

(
−2z1,0 −2z2,0 0 . . . 0

)

r1 = −r2
max + ||z0||22

And the constraint functions f2(w) through fd(w) can be written as

fi(w) =
1
2
wT Hiw + fT

i w + ri for i = 2, . . . , d (5.42)

92

where Hi = diag(Ni,diag(A,Mi))

fT
i =

(
0 . . . 0

)

ri = −r2
max

Ni = zeros(2(i− 2))

Mi = zeros(2d− 4− 2(i− 2))

A =




2 0 −2 0

0 2 0 −2

−2 0 2 0

0 −2 0 2




In Eq. 5.41 and 5.42, diag(x, y) represents a block diagonal matrix with submatrix x in

the upper left corner and submatrix y in the lower right corner. Similarly, zeros(p) represents

a square zero matrix of size p×p. Although the formulation appears complicated, note that

only Hi changes with each i. The formulation describes that H2 is a block diagonal matrix

with A in the upper left corner and zeros elsewhere. H3 is a block diagonal matrix where the

submatrix A moves two columns to the right and two rows down. This process of moving

the A matrix by 2 rows and columns with each i is described by the Ni and Mi submatrices.

One can now see that the constraint functions fi(w) for i = 1, . . . , d are convex functions

because they are in quadratic forms and their respective Hessians are all positive semi-

definite.

Therefore, (℘3) consists of a strictly convex objective function over a convex set, implying

that this is a convex programming problem. It can also be shown that it is well posed and

the feasible set is non-empty, so a unique optimal solution exists. In a similar fashion to (℘1)

and (℘2), (℘3) can be packaged nicely into a system with inputs of the vehicle capabilities

and desirable coordinate and then process the optimization problem to obtain an optimal

set of waypoints or controls to take the agent to the desired cell. An example of the solution

for the example situation (with d = 10) is shown in Figure 5.13.

In Figure 5.13, the red ‘x’ represents the current location of the agent, the green triangle

is the desired destination z̄? from (℘2), and the red circles represent the optimal waypoints

w̄?. Notice that although d = 10, there are only 8 visible waypoints. This is because

93

8.55 8.6 8.65 8.7 8.75

x 10
5

3.19

3.192

3.194

3.196

3.198

3.2

3.202

3.204

3.206

3.208

3.21
x 10

6

x

Optimal Trajectory

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.13: Optimal solution w? to (℘3) zoomed into area of interest with d = 10.

waypoints 8, 9, and 10 are overlapping and all are equal to desired destination (z8 = z9 =

z10 = z̄?). Furthermore, constraints f1(w) through f7(w) are active. This shows that the

formulation of the objective function yields waypoints that place the agent at the optimal

solution in the shortest possible time. This is the desired behavior during a searching type

application where it is desired that the agent moves to the location z? and verifies the target

as soon as possible.

5.4.2 Graph Based Path Planning

The path planning method proposed in Section 5.4.1 provides an efficient and guaranteed

solution to the path planning problem for the agent. The drawback is that it does not

make use of additional information about the world in its solution. The current section

investigates a graph-based path planning technique that also provides a guaranteed feasible

path for the agent and combines this graph with the occupancy based map to introduce a

notion of environmental optimality.

Generating Primary Paths: The Spatial Network Algorithm

As stated previously, a feasible path for the agent consists of a sequence of waypoints

(xi ∈ <2) where each consecutive waypoint is no more than a distance rmax away from

94

the previous one. The first problem to address involves finding a sequence of points that

take the agent from its current point to the end point while obeying the constraints. This

problem is referred to as (℘3,a) and can be stated as

Given: x0 Agent’s current location (starting point)

xd Desired final location (ending point)

rmax Distance agent can travel in one step

d Number of steps

Assumptions: ||x0 − xd|| ≤ d · rmax (A.1)

rmax > 0 (A.2)

d ∈ Z, d > 1 (A.3)

Goal: Find a sequence {xi} : ||xj − xj−1|| ≤ rmax

for i = 1, ..., d− 1 and j = 1, ..., d

The problem can be visualized as having a beaded necklace where each bead (represented

by a waypoint) is connected to the next with a string of length rmax or less. One end of

the necklace is fastened to x0 and the other is fixed at xd. Different paths correspond to

different ways the necklace can be stretched while the two end points remain fixed. A stable

algorithm to find the sequence {xi} called the Spatial Network Algorithm is presented in

this dissertation and in [73]. A flow diagram of the Spatial Network Algorithm is shown in

Figure 5.14.

As can be seen from the flowchart, the algorithm works by defining three sets: Pi, Qi,

and Ri. The set Pi makes up a circle (if x ∈ <2) or a sphere (if x ∈ <3) centered around

the point xi−1 with radius of rmax. The set Qi is also a circle or sphere centered around xd

(the end point) where the radius of these sets change as i changes. Namely, as i increases

by 1, the radius decreases by rmax until at the step i = d − 1, the radius is rmax. Finally,

the set Ri is simply the intersection of the the sets Pi and Qi.

The algorithm is a recursive procedure. Choosing the next point xi requires knowledge

of the previous point xi−1. Some parts of the algorithm do not have this coupled behavior.

95

Figure 5.14: Spatial Network Algorithm for solving the (℘3, a) problem.

Namely, the sets Q1, Q2, ..., Qd−1 can be defined a-priori outside of the main algorithmic

loop. Inside the main loop, the additional two sets Pi and Ri are computed. The next

waypoint xi is then simply chosen from the set Ri. The natural question becomes, is there

a situation where Ri = ∅? The set Ri is all the points which satisfy the following two

inequalities.

Ri =



x

∣∣∣∣∣∣
||x− xi−1|| ≤ rmax,

||x− xd|| ≤ (d− i)rmax



 (5.43)

Provided that the problem adheres to the assumptions stated previously, we show that

Ri 6= ∅ for i = 1, ..., d− 1.

Theorem 5.4.1. Under assumptions A.1, A.2, A.3, and the previously described Spatial

Network Algorithm, the set Ri 6= ∅ for i = 1, ..., d− 1

Proof. The proof is started for the case of i = 1. For the set R1 to be non-empty, there

must be a point which satisfies both inequalities in Eq.5.43. Consider the point

96

x̃i = xi−1 +
xd − xi−1

||xd − xi−1||rmax (5.44)

At a given step i, the point x̃i is generated by taking the vector directed from the

previous point xi−1 towards xd and traveling along this vector a distance rmax (this would

be the point to go to if the agent is headed towards trying to reach xd as quickly as possible).

From construction, ||x̃i − xi−1|| = rmax ≤ rmax for all i, so the candidate point x̃i ∈ Pi.

For the case of i = 1, it is now shown that this point satisfies the second inequality (and

is therefore in the set Q1).

||x̃1 − xd|| = ||x0 + xd−x0

||xd−x0||rmax − xd||

= ||(1− rmax
||xd−x0||)(x0 − xd)||

From assumption A.1, A.2, and A.3 in the problem statement, ||x0 − xd|| ≤ d · rmax,

rmax > 0, and d > 1 respectively.

≤ ||(1− rmax
d·rmax

)(x0 − xd)||

= d−1
d ||x0 − xd||

≤ d−1
d (d · rmax)

||x̃1 − xd|| ≤ (d− 1)rmax

Therefore the candidate point x̃1 ∈ Q1. Since this candidate point satisfies both in-

equalities, it is in the set R1 and therefore R1 is non-empty. This demonstrates that the

algorithm cannot fail at step i = 1. As the algorithm progresses for i = 2, ..., d− 1, the set

Ri can be shown to always be non-empty using a similar proof as outlined below.

Once again, Ri 6= ∅ for i = 2, ..., d − 1 is proven by showing that the candidate point

x̃i ∈ Ri. As stated previously, x̃i ∈ Pi ∀i by construction of x̃i. Showing that x̃i ∈ Qi for

i = 2, ..., d − 1 relies on the fact that the algorithm is recursive and therefore the previous

97

point xi−1 ∈ Ri−1. More specifically,

{xi−1 ∈ Ri−1} ⇒ {xi−1 ∈ Qi−1} ⇔ {||xi−1 − xd|| ≤ (d− i + 1)rmax} (5.45)

The proof that x̃i ∈ Qi proceeds in an identical fashion to the proof x̃1 ∈ Q1, ex-

cept instead of overbounding the right hand side using assumption A.1 from the problem

statement, Eq.5.45 is used instead.

||x̃i − xd|| = ||xi−1 + xd−xi−1

||xd−xi−1||rmax − xd||

≤ ||(1− rmax
(d−i+1)rmax

)(xi−1 − xd)||

≤ d−i
d−i+1(d− i + 1)rmax

||x̃i − xd|| ≤ (d− i)rmax

(5.46)

This shows that x̃i ∈ Qi. Together with the previous proof that x̃i ∈ Pi shows that

x̃i ∈ Ri and therefore, Ri 6= ∅

Showing that the set Ri is non-empty at each step of the process ensures that the algo-

rithm will terminate. It now becomes necessary to show that once the algorithm terminates,

the sequence {xi} solves (℘3,a) and is feasible for the agent.

Theorem 5.4.2. The sequence {xi} obtained via the Spatial Network Algorithm solves

(℘3,a) and is feasible for the agent in the sense that ||xj − xj−1|| ≤ rmax for j = 1, ..., d.

Proof. The point xi is chosen from the set Ri = Pi
⋂

Qi. Therefore, xi ∈ Pi ⇔ ||xi−xi−1|| ≤
rmax. This ensures that each subsequent waypoint for the agent is reachable in a single step.

By construction, the set Qi is the set of all points from which the agent can reach the

goal location xd in d− i steps. Therefore, choosing xi ∈ Qi implies that the agent can reach

xd in d− i steps. This ensures that the agent eventually reaches the point xd.

98

This along with Theorem 5.4.1 ensures that the sequence {xi} solves (℘3,a) and is feasible

for the agent.

The algorithm is shown to always generate feasible paths because the set Ri is never

empty at any step of the process. Since the algorithm always generates feasible paths,

it can now be computationally implemented and evaluated. Flexibility in the algorithm

comes from the freedom to choose xi ∈ Ri. For example, by choosing xi = x̃i, a flight path

from x0 to xd is achieved where the agent always heads towards xd and moves a distance

rmax at each step. There exists literature regarding how to intelligently choose these points

xi ∈ Ri [14]. An example would be to choose xi ∈ Ri such xi maximizes the reward from

the occupancy based map (i.e. xi ∈ arg maxxi∈Ri
xw(k, xi)). In application, the point xi is

chosen differently each time the Spatial Network Algorithm is run. Each time the algorithm

is executed, the points are chosen so that they are distributed throughout <2 (or <3) as

much as possible. This yields a set of paths which are a good approximation of the space of

all possible paths. An example where xi ∈ Ri is chosen to generate longer paths is shown

in Figure 5.15.

Figure 5.15: A single path generated using the Spatial Network Algorithm by choosing
xi ∈ Ri where xi has the minimum possible y value. Situation shown for d = 5, rmax = 3.

The Spatial Network Algorithm generates a sequence {xi} which represents the way-

points for a path from start to end point. By executing the Spatial Network Algorithm

99

multiple times and indexing the corresponding waypoints, the resulting set of paths can be

represented as a structured network (directed graph).

Waypoints form the nodes in the network and paths between them are referred to as

arcs or edges. Each node embeds information about its spatial location (the coordinates xi).

The Spatial Network Algorithm generates a sequence {xi} for i = 1, ..., d − 1. Notice that

when running the algorithm multiple times, only the coordinates for nodes in the middle

of the path will change; the start and end points remain the same for all paths. The nodes

associated with start and end points are numbered as nodes i1 and i2 respectively. After

running the algorithm once, an additional d− 1 nodes are generated. These are labeled as

nodes i3 through i3+d−2. The second time the algorithm is run, it adds another d− 1 nodes

to the network. These nodes are labeled nodes id+2 through nodes i2·d. This process of

sequential numbering continues for as many times as the Spatial Network Algorithm is run.

The arcs are defined in a similar manner. For the first path, the agent goes from

node i1 to node i3. To represent this motion, an arc j1 is added that originates at i1 and

terminates at i3 (so j1 ∼ (i1, i3)). The agent then goes from i3 to i4, so j2 ∼ (i3, i4) is

added to the network. This continues until finally, the arc jd ∼ (id+1, i2) is added. When

the Spatial Network Algorithm is run again, this numbering scheme of arcs continues in a

similar fashion.

An example for d = 3 (number of time steps for agent to reach end point) and N = 3

(number of times the Spatial Network Algorithm is run) is shown in Figure 5.16.

Figure 5.16: An example network with d = 3 and N = 3.

100

Each time the algorithm is executed another path is generated from i1 to i2. For example,

the first path is given by P1 : j1, j2, j3. Figure 5.16 is drawn specifically to draw attention

to the fact that each node has coordinate data associated with it and each node represents

a waypoint in the path. Simple heuristics can be added to the algorithm to ensure that

these paths do not share any nodes. These individual paths are called primary paths. The

resulting network has a one-to-one mapping with its incidence matrix. The incidence matrix

becomes a useful way to represent the network. The incidence matrix is defined as

[E]ij =





+1 if i is initial node of arc j

−1 if i is terminal node of arc j

0 in all other cases

(5.47)

The benefit of the proposed numbering system is that the network composed of N

primary paths may now be represented with the convenient form of Eq. 5.48.

E =




J J . . . J

K L . . . L

L K . . .
...

...
...

. . . L

L . . . L K




(5.48)

where J =


1 0 . . . 0 0

0 0 . . . 0 −1




K =




−1 1 0 . . . 0

0 −1 1 0
...

... 0 −1 1
...

...
. 0

0 . . . 0 −1 1




L = zeros(d− 1, d)

101

The incidence matrix is composed of three submatrices. The matrix J is a 2× d matrix

composed of all zeros except for a 1 in the top left entry and a -1 in the bottom right entry.

The matrix K is a d − 1 × d matrix. The first row has -1 and +1 as the first two entries

and zeros elsewhere. This pattern of a -1 followed by a +1 moves down the diagonal of the

matrix. The matrix L is simply a d − 1 × d matrix of zeros. The overall incidence matrix

is a matrix of size 2 + N(d− 1)×Nd with non-zero entries along the top two rows and in

a somewhat block diagonal shape.

Generating Secondary Paths: The Progressive Frontier Algorithm

All of the forward paths in the network are feasible paths for the agent and transition it

from its current location to the desired end location in d steps or less. However, the number

of feasible paths is exactly equal to the number of times the Spatial Network Algorithm is

run. In order to generate another feasible path, the Spatial Network Algorithm must be

executed again.

In Figure 5.16, notice that a path from i1 to i3 to i8 to i2 would also take the agent to

the desired final coordinate in d steps. However, an arc from i3 to i8 does not exist. To

represent a feasible path, an arc must satisfy several requirements. First, the arc must join

two nodes that are separated by a distance rmax or less. Second, traversal of the arc must

take the agent closer (not necessarily in a Euclidean sense) to the desired end state. Third,

the complete sequence of arcs must place the agent at the end state in d steps or less. The

question becomes, where can arcs be added so that positive paths in the network are still

feasible paths for the agent and places the agent at the end state in d steps or less? This

problem is referred to as (℘3,b). To solve (℘3,b), the node subsets Cs are defined as follows.

Cs = {i2+s+t(d−1) for t = 0, 1, . . . , N − 1} for s = 1, 2, . . . , d− 1 (5.49)

Using Figure 5.16 as an example, the sets defined by Eq. 5.49 yield C1 = {i3, i5, i7},
C2 = {i4, i6, i8}. The set C1 represents the nodes which are 1 arc away from the initial

point (therefore d− 1 away from the final point). Similarly, the set C2 represents the nodes

that are 2 arcs away from the initial point (therefore d− 2 arcs away from the final point).

102

An algorithm for solving (℘3,b) is shown in Figure 5.17. We refer to this algorithm as the

Progressive Frontier Algorithm.

Figure 5.17: Progressive Frontier Algorithm flowchart for solving (℘3,b).

The Progressive Frontier Algorithm can be implemented as a series of three loops. At

a given s, the algorithm functions by choosing a node i0 ∈ Cs and then comparing it with

every node in if ∈ Cs+1 (except for the next consecutive node because an arc already exists

between them). If the distance is less than or equal to rmax, an arc from i0 to if is added

to the set Ã. Once this is completed for all nodes in Cs, s is incremented by one and the

process is repeated.

Using Figure 5.16 as an example, the algorithm first chooses i0 = i3 and compares the

distance between this node and nodes i6 and i8 (but not with i4 because j ∼ (i3, i4) already

exists). Whenever the distance is less than or equal to rmax an arc is added to Ã. Then i0

is changed to i5 and its distance to nodes i4 and i8 is checked. Finally, i0 is changed to i7

and its distance to nodes i4 and i6 is checked.

The Progressive Frontier Algorithm performs the logical test of ||fG(i0)−fG(if)|| ≤ rmax

103

exactly M = (d − 2)N2 + (2 − d)N times. If a combinatorial approach is taken and the

distance between a given node is compared with every other intermediate node in the

network, the logical test must be performed exactly M ′ = d(d− 2)N2 +N2 +3(d− 1)N +2

times. Assuming that N >> d, the ratio of the two quantities is approximately M ′/M ≈ d.

The advantage of this approach instead of a combinatorial approach is immediately evident

by the significant computational savings.

5 10 15 20 25 30 35 40 45 50

4

5

6

7

N

M
’/M

d = 4

5 10 15 20 25 30 35 40 45 50

8

10

12

N

M
’/M

d = 8

5 10 15 20 25 30 35 40 45 50

12

14

16

N

M
’/M

d = 12

Figure 5.18: Ratio of M ′/M approaching d for d =4, 8, and 12.

When the Progressive Frontier Algorithm terminates, the network is updated by adding

the new arcs, Ã, to the current arc set, A, to obtain a new set of arcs, A′.

A′ = A
⋃

Ã (5.50)

The resulting graph preserves the feature that all forward paths through the graph place

the agent at the desired location in d steps.

An example of the Progressive Frontier Algorithm run on a network with d = 5, N = 3

is shown in Figure 5.19. The original, primary paths are shown as black arcs. The algorithm

is run with rmax = 1.5 and the new arcs which make up Ã are shown in green.

104

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Spatial Network

Figure 5.19: Arcs added for d = 5, N = 3, and rmax = 1.5.

Network Optimization

Recall that (℘3,a) and (℘3,b) only concerned feasibility of paths. The remaining goal is to

find an optimal path among all the generated feasible paths from node i1 to node i2. This

problem is referred to as (℘3,c).

To solve problem (℘3,c), the notion of span intervals are introduced. The span interval

is a a nonempty real interval D(j) assigned to each arc j ∈ A′ [98].

D(j) = [d−(j), d+(j)] (5.51)

The value d−(j) is the lower span interval and in the context of (℘3,c), this value rep-

resents the cost of traversing the arc j in the reverse direction. Similarly, d+(j) is the

upper span interval and represents the cost of traversing the arc j in the forward direction.

Information about the environment can be embedded into the network by combining the

location of the nodes with the scores of the occupancy based map. One possible mapping

of d−(j) and d+(j) is

105

d−(j) = −∞
d+(j) = 1− xw(k, fG(i′))

∀j ∼ (i, i′) ∈ A′ (5.52)

The lower span intervals are set to −∞ for all arcs. The upper span intervals are set

using information from the occupancy based map. For the arc j ∼ (i, i′), the terminal node’s

coordinates are represented by fG(i′). The function xw() then maps these coordinates to

the corresponding score in the occupancy based map. Since the range of xw() is [0, 1], the

upper span interval ranges from 0 (when the terminal node is located in a region with score

equal to 1) to +1 (when the terminal node is located in a region with score equal to 0).

An alternative method to assign the span intervals is to use

d−(j) = −∞
d+(j) = 1

fM (xw(k,z),j)

∀j ∼ (i, i′) ∈ A′ (5.53)

This uses the same lower span interval of −∞ for all arcs. The upper span interval is

similar to the previously described method except instead of using the score of the occupancy

map cell located at the terminal node as was done in Eq. 5.52, the function fM () instead

returns the minimum occupancy map score between the initial and terminal node of the arc

j. This is done using a modified version of Bresenham’s line algorithm [23].

A third alternative method to assign span intervals is to use

d−(j) = −∞
d+(j) = ν − fC(xw(k, z), j)

∀j ∼ (i, i′) ∈ A′ (5.54)

Once again, the lower span interval is set to −∞ for all arcs. The function fC() returns

the cumulative score of all the cells which the arc j covers. The parameter ν is defined as

ν = max fC(xw(k, z, j)) for all j. In practice, this term is not needed since its existence only

offsets the cost function in Eq. 5.55 by a constant. Its purpose is to ensure that d+(j) ≥ 0

since this is the traditional form of an upper span interval.

Each of the methods of assigning span intervals using either Eq. 5.52, Eq. 5.53, or

Eq. 5.54 have scenarios where they are valid and yield different behavior.

Using Eq. 5.52, an arc is given an upper span interval of +1 (the maximum value under

106

this assignment function) if the terminating node is located in a region of zero score and

an upper span interval of 0 if the terminating node is located in a region of +1 score.

Therefore, an arc that passes through but does not terminate in a region of zero score

would receive an upper span interval of less than the maximum possible value of +1. In

some situations, this may be unacceptable because the agent will intersect with a hard

obstacle in the environment. An example illustrating the differences in agent behavior is

shown in Figure 5.20. In this example, the red arc has its terminal node in an occupancy

map cell with score of 0.75. Eq. 5.52 would assign this arc an upper span interval of

d+(j) = 1 − 0.75 = 0.25. Since one can physically interpret the upper span interval as

the cost of traversing this arc in the forward direction, this arc will be seen as somewhat

desirable to traverse when an optimal path through the graph is found via the Min Path

algorithm [98]. The problem arises if low occupancy map scores are meant to represent

obstacles or areas to be avoided. In this case, Eq. 5.52 does not account for the fact that

in order to reach the terminal node with score of 0.75, it must first cross a series of cells

with scores of 0. If these represented hard obstacles, this path would not be feasible. On

the other hand, Eq. 5.53 would recognize this fact and set the span intervals of the red

arc to +∞. However, the upper span intervals of the two magenta arcs would be set to

+2. Therefore, using Eq. 5.53, it would be more desirable to traverse the two magenta

arcs rather than travel the shorter distance (in Euclidean space) of the single red arc. This

method ensures that the upper span interval will be infinite if any part of the arc passes

through a region of zero score. This significantly increases computational complexity but

guarantees that all paths are feasible in the sense that there are no intersections with hard

obstacles.

Finally, using Eq. 5.54 to assign the span intervals yields yet another type of behavior.

As the agent traverses a given arc j, it will search the cells covered by this arc. Therefore,

the cumulative score of the cells covered by the arc j provides a measure of the amount

of information to be gained by traversing this arc. Note that this is not equivalent to the

amount of reduction in score that will result from traversing this arc due to the fact that fC()

returns the linear combination of all the cell scores whereas the score reduction equation

given by Eq. 4.4 is non-linear. Since fC() returns the amount of information to be gained by

107

4400 4600 4800 5000 5200

x

Occupancy Map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.20: Example showing where differences in Eq. 5.52 and Eq. 5.53 affect span interval.

traversing the arc j, when using Eq. 5.54, d+(j) is minimal when the amount of information

gained by traversing arc j is maximal, and vice versa. Note that this method cannot enforce

the avoidance of hard obstacles (behavior which is inherent when using Eq. 5.53).

The same scenario using these different span assignment functions is shown in Fig-

ure 5.21.

One final detail must be addressed in order to formulate the (℘3,c) as a network opti-

mization problem. This concerns the initial potential u0 that assigns a scalar value to each

node i ∈ I. The differential induced by this potential must be feasible with respect to the

span intervals. In other words, the differential v0 = −u0E must be in the span interval D(j)

for all j ∈ A. Note that since 0 ∈ D(j) ∀j ∈ A, the initial potential can always be taken as

u0 = 0 ∀i ∈ I [98].

With the span intervals and initial potential set, (℘3,c) is now in the form of a network

optimization problem. A path P is a signed, ordered set of arcs that can be further decom-

posed into sets P+ and P− (arcs which are traversed in the positive and negative direction,

respectively). The cost function below evaluates the cost of traversing a certain path P .

d+(P) =
∑

j∈P+

d+(j)−
∑

j∈P−
d−(j) (5.55)

The well known Min Path Problem consists of minimizing d+(P) over all paths P : N+ →

108

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Example12 (basedOnTerminalNode). Path Score = 13.5

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Agent
x

d

(a) Using Eq. 5.52

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Example12 (basedOnMinScoreBetweenInitialAndTerminalNode). Path Score = 17

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Agent
x

d

(b) Using Eq. 5.53

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Example12 (maximizeInfoGainedBetweenInitialAndTerminalNode). Path Score = 20.1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Agent
x

d

(c) Using Eq. 5.54

Figure 5.21: Effects of choosing different functions to assign span intervals.

N−. In the context of this path planning algorithm, N+ = i1 and N− = i2. The Min Path

Problem is solved efficiently using the well known Min Path/Max Tension algorithm [98]

or the Bellman-Ford algorithm [15]. With some problem reformulation, Dijkstra’s Method

may also be used to further increase computational efficiency [17]. Details for the Min

Path/Max Tension algorithm are included in Appendix B.

Assuming that assumption (A.1) is satisfied in (℘3,a), a forward path P : N+ → N−

must exist. By setting d−(j) = −∞ ∀j, the resulting cost function has the behavior that

{P− 6= ∅} ⇒ {d+(P) = ∞}. Therefore, this formulation ensures that only forward paths

can solve the min path problem. In some situations, it may be optimal to traverse an arc

109

in a backwards direction. However, if this is done, it is not possible to guarantee that the

path will take the agent to the desired final position in d steps or less. Furthermore, the

careful selection of d+(j) can be used to tailor the solution as described previously. Applying

the Min Path/Max Tension algorithm to the network constructed for the marine situation

depicted in Figure 4.2 yields an optimal path P ∗ shown in Figure 5.23 in red.

Figure 5.22: Optimal path through environment with d = 7, rmax = 1.06, N = 6. Optimal
path P ∗ shown in red.

Figure 5.22 is generated using the methods described in the previous sections. First,

the Spatial Network Algorithm is executed six times to generate the six primary paths

which are shown in black. Then, the Progressive Frontier Algorithm is run to solve (℘3,b)

which adds the green arcs. The span intervals of each arc (both black and green arcs) are

calculated by combining the network with the occupancy based map using Eq. 5.52. In this

example, the islands that the agent must navigate around represent hard obstacles which

must be avoided. Therefore, the occupancy based map cells corresponding to the islands

are given a score of zero (the dark blue regions). Once the span intervals are set, the initial

potential is set to zero for all nodes and the Min Path/Max Tension algorithm is run to

generate the optimal path, which is shown in red. The agent successfully plans a path that

circumnavigates the islands on its way to the final destination. Notice that this problem

110

is one of simply finding a feasible path since all the scores of each cell are either 0 or 0.5.

Any of the feasible paths yield the exact same score under the cost function of Eq. 5.55.

This is why the optimal path appears to go in the backwards direction from waypoint 2 to

waypoint 3. Despite this, the agent is still placed at the desired end goal in d steps or less.

This issue can be addressed by incorporating the concept of Euclidean distance into the cost

function (Eq.5.55) by changing the way the span intervals are defined in Eq. 5.52. Namely,

adding a term of +α||fG(i) − fG(i′)|| to the definition of d+(j) where α is a parameter to

trade off between occupancy map score and distance traveled.

Note that the middle island has a box canyon shape. Many methods that plan paths

using a receding horizon type algorithm may fail with this geometry. The agent enters into

the canyon and does not realize until it is too late that it has effectively entered a dead-end.

This algorithm avoids this pitfall by planning waypoints over the entire path.

Path planning in the urban environment depicted in Figure 4.3 is computed using the

same methods. The optimal path through this environment is shown in Figure 5.23.

Figure 5.23: Optimal path through environment with d = 5, rmax = 1.5, N = 6. Optimal
path P ∗ shown in red.

The main difference between this example and the marine example is that this environ-

ment contains soft obstacles (the radar stations). Therefore, in addition to finding feasible

111

paths, an optimal path can be selected. As can be seen, the agent’s first waypoint avoids the

areas of low score but the second waypoint must enter the area so that the third waypoint

can avoid the region with zero score. The fourth waypoint also avoids the obstacle and the

final, fifth waypoint brings the agent to the desired final position.

5.4.3 (℘3) Remarks

The path planning methods described in this section generate paths that are parameterized

in terms of discrete waypoints. A single path is made up of d waypoints. Each of these

waypoints is a coordinate xi ∈ <2. Furthermore, these waypoints are time stamped. There

are specific times when the agent must reach a specific waypoint. The agent’s capabilities

are taken into account when these waypoints and arrival times are generated and therefore,

each path is feasible for the agent.

This section presented a computationally efficient approach to obtain feasible paths

through complex environments. The approach formulates path planning as a network op-

timization problem. A network of feasible paths is generated first. Next, the network is

combined with occupancy based maps to embed information about the environment. The

well known Min Path Algorithm generates optimal paths through the network. Although

these algorithms are not able to claim a bounded error from a true optimal path, the net-

work formulation ensures that a quasi-optimal path avoids hard obstacles and reaches the

goal in the required number of discrete steps.

Although the examples presented were two dimensional, the algorithms and proofs pre-

sented can be directly extended to three dimensions. This may have applications in path

planning for underwater vehicles or unmanned aerial systems which can maneuver in three

dimensions.

5.5 Modifications for Explicit Cooperation

The search strategy described in Section 5.1 and detailed in Sections 5.2 through 5.4 was

derived as a single agent search strategy, each agent in the team follows this same pol-

icy without information or explicit knowledge of other members of the team. This section

112

investigates some modifications to the single agent search strategy to allow for explicit co-

operation between agents in the team. This has the potential to increase performance and

change the behavior of the system although it requires additional complexity and compu-

tational resources and may diminish the scalability of the algorithm and possibly make it

impractical for large numbers of agents.

5.5.1 (℘2) with Explicit Cooperation

Recall that solving (℘2) involved picking a desirable location for the agent to search within

the agent’s reachable set, BR. Without explicit cooperation, there are scenarios where two

or more agents might choose the same location z?. This is undesirable for several reasons.

One is that the agents must now have some type of reactive collision avoidance [63], [83]

since collision free trajectories are not guaranteed at the strategic level. Furthermore, the

performance of the system may suffer if there are multiple agents searching the same cells.

One method to alleviate these problems is to partition the search space. In essence, this is a

divide and conquer approach. The search space can be partitioned using a Voronoi diagram

which is a tessellation of a Euclidean space and is described in a purely mathematical sense

in Appendix D. This section investigates applying them to (℘2). In this sense, the location

of the agents are considered to be generators for the Voronoi polygons

P = {p1, p2, ..., pn} = {zagt1 , zagt2 , ..., zagtn , } (5.56)

The Voronoi diagram embeds information about an agent’s position relative to the other

agents. Each agent now has an influence on the diagram and in turn each agent will have

an influence on the algorithm. The degradation of algorithm scalability is immediately

visible when employing this type of cooperation as the Voronoi diagram requires at least

O(n log n) at best [86] where n is the number of generators (or agents). Previously, the

single agent search strategy scaled linearly with n.

Redefining zhi with Voronoi Diagrams

The point in B̃max that is closest to agent i is given as

113

zHi ∈ arg minimize
z∈B̃max

||z − zagti || (5.57)

With zHi defined, the distance between agent i and zHi is given by

di = ||zHi − zagti || (5.58)

An example of these distances and locations is shown in Figure 5.24. In this figure,

the black dots represent B̃ (the cell centers of the occupancy map). The black dots circled

in purple represent z ∈ B̃max. These are the cell centers that correspond to cells which

have the highest score in the map. As defined previously, locations inside the dashed red

circles represent BRi (agent i’s reachable set). The black dots within the dashed red circles

represent B̃Ri (the discrete approximation of agent i’s reachable set).

The distance di is computed by checking the distance between agent i and each z ∈ B̃

with the minimum value assigned as di. The corresponding location z ∈ B̃ which yields di

for agent i is denoted as zHi .

Note that zHi may not be in the agent’s reachable set (either the compact set BRi or its

discrete approximation B̃Ri). In other words, it is possible that zHi /∈ BRi and zHi /∈ B̃Ri .

This is the case with both agent 1 and agent 2 but not agent 3 in Figure 5.24.

The Voronoi edges are shown as the solid black lines. The Voronoi polygon associated

with each agent is enclosed by the solid black lines. Note that it is possible that zHi /∈
V (zagti). In Figure 5.24, this is the case for agent 3 where the point zH3 is not in agent 3’s

Voronoi polygon. It is also possible that zHi = zHj for some i 6= j as shown with agent 2

and agent 3 in Figure 5.24.

In general, a /∈ A does not imply that a /∈ B if A ⊂ B. However, in the case of zHi it

can be shown that zHi /∈ B̃R ⇒ zHi /∈ BR

Theorem 5.5.1. If zHi is computed using Eq. 5.57, zHi /∈ B̃R ⇒ zHi /∈ BR.

Proof. Using the definitions of B and B̃ from Section 4.1.1 and the definitions of Bmax, BRi ,

B̃Ri from Section 5.3.1, the relationships of the sets can be drawn as shown in Figure 5.25.

From Eq. 5.57 it can be seen that zHi ∈ B̃max. B̃max is denoted by vertical lines in

114

Figure 5.24: Example with 3 agents showing di and zHi .

Figure 5.25: Relationships between sets B, B̃, B̃max, BRi , and B̃Ri .

115

Figure 5.25. The set B̃Ri is shown as the grey shaded area in Figure 5.25. Therefore,

zHi ∈ B̃max and zHi /∈ B̃R is only satisfied if zHi is in the subset of B̃max which is marked

with the vertical lines with no grey shading. The intersection of this set and BRi is empty

since the sets B̃max and B̃Ri are closed. Therefore, zHi /∈ B̃R ⇒ zHi /∈ BR

Most of the following analysis requires identifying the agent which is closest to the set

B̃max. The index of the agent closest to the set B̃max is denoted as I. The index I is given

by (recall that In = {1, 2, ..., n})

I ∈ arg minimize
i∈In

di (5.59)

Therefore, zHI
denotes the location of the point in B̃max that is closest to any agent.

As stated previously, in general it is possible that zHi /∈ V (zagti). However it is true

that zHI
∈ V (zagtI) always.

Theorem 5.5.2. Given any Voronoi diagram V = {V (zagt1), ..., V (zagtn)}, zHI
∈ V (zagtI).

Proof. As stated previously, zHI
denotes the location of the point in B̃max which is closest

to any agent. Denote this agent’s index as I and its location as zagtI .

Note that the definition of the Voronoi polygon generated by agent I is given as V (zagtI) =

{z : ||z − zagtI || ≤ ||z − zagti || for i ∈ In, i 6= I} (Eq. D.1). In order for zHI
∈ V (zagtI), the

following inequality must be satisfied

||zHI
− zagtI || ≤ ||zHI

− zagti || for i ∈ In, i 6= I (5.60)

By definition, dI ≤ di for i ∈ In. Therefore, zHI
has the property that

||zHI
− zagtI || ≤ ||zHi − zagti || for i ∈ In (5.61)

From Eq. 5.57, it can be seen that zHi is the point in B̃max which is closer to agent i than

any other point in B̃max. In other words, zHi has the property that ||zHi−zagti || ≤ ||z−zagti ||
for all z ∈ B̃max. Choosing zHI

∈ B̃max in the previous expression yields the relationship

116

||zHi − zagti || ≤ ||zHI
− zagti || for i ∈ In (5.62)

Overbounding Eq. 5.61 with Eq. 5.62 yields

||zHI
− zagtI || ≤ ||zHI

− zagti || for i ∈ In (5.63)

The inequality given in Eq. 5.60 only needs to hold for i ∈ In \ {I} whereas the result

in Eq. 5.63 is valid for i ∈ In. Therefore, this shows that zHI
∈ V (zagtI).

Remark 5.5.3. Theorem 5.5.2 can be argued intuitively as follows. The quantity di =

||zHi − zagti || is the shortest distance between zagti and the set B̃max. Without loss of

generality, consider there to be only a single point in the map which has maximum score.

In other words, B̃max = zH = zHi∀i. In this case, di is the distance between this point and

generator zagti. In general, zHi is not necessarily in V (zagti) (i.e. zH3 in Figure 5.24). For

the case of i = I, the generator zagtI is closer to zH than any other generator by definition.

Therefore, by definition of the Voronoi polygon V (zagtI), the point zH = zHI
∈ V (zagtI).

Recall that the function fh() (Eq. 5.17) served to indicate the direction the agent could

travel in the set B̃R in order to move towards a cell of maximum score. This required

definition of the point zhi . The presence of the Voronoi polygon complicates matters slightly.

In this context, the definition of zhi is through several intermediate variables. The first of

which is

z′hi
∈





arg minimize
z∈B̃Ri

⋂
V (zagti)

||z − zHi || if B̃Ri

⋂
V (zagti) 6= ∅

zagti otherwise
(5.64)

Although it is guaranteed that V (zagti) has finite area, it is not guaranteed that B̃Ri

⋂
V (zagti) 6=

∅. An example of this is shown in Figure 5.26. In this situation, the set B̃Ri are all the

black dots within the dashed red circle. Due to the proximity of other agents, the Voronoi

polygon V (zagti) may be so small and not include any of these points. Despite this fact,

using Eq. 5.64, it is guaranteed that z′hi
∈ BRi

⋂
V (zagti).

117

Figure 5.26: Situation showing B̃Ri

⋂
V (zagti) = ∅.

Theorem 5.5.4. Given any Voronoi diagram V = {V (zagt1), ..., V (zagtn)}, z′hi
∈ BRi

⋂
V (zagti)

for all i ∈ In.

Proof. If the set B̃Ri

⋂
V (zagti) 6= ∅ then the feasible set of the minimization problem in

Eq. 5.64 is B̃Ri

⋂
V (zagti) and therefore, z′hi

∈ B̃Ri

⋂
V (zagti). Since B̃R ⊂ BRi , z′hi

∈
B̃Ri

⋂
V (zagti) ⇒ z′hi

∈ BRi

⋂
V (zagti).

If the set B̃Ri

⋂
V (zagti) = ∅ then z′hi

= zagti . By definition of a Voronoi polygon,

z′hi
= zagti ∈ V (zagti) since zagti is the generator for the Voronoi polygon V (zagti). By

definition of BRi (Eq. 5.9), z′hi
= zagti ∈ BRi for all possible values of Rmax (since negative

Rmax values are not allowed in this framework). Since z′hi
∈ V (zagti) and z′hi

∈ BRi , then

z′hi
= zagti ∈ BRi

⋂
V (zagti).

Remark 5.5.5. It should be noted that the reachable set in Theorem 5.5.4 is BRi, not B̃Ri.

With z′hi
defined, it is convenient to define a flag ζi as

ζi =





1 if ||z′hi
− zHi || ≥ ||zagti − zHi ||

0 otherwise
(5.65)

Physically, ζi = 1 if the point z′hi
is further away from zHi than the agent’s current

position of zagti . An example showing when ζi = 1 is shown in Figure 5.27. In this situation,

118

the set B̃Ri

⋂
V (zagti) is a single point and therefore, Eq. 5.64 chooses it as z′hi

(denoted

by the black dot enclosed by the orange circle). In this case, z′hi
is obviously farther away

from zHi than zagti , so ζi = 1.

Figure 5.27: Situation showing ζi = 1.

With the flag ζi defined, the point zhi is given by

zhi
=





z′hi
if ζi = 0

zagti if ζi = 1 and i 6= I

zSI
if ζi = 1 and i = I

(5.66)

where

zSI
= zagtI + RmaxI

zHI
− zagtI

||zHI
− zagtI ||

(5.67)

The point zhi has several interesting properties

Theorem 5.5.6. The point zhi is always reachable by agent i and remains in the agent’s

Voronoi polygon, zhi ∈ BR
⋂

V (zagti).

Proof. Eq. 5.66 states that zhi can be equal to either z′hi
, zagti , or zSI

, depending on the

situation. Showing zhi ∈ BR
⋂

V (zagti) can be achieved by showing that each of the three

119

previously mentioned values are in this set as well (depending on the situation).

Theorem 5.5.4 showed that z′hi
∈ BR

⋂
V (zagti). The proof section of Theorem 5.5.4

also showed how zagti ∈ BR
⋂

V (zagti).

The last case to check is if zhi = zSI
. From Eq. 5.66, zhi = zSI

if and only if i = I and

ζI = 1. For the case where i = I and ζI = 1, from Eq. 5.65, ζI = 1 ⇒ ||z′hI
−zHI

|| ≥ ||zagtI−
zHI

||. Looking at the equation for z′hI
(Eq. 5.64), it can be seen that z′hI

6= zagtI (or else

ζI would equal 0 and this cannot happen in this case). Therefore, z′hI
must be obtained by

solving the minimization problem in Eq. 5.64. Furthermore, in order for ζI = 1, the solution

to the minimization problem must be farther away from the point zHI
than the current

agent location so zHI
cannot be in the feasible set of B̃RI

⋂
V (zagtI) (otherwise it would be

chosen as the minimizer since it would yield a cost of 0 in the cost function). Theorem 5.5.2

showed that zHI
∈ V (zagtI) so zHI

/∈ B̃RI
. Theorem 5.5.1 can then be applied to show that

zHI
/∈ B̃RI

⇒ zHI
/∈ BRI

. Now note that zHI
/∈ BRI

⇐⇒ ||zHI
− zagtI || > RmaxI . Since

RmaxI > 0, Eq. 5.67 can be written as

zSI
= zagtI + θ(zHI

− zagtI) ∈ V (zagtI) for some θ ∈ (0, 1) when ζI = 1 (5.68)

Theorem 5.5.2 gave one point that is always in V (zagtI) by showing that zHI
∈ V (zagtI).

The generator of the Voronoi polygon is a second point which is always in the Voronoi

polygon, so zagtI ∈ V (zagtI). Using the fact that all Voronoi polygons are convex sets

(Eq. D.6 of Appendix D) and that the line segment between any two points in a convex set is

in the convex set as well, it can be seen that the line segment zagtI +θ(zHI
−zagtI) ∈ V (zagtI)

for some θ ∈ [0, 1]. Comparing this to the result in Eq. 5.68, it can be seen that

zSI
∈ V (zagtI) when ζI = 1 (5.69)

Physically, the point zSI
is obtained by moving a distance RmaxI towards zHI

from the

point zagtI . So by construction, zSI
∈ BRI

. This, combined with the result in Eq. 5.69,

shows that zSI
∈ BRI

⋂
V (zagtI) when ζI = 1.

120

The combined analysis shows that zhi
∈ zhi

⋂
V (zagti) for all i ∈ In.

The point zhi has the property that it is guaranteed to no be farther away from the

point zHi than the agent’s current location.

Theorem 5.5.7. The point zhi is not farther away from the point zHi than the agent’s

current location in the sense that ||zhi−zHi || ≤ ||zagti−zHi || ∀i ∈ In\{I} and ||zhI
−zHI

|| <
||zagtI − zHI

|| (the inequality is strict for the case of i = I).

Proof. From Eq. 5.66 if ζi = 0, then zhi = z′hi
. From Eq. 5.65, ζi = 0 ⇐⇒ ||z′hi

− zHi || <
||zagti − zHi || so

||zhi − zHi || < ||zagti − zHi || if ζi = 0 and zhi = z′hi
(5.70)

For the case when ζi = 1 and i 6= I, then zhi
= zagti . In this situation it is obvious that

||zhi
− zHi || = ||zagti − zHi || if ζi = 1 and zhi

= zagti (5.71)

Finally, for the case when ζi = 1 and i = I, then zhI
= zSI

. The proof section of

Theorem 5.5.6 showed that in this situation, zHI
/∈ BRI

and Eq. 5.68 showed that zSI
must

be closer to zHI
than zagtI . Therefore,

||zhI
− zHI

|| < ||zagtI − zHI
|| if ζI = 1 and zhI

= zSI
(5.72)

Remark 5.5.8. Theorem 5.5.7 can also be written as ||zhi − zHI
|| = ||zagti − zHI

|| if ζi = 0

and i 6= I. Otherwise, ||zhi − zHI
|| < ||zagti − zHI

||.

The above analysis shows that the point zhi has some interesting properties:

1. zhi ∈ BRi

⋂
V (zagti)

2. ||zhi − zHi || ≤ ||zagti − zHi || for i ∈ In \ {I}

121

3. ||zhI
− zHI

|| < ||zagtI − zHI
|| for i = I

These properties can be used to develop the control law with explicit cooperation between

agents.

Control Law with Explicit Cooperation

The control law for choosing z? was previously described in Section 5.3.3, Eq. 5.29. This

involved maximizing the reward function J0i() over the set B̃Ri . The added complexity of

the Voronoi diagram requires a slight redefinition of the reward function

Ĵ0i = αx̂w(k + d, z) + η (βfχ(z) + γfd(z)) (5.73)

In Eq. 5.73 it is understood that all of the parameters α, β, and γ and all the functions

η, fχ(), and fd() are specific to agent i. The variable η is defined slightly differently as

η = max
z∈B̃R

⋂
V (zagti)

x̂w(k + d, z) (5.74)

Notice that this reward function omits the term that contains the indicator function fh().

Previously, this was used to guarantee coverage of the map and it is instead incorporated

in the algorithm in a heuristic fashion.

In order to maintain the Voronoi partitioning, the modified control law to incorporate

explicit cooperation is now of the form

z?′
i ∈





arg maximize
z∈B̃Ri

⋂
V (zagti)

Ĵ0i(z) if B̃Ri

⋂
V (zagti) 6= ∅

zagti otherwise
(5.75)

z?
i ∈





zhi if αx̂w(k + d, z?′
i) < δ

z?′
i otherwise

(5.76)

Agent i chooses z?
i as the next location to search and the process repeats once the agent

reaches z?
i .

122

Theorem 5.5.9. The point z?
i is always reachable by agent i and remains in the agent’s

Voronoi polygon, z?
i ∈ BRi

⋂
V (zagti).

Proof. In the case where z?
i = z?′

i , it is obvious From Eq. 5.75 that z?′
i ∈ BRi

⋂
V (zagti)

since the feasible set of the maximization problem is precisely BRi

⋂
V (zagti) and it was

previously shown that zagti ∈ BRi

⋂
V (zagti).

In the case where z?
i = zhi , Theorem 5.5.6 can be applied to show that zhi ∈ BRi

⋂
V (zagti).

If the same assumptions in Section 5.3.3 are satisfied, several guarantees about algorithm

performance can be made. However, unlike the results in Section 5.3.3 where guarantees are

shown for all agents in the team, most of the guarantees for the case of explicit cooperation

can be shown only for the case of i = I.

Theorem 5.5.10. Under assumptions A.3, A.4, A.5, and the previously described search

strategy with explicit cooperation, if agent I is not currently at the point zHI
the agent must

move to a point other than zagtI once the quantity αxw(k, zagtI) decreases below the value

δ.

Proof. Assuming that z?′
i = zagtI , if the quantity αxw(k, zagtI) decreases below the value δ,

then Eq. 5.76 will assign z?
i = zhi . Theorem 5.5.7 can be applied to show that z?

i is strictly

closer to zHi than zagtI . Since the agent is not at the point zHI
, the agent must move to a

point other than zagtI .

Theorem 5.5.10 shows that the agent cannot remain at the same location indefinitely.

The control law in Eq. 5.76 differs from that in Section 5.3.3. One consequence of this is

that Assumption A.7 is not required to ensure exhaustive searches. This is illustrated in

the next several theorems.

Theorem 5.5.11. Under the previously described search strategy, agent I must choose

either a cell center which has non-zero score, zhI
, or both as the point z?

I .

Proof. The point z?
i is assigned according to Eq. 5.76. If the point z?′

i has a score of zero,

then αx̂w(k + d, z?′
i) = 0 which is less than the value of δ for any δ ∈ (0, 1] so Eq. 5.76 will

assign z?
i = zhi .

123

Alternatively, if αx̂w(k+d, z?′
i) ≥ δ, then Eq. 5.76 will assign z?

i = z?′
i . Since δ, α ∈ (0, 1],

αx̂w(k + d, z?′
i) ≥ δ ⇐⇒ x̂w(k + d, z?′

i) > 0 which shows that the point associated with z?
I

has a non-zero score.

Theorem 5.5.12. Under assumption A.4, A.5 and the previously described search strategy,

if agent I chooses zhI
as z?

I and zhI
6= zHI

, then at the next time step the point zHI
will

remain unchanged and some agent i ∈ In will move closer to the point zHI
.

Proof. Theorem 5.5.7 showed that ||zhI
− zHI

|| < ||zagtI − zHI
|| so if the agent chooses

z?
I = zhI

, at the next time step, it be closer to the point zHI
than it was before. If

zhI
6= zHI

, then the agent cannot search that cell so the score will not decrease and at the

next step, zHI
will still be in the set B̃max. Unlike Theorem 5.3.4, another agent cannot

search this same location due to fact that z?
i ∈ V (zagti) and therefore, zHI

∈ V (zagtI).

Furthermore, since the distance between the agent and the same point zHI
is decreased,

this same point will be chosen by Eq. 5.57 as the point zHi . Note that the index is i, not

I in the last sentence. This is because it is possible that the index of the agent that is

closest to the set B̃max may change at the next time step. However, it will change only if

another agent moves closer to the set B̃max than the current agent located at zagtI . This

does not affect the proof in the sense that the point zHI
does not change, simply the index

of whichever agent happens to be closest to zHI
at the next step.

Using these results, we can show that the control law with explicit cooperation yields

an exhaustive map search

Theorem 5.5.13. Under the previously described assumptions and search strategy with

explicit cooperation, xw(k, z) → 0 ∀z ∈ B (the scores of all cells in the map will approach

0).

Proof. Theorem 5.5.10 guarantees that agent I cannot remain in a single cell indefinitely

and Theorem 5.5.11 ensures that it must choose either a cell of non-zero score, zhI
, or

both as the point z?
I at any given time step. If agent I chooses a cell of non-zero score,

Theorem 5.3.1 ensures that the score of that cell is monotonically decreased towards 0.

124

If the agent does not choose a cell of non-zero score, the only alternative scenario allowed

by Theorem 5.5.11 is that the agent chooses zhI
and xw(k, zhI

) = 0. By definition of zHI
,

if xw(k, zHI
) = 0, then the map has been completely covered since all scores are at most

0. Therefore, assuming that the map has not been entirely searched yet, xw(k, zhI
) = 0 ⇒

zhI
6= zHI

.

Theorem 5.5.12 ensures that if if zhI
6= zHI

, choosing zhI
as the point z?

I does not change

the value of zHI
at the next time step.

At this next time step, the agent once again must choose a cell with non-zero score,

zhI
, or both. If the agent continues to choose zhI

, eventually zHI
∈ B̃RI

and at this point,

choosing a cell with non-zero score, zhI
, or both guarantees that a cell of non-zero score is

chosen. Therefore, the score of some cell will be ensured to decrease and given sufficient

time, xw(k, z) → 0 ∀z ∈ B.

Remark 5.5.14. Theorem 5.5.13 differs from Theorem 5.3.6 in a few subtle ways. In this

situation, the explicit cooperation makes the proof valid only for agent I instead of all agents

(Theorem 5.3.6). However, this still guarantees coverage for the team since at any point,

there must be an agent in the team which has the properties that allow it to have the index

I.

5.5.2 (℘3) with Explicit Cooperation

Recall that (℘3) involved finding a path from the agent’s current location or zagti to the

optimal point or z?
i . Section 5.4.1 proposed a method that plans paths by formulating the

problem as a convex optimization scheme. This method can be applied without modification

to this situation with explicit cooperation. Recall that the waypoints returned by solving

Eq. 5.39 all lie on a line between zagti and z?
i . Showing that these waypoints are all within

the set BRi

⋂
V (zagti) can be done by applying Theorem 5.5.9 and its supporting proofs.

Therefore, this path will remain in the agent’s Voronoi polygon.

The Voronoi partitions can be easily incorporated into the graph based path planning by

carefully assigning the span intervals. Using a method similar to that described in Eq. 5.54,

the upper span interval can be set to +∞ if the arc travels outside the agent’s Voronoi

125

polygon. This guarantees that any forward path through the graph with cost less than +∞
is guaranteed to be both feasible for the agent and also remain within the agent’s Voronoi

polygon.

Using these modifications for explicit cooperation, each agent in the team makes decision

based on the existence of the other agents in the team. Under this control law, agents remain

partitioned according to the Voronoi tessellation. Although this increases the computational

resource requirements and complexity, it has several benefits such as guaranteed collision

avoidance at the strategic planning level and increased team performance.

126

Chapter 6

SIMULATION IMPLEMENTATION

The algorithms and results described in the previous chapters were implemented as a

stand-alone, object oriented, C++ application. This monolithic application is used for both

simulation and real-time data collection purposes. This chapter details pure simulation

results and the architecture of the application. Human-in-the-loop simulation is detailed in

Chapter 7 and real-time flight testing and hardware results are described in Chapter 8.

6.1 Simulation Architecture

Due to the complexity of the simulation, it is implemented as an object oriented application

coded in C++. Each relevant object is implemented as its own class. Some classes have the

capability to interface with external hardware such as GPS devices and serial ports. A list

of some of the major classes in the simulation are listed in Table 6.1.

Table 6.1: Function of major classes in monolithic simulation.

Class Function

Agent • Simulate agent dynamics

• Interface with DataHub and serial port

• Record agent state and control history

• Update occupancy based map based on agent measurements

OccupancyMap • Maintain occupancy based map

• Interact with occupancy based map

continued on next page. . .

127

Table 6.1 – Continued

Class Function

Path • Represents variable number of waypoints that makeup the path

• Interface with DataHub to publish path information

AgentController • Inner loop controller for agents

• Waypoint navigation

StrategicController • Outer loops controller for agents

• Compute strategic, single agent search strategy

MyGSLMatrix • Wrapper for GSL library functions

• Implement linear algebra functions (matrices, vectors, etc.)

MySerial • Interact with serial port

• Record/interpret data from GPS device

DataHubInterface • Initialize DataHub server/connection

• Publish/Subscribe information from DataHub server

6.1.1 Code Flow

The system is implemented as an object-orientated application in C++. The total applica-

tion exceeds 100,000 custom, hand-coded lines and countless libraries. A high level, general

flow diagram of the code is shown in Figure 6.1.

Figure 6.1, Line 1 creates many default objects that are required for the simulation.

These include objects which represent the agents, targets, occupancy maps, and various

support classes such as the inner and outer loop controller for the agents. These objects

are then initialized in Line 2 of the code. This process involves setting initial conditions

for the target and agents. Also, the occupancy map is initialized by interfacing with a geo-

referenced image of the search area (described previously in Section 4.1.2). The DataHub

server and connection to said server must be initialized as well. In addition to the DataHub

128

Figure 6.1: High Level code flow of simulation application.

connection, a serial port connection to the GPS unit is established here as well. The

DataHub is described later in Section 7.2.1. If the agent is a real agent, its initial condition

is set via data from the GPS.

After setup and initialization, the main loop of the algorithm is executed. The system

first checks to see if any of the planned paths for the agents are expired or not. If they are

expired, new paths are recomputed using the methods described in Chapter 5. Pseudo-code

which shows a more detailed explanation of Figure 6.1, Line 4 is shown in Figure 6.2.

Once the paths are computed for all agents, the target states are updated using an

external control signal. In most situations, the target is stationary so Line 5 in Figure 6.1

involves simply updating the target state with a control vector of zeros.

The agent’s states are updated in Line 6 in Figure 6.1. Each agent has an inner loop con-

troller (AgentController object) which is responsible for tactical tasks such as path following

129

Figure 6.2: Pseudo code for process which recomputes expired paths.

and navigation. This controller computes controls which will allow the agent to follow the

desired path by calculating trajectories which take the agent to the active waypoint in the

path. These controls are then applied to the agent to propagate its state forward. The

dynamical model used to simulate the agent at this point can be user specified to model a

possibly heterogeneous team.

With the target and agent states updated, the agents make measurements using their

sensor models and update the occupancy map in Line 7. This involves incorporating both

the sensor measurements from the agents and also applying the time varying score decay

model described in Eq. 4.11.

The pertinent simulation variables are then written to standard ASCII text files. These

are saved in a standardized form so that they may be imported into other applications such

as Matlab for visualization and data analysis purposes.

6.1.2 Timing

The application is a monolithic simulation of N agents. In the case where the application

is purely simulating the scenario, real time constrains are not necessary and timing is not

an issue. Each agent can request as much processing time as needed in order to compute

130

its required algorithms. However, when the application is used for gathering real-time

data, timing and processor sharing becomes an issue. A major obstacle is the fact that

the application is monolithic rather than distributed, and therefore all calculations for all

N agents are performed on a single processor. The application is not a true real time

application in the sense that interrupts and event handlers are not used so processor sharing

is not inherent in the code. Instead, in an attempt to ameliorate the problem of N agents

utilizing a single processor, a careful timing structure is implemented to allow the N agents

to share processor time. A timing diagram of this procedure is shown in Figure 6.3.

Figure 6.3: Timing diagram with N = 3, d = 3, K = 4.

Each black ‘x’ in Figure 6.3 represents a single iteration of the main loop of the algorithm

(shown in Figure 6.1). A single iteration of the main loop represents ∆t seconds. The main

loop executes K times between each waypoint in the path and therefore, the time between

waypoints is K ·∆t. Since there are d waypoints in a single path, a single path is valid for

d ·K ·∆t seconds.

Recall that a path is comprised of both waypoints and desired arrival times for each

waypoint (Section 5.4.3). A path is expired if the simulation time is greater than the arrival

131

time of the dth waypoint in the path (all waypoints for the given path occur in the past).

As soon as a path expires, the system has at most ∆t seconds to compute a new path.

Computing a new path requires executing the code previously described in Figure 6.2. If m

paths expire at the same time, the single agent search strategy must be executed m times.

This process may require significant computational resources and therefore, it is undesirable

to have more than one path expire at any given time. The system performance is achieved

by simply staggering paths so that no two paths expire at the same time. An example of

this staggering is shown in Figure 6.3.

In this example, the system is initialized so the first path for agent 1 expires at the start

of the simulation. At the very first iteration through the main loop, the system executes

the single agent search strategy code for agent 1 to replan its path. This planning occurs

between 0 ·∆t and 1 ·∆t. Once this path is computed, agent 1 is committed to this path

for the next d waypoints (or K · d loop iterations which is equivalent to K · d ·∆t seconds).

At the next time step (between 1 · ∆t and 2 · ∆t), all agents have active paths that have

not expired, so the only tasks required are updating the target, agent, and occupancy map

states. At the third loop iteration (between 2 ·∆t and 3 ·∆t), the path for agent 2 expires

and a new path must be computed for agent 2. If the planning horizon is constant for

all agents (d is same for all agents), then if there are at most K · d agents in the team, a

staggering pattern can be established so that no two paths expire simultaneously. Utilizing

this staggering pattern allows for the duty cycle for the single processor to be as high as

possible before affecting real time timing constraints.

6.2 Simulation Results

After analyzing and implementing the autonomous algorithms as discussed in the previous

chapters, the algorithms can be verified in simulation. Results and performance of this

strategy in simulation is the focus of the current section.

6.2.1 Emergent Behavior

The agents following the control law described in the previous chapter exhibit some inter-

esting behaviors. For example, the agents choose control decisions which will benefit them

132

(a) Greedy algorithm (b) Planning algorithm

Figure 6.4: Difference between greedy algorithm and planning algorithm showing smooth
convergence to a moving target.

d steps in the future rather than doing what is best in the next time step. This leads to

desirable behavior such as smooth convergence to a moving target as shown in Figure 6.4.

At step k = 0, the system receives an estimate of the target state, x̂tgt(0). This notifies

it that the target is directly north of the agent’s current position and is moving west with

a constant velocity. The trajectory in Figure 6.4(a) is generated when the agent employs a

greedy algorithm where at each time step (k = 0, 1, . . . , 24) the agent chooses a control that

transitions it to the most desirable coordinate that it can reach in 1 step. The result is that

the agent is constantly trying to “catch up” up with the target. In contrast, the trajectory

in Figure 6.4(b) is generated when the agent employs the above described search strategy

with a look ahead window of d = 10. The agent is now choosing control actions which will

benefit it in 10 steps. This yields a much smoother and faster convergence with the target.

Another emergent behavior of the agents is the tendency to search areas which have

been previously explored as time progresses. This stems from the fact that the occupancy

map scores can be time varying. This models the fact that estimates become less certain

with time or for the possibility of a moving target. This is particularly useful in missions

where the agent is tasked to patrol a region for a possibly evading target. And example of

this mission scenario is shown in Figure 6.5. In this situation, the agent (a ScanEagle) is

133

patrolling a harbor in New York. Initially, it checks the harbor for the target (a submarine)

but does not find it (Figure 6.5(b)). It then decides to investigate a possible target to the

Southeast (Figure 6.5(c)). When it leaves the harbor, the submarine takes advantage of the

agent’s departure and moves into the harbor (Figure 6.5(d)). However, the agent eventually

decides to return to the harbor to ensure that no targets moved in during its absence and

it successfully finds the target (Figure 6.5(f)).

6.2.2 Scenarios and Performance

To evaluate the performance of the various algorithms, several test scenarios are created.

These scenarios are used to emulate situations and environments where a general search

algorithm might be used.

Testing Scenarios

The algorithm can be tested using several different scenarios. Three representative scenarios

are shown in Figure 6.6. Scenario 1 (S1) is used to represent a possible urban scenario

where there are hard obstacles such as buildings to avoid. Scenario 2 (S2) represents a

maritime environment where the agents might be searching for a lost ship on the water.

Finally, scenario 3 (S3) is another urban environment where there is some a priori knowledge

regarding the target’s possible location.

Performance Metrics

In order to gauge performance, several metrics are used. Perhaps the most intuitive is to

sum the scores of all the cells. This is directly proportional to the mean of the cell scores.

The cumulative map score for a run i at time step k is denoted

S(i, k) =
∑

z∈B̃

xw(k, z) (6.1)

Along a similar vein, the variance of the map scores is defined as

V (i, k) = Var(xw(k, z)) for z ∈ B̃ (6.2)

134

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(a) t = 0

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(b) t = 312

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(c) t = 1092

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(d) t = 1248

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(e) t = 2184

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(f) t = 3107

Figure 6.5: Single agent in a harbor patrol mission showing revisiting of locations.

135

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400
Occupancy Map

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Scenario 1 (S1)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400
Occupancy Map

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Scenario 2 (S2)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400
Occupancy Map

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Scenario 3 (S3)

Figure 6.6: Several test scenarios used to verify algorithm performance.

The average values across n runs are simply

Save(k) =
1
n

∑

i∈In

S(i, k) (6.3)

Vave(k) =
1
n

∑

i∈In

V (i, k) (6.4)

In terms of map coverage, the best and worse case scenarios can be given by

Smax(k) = max
i∈In

S(i, k) (6.5)

Smin(k) = min
i∈In

S(i, k) (6.6)

The occupancy map at a given time can also be thought of as a function over the domain

B which maps to a scalar in a certain range. In this context, xw : B → [0, 1], and the range

of the function can be partitioned into a series of finite regions according to

∆ = {δj , j = 1, 2, ..., M} (6.7)

Where each element of the range partition, δj , corresponds to a region in the range of

xw()

136

δj =





[sj−1, sj) j = 1, 2, ..., M − 1

[sj−1, sj] j = M
(6.8)

The points sj ∈ < are most easily chosen as linearly spaced over the range of xw, but

they can be chosen in any fashion that has them monotonically increasing with s0 < s1 <

... < sM . With the range partition ∆ defined, the domain of the function can be partitioned

according to which element of δj the image corresponds to. In this context, the inverse of

the function with respect to an element of the range partition, δj can be defined as

x−1
w (δj)

∆= {z ∈ B : xw(z) ∈ δj} (6.9)

Using Eq. 6.9, one possible partitioning of the domain is given as [44]

Q(∆) = {Qj = x−1
w (δj), j = 1, 2, ..., M} (6.10)

Using Eq. 6.10, each element in the partition Q(∆) consists of areas of the domain which

map to the same range partition element δj . Regardless of the function xw(), using Eq. 6.10

the cardinality of the domain partition equals the cardinality of the range partition in the

sense that |Q(∆)| = |∆| = M .

A more complex partitioning of the domain can be obtained by looking at the connected

components of x−1
w (δj) [14].

ν(∆) = {νi, i = 1, ..., N} =
⋃

j=1,2,...,M

cc{x−1
w (δj)} =

{
cc{x−1

w (δ1)}, ..., cc{x−1
w (δM)}} (6.11)

With Eq. 6.11, the cc{} function returns the connected components of the argument set.

Using Figure 6.7(a) as an example, if a set A is defined as the locations which are yellow

and the set B was defined as locations which are purple, then the set cc{A} = {B3, B4}
and cc{B} = {B1, B2, B5}.

Each set cc{x−1
w (δj)} is a set that corresponds to connected components of x−1

w (δj). Each

element in the set cc{x−1
w (δj)} is a continuous set of locations which map to δj under the

137

(a) Connected components (b) Range and domain partitioning

Figure 6.7: Examples showing connected components and range/domain partitioning of
xw() function.

function xw(). The union operator in Eq. 6.11 signifies that the set ν(∆) is comprised of

all the sets cc{x−1
w (δj)} for j = 1, ..., M but each element retains its individual partitioning

(clarified by the second half of the equation).

Figure 6.7(b) provides an example where xw : < → < but the idea can easily be extended

to the case considered in this work where xw : <2 → <. In this example, the domain of the

function is denoted as B and the range of the function over B is partitioning into M = 3

components. The points s0, ..., s3 are chosen to be linearly distributed between the minimum

and maximum of the range and define the range components δ1, δ2, and δ3 which are shown

as the vertical magenta, cyan, and grey lines, respectively. The locations in the domain

of xw() that correspond to these range partitions are described by x−1
w (δj). For example,

x−1
w (δ1) has a single element in the set which corresponds to {B2

⋃
B6}. In a similar fashion,

x−1
w (δ2) = {B1

⋃
B3

⋃
B5} and x−1

w (δ3) = {B4}. Note that each set x−1
w (δj) has only a single

element, but this element may be comprised of several disconnected components. Using the

partitioning in Eq. 6.11 simply uses Qj = x−1
w (δj) and therefore, the domain partition has 3

elements as well. However, if Eq. 6.11 is used to partition the domain, then the cardinality

138

of domain partition is greater than or equal to that of the range partition, |ν(∆)| ≥ |∆|.
Using the example, ν1 = cc{x−1

w (δ1)} = {B2, B6}, ν2 = cc{x−1
w (δ2)} = {B1, B3, B5}, and

ν3 = cc{x−1
w (δ3)} = {B4} so the total partition is given by ν = {B1, B2, ..., B6}.

With the domain partition Q (or ν) defined , the entropy of the function can be defined

using the standard form

H(Q) = −
N∑

i=1

µ(Qi)
µ(B)

log2

µ(Qi)
µ(B)

(6.12)

where µ(Qi) is the standard Lebesgue measure of the set Qi. In this case, this is the area

of the set Qi. To compute the entropy of the partition ν, the term Qi is simply replaced

with νi. This closely parallels the information theoretic version of entropy and has many

of the same properties. The most significant is that if the domain partition contains only a

single element (which occurs if the function is constant) then H(Q) = 0 [29].

The joint entropy between two partitions Qo and Qs is similarly defined as

H(Qo, Qs) = −
Ns∑

i=1

No∑

j=1

µ(Qi
⋂

Qj)
µ(B)

log2

µ(Qi
⋂

Qj)
µ(B)

(6.13)

The joint entropy has the property that H(Qo, Qs) ≤ H(Qo) + H(Qs). The inequality

becomes equality when the two partitions maximally differ (from an information theoretic

perspective, this corresponds to the two probabilistic variables being independent). A mea-

sure of convergence, deemed the perspectives mutual information [14], between the two

partitions is given as

I(Qo, Qs) = H(Qo) + H(Qs)−H(Qo, Qs) (6.14)

The perspective mutual information has the property that if the two partitions maxi-

mally differ, then I(Qo, Qs) = 0 and if the two partitions are the same (meaning that the

two functions are similar since they induce the same partition), then I(Qo, Qs) = H(Qo) =

H(Qs). This provides a useful metric to determine if the current state of the world (em-

bedded in the function xw()) is converging to the desired function.

Physically, the entropy measures the minimum amount of bits (if a base 2 logarithm is

139

used) required to represent the function on average [29]. This is the minimum level to which

the function can be compressed.

In addition to coverage and information metrics, performance metrics which measure

expected time to target detection can be defined. The number of agents which find the

target in run i is given by Ñ(i). The average number of agents which find the target in n

runs can be defined as

Ñave =
1
n

∑

i∈In

Ñ(i) (6.15)

The time when the mth agent finds the target is given by Tm(i). Note that by definition,

T1(i) ≤ T2(i) ≤ ... ≤ TM (i). The average time to target detection for the encounters is

slightly more complicated. This is because in some runs, Tm(i) is undefined (in the case

that the mth agent does not find the target). Therefore, the values of Tm(i) which contribute

to the average are only those when it is defined

Tm,ave =
1

n̂(m)

∑

i∈In̂(m)

Tm(i) (6.16)

Where n̂(m) is the number of runs where at least m agents find the target and In̂(m)

corresponds to the indices where the times occur. The ramifications of this definition are

explained in the context of the simulation in Section 6.2.4.

6.2.3 Alternative Search Strategies for Comparison

The searching algorithm can be compared with other common search strategies to evaluate

its performance. One of the simplest search strategies is the simple raster scan. This involves

the agents moving in a north/south or east/west lines until the boundary of the search is

reached. The agent then moves over by one row and then turns around. And example of a

raster trajectory is shown in Figure 6.8.

Another heuristic search strategy that is related to the raster scan is the “lawn mower”

algorithm. It is referred to as a lawn mower algorithm because the agents follow a set of

heuristics which might be similar to a person mowing a lawn. This follows a simple strategy

140

Figure 6.8: Example raster scan trajectory.

outlined in Figure 6.9.

Another simple search strategy is the gradient climb algorithm. In this case, the algo-

rithm evaluates the scores of the cells surrounding it (to the north, east, south and west)

and then chooses the cell which has the highest score. If two or more cells have the same

maximum score, the algorithm chooses the cell which requires the smallest course change to

visit. This is similar to a steepest ascent algorithm [22], [99] where the feasible directions

are only the four cardinal directions.

Finally, the Voronoi partitioning method has been used by several groups to generate

coverage algorithms which can be applied in this situation [42], [68]. In this case, the Voronoi

diagram V is generated using the agent’s positions as generators. Then the point for the

agent to search within the next d steps is chosen to be within the agent’s Voronoi polygon

and its reachable set. This algorithm is outlined in Figure 6.10.

For purposes of comparison, the full algorithm refers to the algorithm described in Sec-

tion 5.1 (no explicit cooperation between agents) and the full algorithm with Voronoi parti-

tioning refers to the algorithm described in Section 5.5 (algorithm with explicit cooperation

between agents).

141

Figure 6.9: Pseudo code for lawn mower algorithm.

Figure 6.10: Pseudo code for randomized Voronoi partitioning algorithm.

6.2.4 Comparison Results

The various comparison algorithms are used in the three different scenarios. The previously

mentioned performance metrics can then be used to judge each algorithm’s efficiency.

142

Map Coverage

When evaluating the map coverage by the different strategies, the relevant quantities to

analyze are the cumulative map scores and other related metrics. These scenarios involve

multiple agents in the team searching the map with no targets. For example, the lawn

mower trajectories for scenario 2 are shown in Figure 6.11.

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw at t = 0

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw at t = 260

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw at t = 910

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw at t = 1560

Figure 6.11: Lawn mower trajectories for 3 agents with scenario 2.

The deficiency in this algorithm becomes immediately clear. The map is not exhaus-

tively searched and furthermore the agents tend to become stuck in limit cycles where they

continually search the same cells over and over again. No information about the map or

143

the state of the environment is taken into account and therefore, the algorithm performs

poorly.

The same agents in the same scenario are instead controlled by the full algorithm and

the results are significantly improved as shown in Figure 6.12.

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw at t = 130

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw at t = 1170

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw at t = 2470

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw at t = 3770

Figure 6.12: Full algorithm trajectories for 3 agents with scenario 2.

As can be seen, the map is covered completely in this scenario. The improvement of

the full algorithm over the lawn mower algorithm in this scenario is evident when looking

at traces of S(i, k) and V (i, k) as shown in Figure 6.14. From this one can see that the

agents under the lawn mower strategy become stuck in a limit cycle at around t = 1500 and

no new information is gained in the search. Furthermore, the value of S(i, k) is not driven

144

towards zero using the lawn mower strategy as it converges to a value of approximately 37.

Conversely, under the full algorithm policy, the cumulative map scores are driven towards

zero and if the simulation had be allowed to run for a longer period of time, they would

approach zero, thus showing that the map is exhaustively searched. Also note that the

variances of the scores are also driven to zero under the full algorithm.

An interesting phenomenon occurs with the full algorithm in this situation. Notice that

in Figure 6.12(b), both the red and yellow agent choose the same location z? as the solution

to (℘2). They both plan paths to this location and then after these paths expire, they

continue to choose the same point as the optimal cell to search in the next d steps. Since

they both use the same path planning algorithm, they both continue to stay on top of each

other, effectively acting as one agent. Theoretically, since they all have different values of

α, β, γ, and δ, it is possible that at some later point, they may choose different points and

split apart from each other (although this does not occur in this example). This problem is

exacerbated by the fact that the staggered timing method shown previously in Figure 6.3

is not used. This phenomenon provides motivation for the modifications to the algorithm

which allow for explicit cooperation between the agents as described in Section 5.5. The

usage of the Voronoi partitioning does not allow the agents to occupy the same space as

each other and therefore, this type of behavior will not occur as seen in Figure 6.13.

The cumulative map scores and their variance for the different algorithms for scenario

2 for these selected runs are shown below in Figure 6.14.

Notice that in this scenario, it appears that the gradient climb algorithm outperforms

the other methods. This occurs for several reasons. One reason being that the areas to

be searched are connected and also because these are single runs and do not give a good

representation of the behavior of the respective algorithms in general. In order to judge the

general behavior of the algorithms, a series of Monte Carlo simulations are used. In these

simulations, the performance of each algorithm is gauged over a series of 20 runs and then

averaged using Eq. 6.3. The best and worst case scenarios for the series of runs are also

computed using Eq. 6.6 and Eq. 6.5, respectively. The results for scenarios 1, 2, and 3 are

presented in Figures 6.15, 6.16, and 6.17, respectively.

In Figures 6.15 through 6.17, the solid line represents Save(k) and the dashed line repre-

145

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw at t = 195

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw at t = 1170

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw at t = 2145

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw at t = 3705

Figure 6.13: Full algorithm with Voronoi partitioning trajectories for 3 agents with scenario
2.

sents Smax(k) for the corresponding search strategy. The performance of the various search

strategies using Save(k) and Smax(k) as metrics is summarized in Table 6.2. In this table,

1 corresponds to the best performance and 6 corresponds to the worst performance.

Looking at average performance measured by Save(k), it can be seen that in scenarios

1 and 3, the performance of the algorithms from worst to best appears to be, lawn mower,

randomized Voronoi, raster scan, gradient climb, full algorithm, then full algorithm with

Voronoi partitioning. This is the expected result and shows that the best performance

and guarantee of map coverage is achieved with the full algorithm. Furthermore, it shows

146

0 500 1000 1500 2000 2500 3000 3500 4000
30

40

50

60

70

S
(i,

k)

S(i,k) and V(i,k) vs. Time for Run 08_11_09_20_56_30 (Lawn Mower)

0 500 1000 1500 2000 2500 3000 3500 4000
0.046

0.047

0.048

0.049

0.05

0.051

V
(i,

k)

Time (sec)

(a) Lawn mower

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

S
(i,

k)

S(i,k) and V(i,k) vs. Time for Run 08_11_09_20_58_57 (Gradient Climb)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

V
(i,

k)

Time (sec)

(b) Gradient climb

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

S
(i,

k)

S(i,k) and V(i,k) vs. Time for Run 08_11_24_14_02_08 (Algorithm)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

V
(i,

k)

Time (sec)

(c) Full algorithm

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80
S

(i,
k)

S(i,k) and V(i,k) vs. Time for Run 08_11_10_15_29_16 (Algorithm w/ Voronoi)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

V
(i,

k)

Time (sec)

(d) Full algorithm w/ Voronoi partitioning

Figure 6.14: S(i, k) and V (i, k) for scenario 2.

Table 6.2: Rankings of search strategies using Save(k) and Smax(k) as metrics (1 = best).

Save(k) Smax(k)
Strategy S1 S2 S3 S1 S2 S3
Lawn Mower 6 6 6 6 6 5
Randomized Voronoi 5 5 5 4 4 4
Raster Scan 4 4 4 5 5 3
Gradient Climb 3 1 3 3 2 6
Full Algorithm 2 3 2 2 3 2
Full Algorithm Co-op 1 2 1 1 1 1

147

Figure 6.15: Save(k) and Smax(k) for scenario 1.

that the performance is further increased (and the coverage guarantee is preserved) when

augmenting the full algorithm with explicit cooperation between agents through the Voronoi

partitioning. It should be noted that if the simulation were run for a longer amount of time,

it is expected that the raster scan algorithm will eventually outperform the gradient climb

when using Save(k) as the metric for map coverage. This is most evident by looking at

Figure 6.17. Map coverage is guaranteed with the raster scan algorithm, but it is obvious

that the performance is suboptimal. Note that in scenario 2, it appears that the gradient

climb algorithm performs the best. As mentioned previously, this occurs because the areas

to be searched are connected and the environment is fairly simple. If the environment was

comprised of long, narrow corridors, the gradient climb algorithm would perform poorly due

to the fact that it would not cross over areas of low score whereas the full algorithm would

(see Figure 5.21).

The guarantees of map coverage are more evident when looking at the worst case scenario

for map coverage. Recall that Smax(k) is a measure of the worst case scenario possible over

148

Figure 6.16: Save(k) and Smax(k) for scenario 2.

all test cases. In this case, it is obvious that the full algorithm with explicit cooperation

is the best policy to use. Although the gradient climb strategy may work well for some

situations, there are situations where it performs the worst out of all the possible strategies

(Smax(k) for scenario 3).

The average variance of the runs can be computed using Eq. 6.4 and the results are shown

in Figure 6.18. These supply further proof that an exhaustive map search is guaranteed only

using the raster scan, full algorithm, and full algorithm with explicit cooperation strategies.

Of these guaranteed methods, the latter two provide superior performance.

A similar trend of performance is observed using the information theoretic metrics of

H(Qs) and H(νs). For brevity, only the plots for scenario 3 are both partitions are shown

in Figures 6.19 and 6.20. The performance results are tabulated in Table 6.3. Once again,

it is clear that the full algorithm and the full algorithm with explicit cooperation yield the

best performance since under both partitions, the information approaches zero as the agents

exhaustively search the domain.

149

Figure 6.17: Save(k) and Smax(k) for scenario 3.

Table 6.3: Rankings of strategies using Have(Qs) and Hmax(Qs) as metrics (1 = best).

Have(Qs) Have(νs) Hmax(Qs) Hmax(νs)
Strategy S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
Lawn Mower 6 6 6 6 6 6 6 6 6 6 6 6
Randomized Voronoi 5 5 5 5 5 5 4 4 4 5 5 5
Raster Scan 4 4 4 4 4 3 5 5 3 4 4 3
Gradient Climb 3 1 3 3 1 2 3 3 5 3 2 4
Full Algorithm 2 3 2 2 3 4 2 2 2 2 3 2
Full Algorithm Co-op 1 2 1 1 2 1 1 1 1 1 1 1

Improving performance in a searching mission typically involves increasing the number

of agents involved in the search. The main challenge with current unmanned systems is

that raising the number of agents greatly increases operator workload required to manage

the team. If the team is comprised of heterogeneous agents with different capabilities, the

mission management task becomes even more complicated. The benefits of the full algorithm

150

0 500 1000 1500 2000 2500 3000 3500
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Average Cumulative Map Score Variance

Time (sec)

V
av

e(k
)

Lawn Mower
Gradient Climb
Algorithm
Randomized Vornoi
Algorithm w/ Voronoi
Raster Scan

(a) Scenario 1

0 500 1000 1500 2000 2500 3000 3500

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Average Cumulative Map Score Variance

Time (sec)

V
av

e(k
)

Lawn Mower
Gradient Climb
Algorithm
Randomized Vornoi
Algorithm w/ Voronoi
Raster Scan

(b) Scenario 2

0 500 1000 1500 2000 2500 3000 3500

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Average Cumulative Map Score Variance

Time (sec)

V
av

e(k
)

Lawn Mower
Gradient Climb
Algorithm
Randomized Vornoi
Algorithm w/ Voronoi
Raster Scan

(c) Scenario 3

Figure 6.18: Vave(k) for scenarios.

both with and without explicit cooperation within this framework can be seen when looking

at the coverage vs. time for varying number of agents. For example, the effects of varying

the number of homogeneous agents with the full algorithm and full algorithm with explicit

cooperation strategies are shown shown in Figure 6.21(a) and Figure 6.21(b), respectively.

Figure 6.21 displays several interesting phenomena. First, the guarantee of exhaustive

map searching is reinforced. Also, the effect of increasing the number of agents involved in

the search is evident since in both cases, the time to drive the map scores to zero decreases

as the number of agents increase. The effect of increasing the number of agents in the team

can be investigated by calculating the settling time for the coverage metric. In this context,

151

Figure 6.19: Have(Qs) and Hmax(Qs) for scenario 3.

the settling time is defined as the time it takes for Save(k) to drop below to 15% of the initial

cumulative map score. The settling time vs. number of agents is shown in Figure 6.22.

As expected, the settling time decreases as the number of agents increases. Notice that

the settling time does not decrease in a linear fashion. Instead, the relative increase in

performance decreases with each successive addition of a team member. In other words,

adding more agents to the team does not greatly increase performance after a certain point.

The trend is roughly exponential and the fitted exponential function is shown with the data

as the solid lines. Note that the exponential decay rate for the full algorithm with explicit

cooperation is λ = −0.274 which decays faster than the exponential decay rate for the full

algorithm of λ = −0.235. The modifications to the algorithm to accommodate explicit

cooperation benefits the team more as the number of agents in the team increases. This

can be attributed to the Voronoi partitioning which helps ensure that agents do not overlap

and search the same cells as the mission progresses.

152

Figure 6.20: Have(νs) and Hmax(νs) for scenario 3.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80
Average, Max, and Min Cumulative Map Score

Time (sec)

S
av

e(k
)

2 agents
5 agents
10 agents
20 agents

(a) Full algorithm

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80
Average, Max, and Min Cumulative Map Score

Time (sec)

S
av

e(k
)

2 agents
5 agents
10 agents
20 agents

(b) Full algorithm with explicit cooperation

Figure 6.21: Coverage metrics for varying number of agent using scenario 3.

Time to Target Detection

There are several parameters that measure the efficiency of the algorithm in terms of target

detection time. One metric is the average number of agents that find the target for a given

153

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

Number of Agents

S
et

tli
ng

 T
im

e
(s

ec
)

Settling Time vs. Number of Agents for Both Algorithms

Settling Time Data for Full Algorithm
Full Algorithm Fit a = 5622.8242. λ = −0.2353.
Settling Time Data for Full Algorithm w/ Voronoi
Full Algorithm w/ Voronoi Fit a = 5586.359. λ = −0.27413.

Figure 6.22: Settling time for various number of agents using full algorithm and full algo-
rithm with explicit cooperation.

scenario. Related to this metric is the number of scenarios where at least 1, 2, or 3 agents

find the target. All runs for the time to target detection Monte Carlo simulation use 200

time steps with 3 agents. For example, the results from scenario 2 using the full algorithm

with explicit cooperation are shown in Figure 6.23.

As can be seen, for almost all of the runs, at least 1 agent finds the target (run 10 is the

only run where the target was not found within 200 time steps and is represented by the

‘x’) and the times when the first agent finds the target are shown on the vertical axis of the

first subplot in Figure 6.23. The scenarios where at least two agents find the target can be

found in the second subplot of the same figure. The circles on this subplot correspond to

the time when the second agent finds the target. The same interpretation is used to explain

the meaning of the third subplot.

An interesting phenomenon occurs in this situation. Note that these results were gen-

erated with agents using the full search algorithm with explicit cooperation as described in

Section 5.5. Recall from Theorem 5.5.6 that the solution to (℘2) for each agent is guar-

154

Figure 6.23: Time to 1st, 2nd, and 3rd target detection for scenario 2 using full algorithm
with cooperation. ‘x’ = not applicable for this scenario.

anteed to be both reachable and is contained within its own Voronoi cell. When the first

agent finds the target, it increases the scores locally around the target and stops at the cell

center which contains the target. Therefore, it is impossible for another agent to choose this

same cell as the solution to its corresponding (℘2). However, the graph-based path planning

method described in Section 5.4.2 is used to solve (℘3) for all agents, and it is possible that

the second agent will still find the target because the path may stretch to cover the target’s

cell (similar to the behavior shown in Figure 5.21(c)). This is why in 18 runs, at least 2

agents find the target. This also shows why in 8 runs, all 3 agents find the target. This can

be contrasted with the randomized Voronoi search strategy. The same reasoning applied to

this search scenario will show that it is nearly impossible for more than one agent to find

the target because each agent remains inside its own Voronoi polygon and once a single

agent finds the target and stops, it will create a repulsive effect for the other agents.

The values of Ñave, n̂(1), n̂(2), and n̂(3) for 30 runs are summarized in Table 6.4.

The easiest metric to interpret is the average number of agents that find the target.

155

Table 6.4: Average number of agents which find target and number of scenarios where at
least 1, 2, or 3 agents finds the target (30 scenarios each).

Average # Agents # Runs w/ # Runs w/ # Runs w/
Which Find Target 1 Encounter 2 Encounters 3 Encounters

Ñave n̂(1) n̂(2) n̂(3)
Strategy S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
Lawn Mower 0.267 0.367 0.233 5 8 5 3 2 2 0 1 0
Randomized Voronoi 0.467 0.433 0.633 14 13 19 0 0 0 0 0 0
Raster Scan 1.000 1.033 1.200 20 23 23 9 8 11 1 0 2
Gradient Climb 1.400 2.067 1.500 23 27 19 13 24 16 6 11 10
Full Algorithm 2.567 2.400 1.500 28 24 16 26 24 15 23 24 14
Full Algorithm Co-op 1.833 0.433 0.867 24 29 14 17 18 10 4 8 2

This is shown in the first three columns of Table 6.4. As can be seen, the full algorithm

performs the best in all scenarios in terms of getting the most agents to find the target. The

full algorithm with explicit cooperation does not perform as well for the reasons previously

stated. These same reasons explain why the randomized Voronoi search strategy has no

runs where more than one agent finds the target.

It is also worth noting that the raster scan method does not appear to be affected by the

different scenarios. This makes sense considering that information about the environment

is not taken into account when using this method. It should be noted that in scenario 3,

many of the algorithms which use information about the environment (gradient climb, full

algorithm, full algorithm with explicit cooperation) show a decrease in performance. This is

because the initial world map (shown previously in Figure 6.6(c)) has several regions of high

score. These would correspond to a priori knowledge of possible target locations. Despite

this being the initial state of the world, the locations of the targets are placed according

to a uniform distribution across the map. In other words, the initial target location is not

distributed according to the distribution shown in Figure 6.6(c). This simulates a situation

where the agents are given inaccurate a priori knowledge before starting the mission, thus

leading to a decrease in performance. To simulate a situation with accurate information,

the initial target location would need to be distributed according to the distribution shown

156

in Figure 6.6(c) [112].

The columns for n̂(m) show the number of runs where m agents find the target. Once

again, it is apparent that methods which use information about the environment perform

the best.

Information regarding the average amount of time required to find the target are dis-

played in Table 6.5.

Table 6.5: Average time to target detection by first, second, and third agent (30 scenarios
each).

Average Time for Average Time for Average Time for
1st Encounter 2nd Encounter 3rd Encounter

T1,ave T2,ave T3,ave

Strategy S1 S2 S3 S1 S2 S3 S1 S2 S3
Lawn Mower 143 322 143 500 774 501 N/A 754 N/A
Randomized Voronoi 1114 845 1115 N/A N/A N/A N/A N/A N/A
Raster Scan 1045 807 1045 1797 1412 1798 1989 N/A 1989
Gradient Climb 1115 814 1116 1222 1316 1223 1481 1715 1481
Full Algorithm 844 915 844 904 1143 904 1238 1264 1238
Full Algorithm Co-op 1054 1326 979 1526 1470 1791 1703 1370 2015

The results in Table 6.5 are not as good of a representation of performance as those

shown in Table 6.4. The reason can be seen from the definition of Tm,ave in Eq. 6.16. These

averages are computed only for the situations where the agents find the target. For example,

with the lawn mower strategy with scenario 1, from Table 6.4, it can be seen only 5, 3, and 0

runs out of 30 show at least 1, 2, or 3 agents finding the target, respectively. Therefore, the

averages T1,ave, T2,ave, and T3,ave are computed using only 5, 3, and 0 samples (explaining

why T3,ave = N/A). Using the lawn mower strategy, the agents tend to become stuck in

limit cycles and therefore, if the agent is going to find the target, it is will happen very

quickly or not at all. This shows why the values of T1,ave and T2,ave are low. This can be

compared with the full algorithm where it is virtually guaranteed that the agents will find

the target but it will take a longer amount of time to do so.

Furthermore, notice that it is not required that T1,ave ≤ T2,ave ≤ ... ≤ TM,ave. For

157

example, for the full algorithm with explicit cooperation using scenario 2, T3,ave < T2,ave.

Once again, this is because the average is computed over a different number of samples.

The reason why this occurs can be seen by examining Figure 6.23.

Information Gain

The final metric to apply is the information theoretic based metrics defined in Eq. 6.14. In

order to calculate the information gained during a search mission, an objective perspective

of the environment, denoted νo, is required. In this situation, νo represents the desired

state of the world. In this situation, it is desired that the agents drive the state of the

occupancy based map to a situation where the scores of all cells are 0 except for the score of

the cell containing the target, which should have a score of exactly 1. This corresponds to

a unimodal distribution where the location of the target is known exactly. A more realistic

view of the world is one where the occupancy map is driven to a Gaussian distribution with

mean at the location of the target and a variance similar to what the agents would produce

via Eq. 4.10. This is used in simulation to generate νo.

With νo defined, the utility of Eq. 6.14 becomes evident when applied to a situation where

the agents find the target. The information metric during a run using the full algorithm as

the search policy is shown in Figure 6.24.

In Figure 6.24, the vertical dashed lines denote the time when the nth agent encoun-

ters the target. As can be seen, events of finding the target are directly reflected in the

information gained by the team which is measured by I(νo, νs).

Similar to the other scenarios, the average and minimum values of I(νo, νs) can be

determined over several runs. These represent the average and the worst case scenarios for

information gain. The results of these are shown in Figure 6.25. As expected, the most

information appears to be obtained using the full algorithm (both with and without explicit

cooperation).

The information matric is useful because it can be used to measure the value of activities

other than searching. For example, the information gained by remaining in one place to

track a possible target using another type of algorithm [60], [103] can be determined and

158

0 500 1000 1500 2000 2500 3000
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Time (sec)

I(
νo , ν

s)

I(νo, νs) vs. Time for Scenario with Full Algorithm

I(νo, νs)
encounter #1 time = 793
encounter #2 time = 1131
encounter #3 time = 2015

Figure 6.24: I(νo, νs) vs. time for scenario with full algorithm strategy. Bars denote times
that targets are detected.

compared to the amount of information being gained by performing the search. This leads

to the explore vs. exploit paradigm [14] which can be evaluated in this context.

159

Figure 6.25: I(νo, νs)ave and I(νo, νs)min for scenario 3.

160

Chapter 7

HUMAN-IN-THE-LOOP SIMULATION

A large part of the research in this dissertation is directed toward the development of

algorithms that govern the actions of a single UAV or a team of UAVs at an abstract level.

These algorithms apply to other unmanned vehicles as well. These algorithms govern high

level behaviors such as task and path planning, but we assume that low level algorithms

already exist to handle tasks such as state stabilization and signal tracking.

The end goal for many of these algorithms is fully autonomous behavior without input

from human operators. However, there are many benefits for allowing human interaction

with the system. Verifying and validating a fully autonomous algorithm through an un-

manned flight test requires significant logistical planning and development. Many other

UAV subsystems that are not directly related to the core strategic algorithm must be devel-

oped in order to support the mission. Furthermore, these autonomous flight tests must be

conducted in controlled airspaces and under strict supervision. All of these factors greatly

increase complexity and development time of the overall system. Many of these problems

can be addressed simply by introducing human decision making and interaction at very

specific points in the system.

This chapter investigates a ground based, distributed testing environment which is used

at the Autonomous Flight Systems Laboratory to test high level algorithms by using a

human operator in place of several low level systems. In this fashion, the overall system

operates in a manner very similar to the fully autonomous system. This approach offers

many benefits. The main advantage is that the high level algorithms can be implemented

and tested much faster and with significantly less effort. In addition, applications can

be developed for a standard Windows based environment instead of embedded real time

systems. Furthermore, the algorithms can be tested in unrestricted airspace due to the fact

that they are operating as a pilot-assistance system which the pilot is free to ignore at any

161

point.

The main drawback with this architecture is the introduction of a human operator or

pilot who may behave in a non-deterministic fashion. To alleviate this problem, a distributed

ground based simulator is used to train potential pilots to interact efficiently and consistently

with the system.

7.1 Distributed Simulator

The simulation application described in Chapter 6 is designed to interact with additional

hardware and software components that make up a distributed simulator. This distributed

simulator delegates low level control algorithms to a human operator while leaving the

strategic and tactical algorithms as autonomous algorithms.

7.1.1 Fully Autonomous Architecture

For a fully autonomous system to operate successfully, control laws must be designed and

implemented to address all levels of autonomy. An example of a typical setup for a fully

autonomous system is shown in Figure 7.1.

Figure 7.1: Desired system architecture for fully autonomous flight.

Low and middle level control tasks are handled by an inner loop controller and the

162

strategic algorithms are responsible for more abstract, higher level mission management

tasks. This type of architecture works well to partition the workload and assign tasks to the

controllers. Both the inner and outer loop control laws may be implemented using onboard

microprocessors or embedded controllers [11].

Although this architecture is efficient, the main drawback is the fact that although

the inner loop control laws can be designed and tested independently from the outer loop

controller, the reverse is not true. A valid inner loop must be implemented in order to

verify and validate the outer loop. Furthermore, the inner loop is vehicle specific and must

be designed and implemented individually for each vehicle. To further complicate matters,

often these inner loop applications must be developed to run on embedded controllers, thus

requiring specialized training and development environments.

7.1.2 Human-in-the-Loop Architecture

Many consider low level control problems such as state stabilization and signal tracking to

be mature technologies with limited academic research currently focused on these problems.

However, verification and validation of strategic and tactical control algorithms is currently

an active field of research [71].

Flight Test Architecture

The architecture used in this work for semi-autonomous flight tests that replaces the fully

autonomous UAV system with a human pilot and flight vehicle is shown in Figure 7.2.

In this setup, the strategic control laws are implemented on a standard laptop PC (see

Section 7.2.2). The tasks that are usually handled by the inner loop controller are instead

managed by the human pilot. The outer loop relays information to the inner loop (pilot) by

displaying pertinent information to a second laptop (called the visualization laptop). The

visualization and strategic laptops are connected via software called OPC DataHub (see

Section 7.2.1).

There are several advantages to this architecture. The most obvious is that this setup

avoids the significant time and effort required to develop a viable inner loop controller for the

163

Figure 7.2: System architecture for human-in-the-loop flight test of strategic controller.

vehicle. Instead, the human pilot operates as the inner loop controller by taking commands

from the outer loop (strategic guidance algorithms). This is similar to the difference between

driving a car assisted by GPS navigation and developing a fully autonomous car capable of

navigating via GPS.

This setup allows the strategic algorithms to be developed using a standard develop-

ment environment such as Microsoft Visual Studio or Matlab since the application will be

implemented on a laptop PC running a Windows operating system. This further saves time

and effort because it is not necessary to port algorithms to an embedded real time operating

system (RTOS).

In addition, this architecture allows vehicles using these strategic algorithms to operate

in normal airspace with little or no safety problems (the pilot can choose to ignore commands

from the strategic algorithm at any time).

Distributed Simulation Architecture

In order to accurately validate the outer loop controller, the inner loop controller must be-

have in a reliable, deterministic fashion. In other words, the human operator must interface

with the system in a predictable manner. One popular method for designing inner loop

controllers is to use neural networks [59]. Neural networks have been some of the earliest

164

and most studied models of human brain function [19]. The amount of error introduced

by the human operator depends on the amount and type of practice that they receive (i.e.

training sets for the network). The system architecture used in this work to train human

operators for interfacing with the strategic algorithms is shown in Figure 7.3.

Figure 7.3: System architecture for ground based distributed human-in-the-loop simulation.

This setup mirrors the flight test architecture shown previously in Figure 7.2 except

the flight test vehicle and sensor unit are replaced with their simulated counterparts. The

vehicle is modeled as a 6 degree of freedom rigid body based on the Research Civil Aircraft

Model [64]. The aircraft simulation is implemented on two separate desktop PCs. More

information regarding the plant model implementation is found in Appendix C.

7.2 Hardware and Software

The human-in-the-loop distributed simulator is comprised of several software and hardware

systems running in parallel. These systems and their functions are described below.

The physical setup of the distributed human-in-the-loop simulator is shown in Figure 7.5.

In this system, the pilot interacts with the simulator via a three axis joystick and receives

165

Figure 7.4: Multi-vehicle implementation using HiL and Distributed Computing Facility
(DCF).

(a) Physical setup (b) Pilot visualization

Figure 7.5: Physical setup of Distributed Human-in-the-Loop Simulator and screen shot of
operator visualization.

visual cues regarding the state of the aircraft from the FlightGear [8] output. Information

regarding the output of the strategic algorithm is displayed to the pilot via a dedicated

laptop. A screenshot of the information conveyed to the pilot is shown in Figure 7.5(b). In

this situation, the strategic algorithm is a path planner and outputs information regarding

166

the path that the pilot is required to fly.

The output consists of four separate screens. In the upper left, a display showing the

desired groundspeed and the current groundspeed is displayed. In the upper right, a similar

display is used for altitude tracking. The display on the bottom consists of a top view of the

current path and the location and orientation of the agent. Directly above this wire frame

drawing is a series of numbers indicating the current course angle, the desired course angle,

and a correction course angle which will put the agent back on track if there is a non-zero

cross track error [102].

7.2.1 Software

Software applications used in the distributed simulator are all implemented on Windows XP

machines. The vehicle simulation is performed using Matlab Version 7.2.0.232 (R2006a) and

Simulink 6. In addition, the AeroSim blockset version 1.2 [115] is used to interface to the

two axis joystick with the Simulink model.

To distribute processing power, the vehicle visualization is handled by a separate desktop

PC. This PC renders the vehicle in 3D using FlightGear v0.9.8. The AeroSim blockset is

used to interface the Simulink model of the vehicle with this visualization tool.

Another crucial piece of software is the OPC DataHub. This is a centralized database

with a publish/subscribe architecture where multiple applications can both write to and

read from a centralized server. This software is used to transfer data between different

applications. Many applications have tools for interfacing with the DataHub. The OPC

Toolbox in Simulink allows signals from the Simulink model to be written to (or read from)

the DataHub. The pilot visualization is also implemented using Matlab and Simulink and

uses the OPC Toolbox to read relevant information from the DataHub.

The strategic algorithm is implemented as a standalone executable. In the Autonomous

Flight Systems Laboratory, it is developed using the C++ language. This allows separate

software objects to be dedicated to interfacing with the sensor and the DataHub.

Software applications used in the system are designed to be modular so that they can

be developed and improved independently. Because multiple developers work on different

167

pieces of software at different times, the lab makes use of TortiseSVN to handle version

control of code.

7.2.2 Hardware

The distributed simulator is made up of several hardware components as well. The main

hardware is the series of networked desktop and laptop PCs. The various computers, the

applications they host, and their functions are summarized in Table 7.1.

Table 7.1: Hardware and software components used by various machines in distributed
simulator.

Type Applications Function
Desktop PC Matlab Version 7.2.0.232 (R2006a),

Simulink 6 with AeroSim version 1.2
blockset and OPC Toolbox, OPC
DataHub version 6.3.14.166

Vehicle state and environ-
ment simulation and hu-
man interface system

Desktop PC FlightGear v0.9.8 Vehicle visualization
Laptop PC Matlab Version 7.2.0.232 (R2006a),

Simulink 6 with OPC Toolbox, OPC
DataHub version 6.1.9.133

Pilot Visualization and
OPC DataHub server

Laptop PC Strategic Algorithm Strategic Algorithm carrier
and sensor interface

The Desktop PC responsible for the vehicle simulation is also responsible for interfacing

with the human operator. This is done via a three axis Microsoft Sidewinder joystick.

For flight tests, the vehicle and sensor model are replaced with an actual aircraft and

sensor. These are described in Section 8.1.

7.3 Operator Results

Human pilots can be trained on this simulator to interact with the autonomous algorithms.

The performance of the operators is also analyzed in this section using various scenarios

and metrics.

168

7.3.1 Human Performance Metrics

The distributed simulator was developed in order to verify and validate the strategic team

management algorithm described in Chapter 5. From an agent’s perspective, the strate-

gic algorithms generates paths for the agent to follow. For this example, the distributed

simulator is used to train pilots to perform a path following task.

A feasible path for the agent consists of a sequence of waypoints (xi ∈ <3) where each

consecutive waypoint is no more than a distance rmax away from the previous one. In

addition, each of these waypoints specifies a time, ti when the agent must arrive at the

location xi. An example of such a path was shown previously in Figure 5.23. In this

example, the algorithm plans a path (shown in red) for the vehicle to navigate through the

environment. Once the path is determined and displayed to the pilot, it now becomes the

job of the pilot to follow this path to the best of their ability.

The skill and ability of the pilot is measured using a performance metric. The position

of the simulated agent is recorded every ∆t seconds and is denoted xagt(t). At each time t,

the agent should ideally be located on the line segment joining waypoints xi and xi+1 for

some i ∈ {0, 1, . . . , d − 1} (for the case of i = 0, x0 = xagt(0)). For convenience, the point

xi is referred to as xA (the previous waypoint) and the point xi+1 is referred to as xB (the

next waypoint). xA and xB have respective time stamps ti and ti+1. If the agent is not

on this line segment, the agent is off the path and the point xp(t) can be found which is

the point on the line segment with minimum Euclidean distance from the agent’s current

location, xagt(t). The point xp(t) at each time step is given by

xp(t) = xA + κ?(xB − xA) (7.1)

In this situation, κ? is a scalar in the range of [0, 1] which denotes how far from xA

to xB the point xp(t) is. It is obtained by solving a minimization problem of κ? ∈
arg min f0(κ, t) = 1

2 ||xagt(t) − [xA + κ(xB − xA)]||2 over all κ ∈ [0, 1]. The solution can

be analytically found to be

169

κ? =





1 if ϕ > 1

0 if ϕ < 0

ϕ otherwise

where ϕ = xT
A(xA−xB)+(xT

B−xT
A)

xT
AxA−2xT

AxB+xT
BxB

xagt(t)

(7.2)

So the instantaneous cost at time step t is given by

f0(κ?, t) =
1
2
||xagt(t)− [xA + κ?(xB − xA)]||2 (7.3)

The accumulated cost up to time t is simply the sum of all the instantaneous costs up

to the current time

J(t) =
τ=t∑

τ=0

f0(κ?, τ) (7.4)

7.3.2 Path Following Example

An example of an unskilled pilot flying through two paths and the instantaneous and accu-

mulated cost is shown in Figure 7.6.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
4

x
1

x 2

Overview of Trajectory

Start
End
Trajectory

(a) Overview of trajectory

0 100 200 300 400 500 600
0

5

10

15
x 10

6 Instantaneous Cost

f 0

0 100 200 300 400 500 600
0

2

4

6
x 10

8 Accumulated Cost

Time (sec)

A
cc

um
ul

at
ed

 C
os

t Total Cost = 430421373.6128

(b) Instantaneous and accumulated cost

Figure 7.6: Simulator results from human-in-the-loop simulation.

170

In this situation, the pilot is tasked with flying a figure eight pattern. The pattern is

broken up into two distinct paths. The first path consists of five green waypoints (pi for

i = 1, ..., 5), each of which have desired arrival times of t = 60, 120, 180, 240, and 300

seconds, respectively. At t = 300, a second path is generated which consists of the five

brown waypoints which return the agent to the starting point.

The pilot’s performance is measured and displayed in Figure 7.6(b). The instantaneous

cost is a measure of how far off the desired path the pilot is. Notice that the discontinuities

in instantaneous cost occur when the active waypoint changes from xi to xi+1 (for path 1,

this occurs at t =60, 120, 180, 240, and 300 seconds). These jumps are due to the fact that

at time t < ti, the agent has not reached waypoint xi but is roughly on the desired path

between xi−1 and xi. This results in a low cost (most likely that κ? ∈ [0, 1]). However at

t > ti, the next active waypoint becomes xi+1 and since the agent has not yet reached point

xi, the cost becomes large (most likely that κ? = 0).

The performance of the pilot can be judged by the instantaneous cost trace. Skilled

pilots will have a low average value with minimal discontinuities. For identical paths and

times, the performance can also be judged by J(tf) which provides a type of score for the

run.

The results of a human pilot flying 4 runs over a single path are shown in Figure 7.7.

As can be seen in this figure, the human operates as a nonlinear, adaptive, quickly learning

inner loop controller and is able to obtain very good results within just 4 training runs with

the system.

7.3.3 Remarks

This chapter presented an architecture for verifying and validating the performance and

output of strategic control algorithms with a high degree of accuracy while minimizing time

between simulation and flight test. This was done by introducing human interaction at

specific points in the system which preserves the autonomous contributions of the strategic

algorithm by reducing the human to a simple inner loop controller. This architecture is used

in the distributed ground based simulator to simulate flight test conditions in a controlled

171

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

8

Time

A
cc

um
ul

at
ed

 C
os

t

Accumulated Cost vs. Time

Run 1
Run 2
Run 3
Run 4

Figure 7.7: Improvement of human operator performance over 4 runs.

environment. The ground based distributed simulator is used to verify and validate the

strategic control algorithms and also to familiarize pilots with the interface and to train

them before actually performing a flight test.

During the development of the distributed simulator, many different methods of allowing

human interaction were experimented with. Significant development effort was focused

on developing a pilot visualization system which relays the pertinent path information to

the pilot. By interviewing pilots after they had used the system, it was discovered that

most of them only rely on the overview of the path (the bottom graph in Figure 7.5(b)).

The operator workload became too high when they were forced to constantly scan all four

displays and process the information. Current research is directed towards developing a

single display which efficiently conveys all the relevant information to the pilot.

The other major interface between the simulator and the pilot involves the joystick.

The current joystick is only a three axis device. The two principal axes were mapped to

elevator and aileron inputs. Initially, the third axis was mapped to the throttle input and

the rudder was fixed to zero. This design was selected because many commercial pilots

172

expressed that rudder input is typically reserved for a yaw damping system. However, it

was discovered that path following was easier for the pilot if sideslipping and coordinated

turns were allowed. To facilitate these maneuvers, the third axis was mapped to the rudder

input. The throttle was instead controlled using the buttons and an integrator scheme.

Finally, the current joystick automatically re-centers the two main axes to zero when the

pilot takes their hands off the stick. Many pilots were displeased by this because it made

it difficult to trim the aircraft during a run. The next generation simulator will include a

more sophisticated joystick with more than three axes and trim features.

All of the functionality described previously is readily ported to 3 dimensional examples

with minimal changes.

173

Chapter 8

FLIGHT TESTING

The last step in the verification and validation process of the autonomous algorithms

involves a real time flight test. This chapter describes the various components necessary

for the flight test. Section 8.1 describes the hardware used during the setup and how it

integrates with the overall system architecture described previously in Section 7.1.2. The

setup and experimental methodology of the test are described in Section 8.2. The results

and analysis of the successful flight test are detailed in Section 8.3.

8.1 Hardware

The main hardware for the flight test involves equipment used to support the autonomous

algorithm and the flight test vehicle itself.

8.1.1 Algorithm Hardware

Two laptop computers make up the main hardware components of the flight test. These

machines and their functions were described previously in Section 7.2.2. One computer is

the strategic algorithm computer and is responsible for computing the high level, mission

management algorithms for each agent. It is also responsible for interfacing with the GPS

device and publishing relevant data to the DataHub. The second computer is called the

visualization computer and responsible for maintaining the DataHub server and displaying

the pertinent information to the human operator.

One major difference between the distributed simulator described in Section 7.2.2 and

the flight test is that the position of the aircraft is not simulated. During the flight test, the

position of the aircraft is measured using a Garmin GPSMap76CSx device connected to the

Strategic Algorithm laptop via a serial cable. This GPS device outputs NMEA sentences

over a standard RS-232 port at a rate of 1 Hz. The simulation application actively polls

174

the COM port and interprets GPGLL sentences in real time to obtain agent position. The

latitude and longitude encoded in the GPGLL sentence is translated into the North and

East positions from the specified set of coordinates (the base) using the Vincenty Formula

[116] using the WGS-84 Earth model [2]. GRMZ sentences are interpreted to obtain the

agent’s altitude in real time. The serial port is configured for a 9600 Baud rate. The various

hardware and their respective connections are shown in Figure 8.1.

Figure 8.1: Flight test hardware connection diagram.

The components are enclosed in a custom made case designed to isolate the hardware

components from the aircraft vibrations (typically 5500-6000 RPM at 65 MPH). The hard-

ware carried in the vehicle during flight tests is shown in Figure 8.2.

8.1.2 Flight Test Vehicle

The flight test was conducted using a 1993 Kitfox Classic IV. This is an experimental,

two-seater, single engine aircraft with the following specifications.

The aircraft can be equipped with either wheels or floats for amphibious operation. A

175

(a) Flight test hardware in protective carrier. (b) Hardware situated in co-pilot seat.

Figure 8.2: Flight test hardware in test vehicle.

Table 8.1: Kitfox Classic IV specifications.

Specification Value Specification Value
Manufacturer Skystar Fuel Capacity 26 gallons
Model Kitfox Classic IV Fuel Burn 5.2 gal/hr @ 5600 RPM
Year 1993 Cruise Speed 75 MPH
Tail Number N328ML Powerplant Rotax 582-LC (65 Hp)
Serial Number DCU033 Propeller Ivoprop adjustable pitch
Top Speed 125 MPH MAC 51.1”
Range 300 Miles Max Rate of Climb 600 ft/min
MGTOW 1200 lbs Service Ceiling 14,000 ft
Dry Weight 769 lbs Vy (max dy/dt) 63 MPH @1089 lbs
Wingspan 32 feet Vx (max dy/dx) 56 MPH @1089 lbs
Wing Area 130.5 ft2 Vstall 51 MPH
Aspect Ratio 7.85

picture of the aircraft is shown in Figure 8.3.

8.2 Mission Description

The flight test mission is modeled after a standard maritime search and rescue operation.

A single target is assumed to be lost somewhere at sea [21] and there are multiple agents

searching the area for this target. In this scenario, the target test area is situated off the

176

Figure 8.3: 1993 Kitfox Classic IV flight test vehicle.

north east coast of Bainbridge Island, WA. A georeferenced image which covers the test

area is obtained as shown in Figure 8.4(a). From this, the areas of water and land are

assigned different colors as shown in Figure 8.4(b). The base of operations is designated as

47◦ 36’ 1.46”N and -122◦ 32’ 17.10”E. From the base of operations, a 6km by 6km test area

is projected with part of the area over land and part over water. The test area is shown in

Figure 8.4(b) as the red outline. Figure 8.4(b) is used to create an initial occupancy map

representation of the test area.

The mission involves searching the test area for the target using five agents. Four

of the agents are simulated and one is the real aircraft. Two of the simulated agents have

parameters used to emulate the ScanEagle unmanned aerial vehicle and two have parameters

to emulate the SeaFox unmanned surface vehicle. Some of the relevant parameters for the

agents are shown below in Table 8.2. For all agents in the heterogeneous team, parameters of

177

(a) Georeferenced image of Puget
Sound

(b) Simplified image with test
area in red

1000 2000 3000 4000 5000 6000
4000

5000

6000

7000

8000

9000

10000

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Initial occupancy map of flight
test area

Figure 8.4: Flight test area of interest.

d = 5, K = 3, ∆T = 4 seconds are used. The paths are staggered as previously described in

Section 6.1.2 to allow efficient multi-agent operations within a single threaded application.

Table 8.2: Parameters of agents in team during Flight Test.

Agent α β γ δ h Vmax zH method
1 (purple) 0.75 0.85 0.35 0.15 0.02 26 m/s Eq. 5.15
2 (red) 0.90 0.50 0.90 0.05 0.35 30 m/s Eq. 5.15
3 (gold) 0.30 0.05 0.45 0.51 0.55 30 m/s Eq. 5.15
4 (pink) 0.70 0.25 0.65 0.10 0.45 20 m/s Eq. 5.15
5 (yellow) 0.50 0.15 0.85 0.10 0.45 20 m/s Eq. 5.15

8.3 Flight Test Results

The aircraft is launched from a public boat launch and makes it way to the test area. Once

the aircraft enters the test area, the algorithm is started to guide the aircraft and the four

simulated agents in the search mission. The mission time limit is set for 20 minutes. Each

agent’s path is updated once every d ·K ·∆T seconds and the visualization output to the

operator of the aircraft is updated once every ∆T seconds. In this flight test, the co-pilot

is in charge of monitoring the output of the autonomous algorithm and then relaying the

information to the pilot. During the flight test, the next waypoint was conveyed to the

pilot by communicating a heading angle and distance to next waypoint (there was no wind

178

during the flight test so heading angle was approximately equivalent to course angle). The

trajectory for the entire mission for the real agent is show in Figure 8.5. In this figure, the

red crosses represent the actual position of the agent as recorded by the GPS. The purple

circles show the agent’s position projected onto the test domain. In order to ensure that

subproblem (℘2) and (℘3) generate feasible paths, the agent’s position is projected onto the

search area. The only difference between the trajectories is when the agent leaves the test

area. Theoretically, this will never happen as the algorithm will only generate paths which

are within the search area. This error only occurs when the pilot does not follow the desired

path accurately enough.

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
3000

4000

5000

6000

7000

8000

9000

10000

11000

P
E
 (m)

Flight Test Data: Run 1

N

Algorithm Position
GPS Position

Figure 8.5: GPS and recorded agent position during flight test.

The same run and the associated occupancy based map and the other agents is shown

in Figure 8.6.

In Figure 8.6, the purple cross represents the location of the real agent. The red, gold,

yellow, and magenta crosses represent the location of the simulated agents. The purple

circles are the paths planned for the real agent by (℘3). The solid purple line is the real

179

agent’s trajectory. To avoid cluttering the figure, the associated paths and trajectories for

the simulated agents are omitted. The target is assumed to be static (i.e. a boat that

has lost power in standing waters) and its location is represented by the teal triangle. It

is worth mentioning that the flight test in Figure 8.6 is the first time this particular pilot

had used this system besides practice runs on the distributed simulator. This is evident in

Figure 8.6(b) which shows some initialization errors on the part of the pilot as he becomes

accustomed to the interface (initially, the pilot is unable to track the path). Figure 8.6(d)

shows the pilot successfully tracking the path specified by the algorithm. Eventually, one of

the agents locates the target and updates cells in the local area. This causes nearby agents,

including the real agent, to converge on the target location (Figure 8.6(e)) and terminate

a successful mission. Note that at this point, the strategic searching mission is terminated

and control can be transferred to a tactical level autonomous algorithm which might be in

control of tasks such as target tracking and observation [60], [120], [103], [43].

Note that the consequence of introducing a human operator to act as an inner loop

controller is evident in the real agent’s trajectory. Using an architecture where the pilot is

responsible for dynamics and control level tasks (Figure 7.2) instead of the fully autonomous

system (Figure 7.1) yields a decrease in performance. Many times during the actual flight

test, the real agent was not on the path specified by the algorithm. This was due to several

factors. The most significant of these was the fact that the parameter ∆T was relatively

large. Although the path for each agent was valid for 60 seconds, the agent’s position and

the pilot visualization screen were only updated at 0.25 Hz. Furthermore, since K = 3,

there were only three updates between waypoints. If the agent was off course, the pilot

would first be made aware of the error at the first update. The pilot would then only have

two further feedback updates to correct the problem. The 4 second delay between updates

proved problematic because the cross track error may grow to a significant value before

the pilot is first made aware of the error. The dynamics of the aircraft were slow enough

to exacerbate this problem. In other words, the maximum yaw rate was not sufficient to

correct the cross track error quickly. The overall effect was that the pilot was constantly

trying to correct errors and would not converge to the desired waypoint until near the end of

the path. Despite this, the algorithm is robust in the sense that it gracefully handles these

180

errors and still performs the search successfully. It is able to replan based on the agent’s

current position even though this position may not be the desired location specified in (℘2).

181

50 100 150 200 250 300 350

50

100

150

200

250

300

(a) xw(k, z) at t = 40

50 100 150 200 250 300 350

50

100

150

200

250

300

(b) xw(k, z) at t = 120

50 100 150 200 250 300 350

50

100

150

200

250

300

(c) xw(k, z) at t = 400

50 100 150 200 250 300 350

50

100

150

200

250

300

(d) xw(k, z) at t = 800

50 100 150 200 250 300 350

50

100

150

200

250

300

(e) xw(k, z) at t = 1040

50 100 150 200 250 300 350

50

100

150

200

250

300

(f) xw(k, z) at t = 1160

Figure 8.6: Flight test results with 4 simulated agents and 1 real agent.

182

Chapter 9

CONCLUSIONS

9.1 Concluding Remarks

This dissertation presented research and development of several algorithms which are used

to increase the autonomous abilities of a team of heterogeneous vehicles involved in ISR

type missions. The modular strategy is comprised of individual algorithms that can be used

to coordinate a group of agents in a search mission in an efficient manner.

As mentioned previously, an autonomous system involves more than a theoretical algo-

rithm which is capable of making autonomous decisions. It encompasses the infrastructure

and processes used to support the agent during a mission. A practical autonomous system

includes mathematical analysis, software development, numerical simulation, verification

and validation procedures, hardware-in-the-loop testing, flight tests, and many other sub-

jects. The research contained in this dissertation documents the development of a viable

autonomous system starting from theoretical ideas and ending with hardware deployment.

This dissertation began by developing an autonomous target identification system which

can be used to extract discernable features from noisy, low dimensional sensors in Chapter 3.

The constructs of occupancy based maps and operations to interact with them were then

considered in Chapter 4. With the ability to accurately classify anomalies and the estab-

lishment of the occupancy based map framework, the theoretical development of a modular

strategy for autonomous searching using groups of heterogeneous vehicles was then inves-

tigated in Chapter 5. Implementation of this strategy in simulation along with metrics for

measuring performance were then discussed in Chapter 6. The challenges and steps be-

tween pure software simulation and hardware deployment were investigated and addressed

in Chapter 7. Finally, the transition from theoretical algorithm to viable product and flight

test hardware was discussed in Chapter 8.

183

9.2 Future Research

Although the work described in this dissertation has been successfully deployed as a viable

product, some improvements to the existing system can implemented. In addition, open

questions still remain regarding various aspects of the research.

For example, with respect to the autonomous target identification, this tactical algorithm

has yet to see hardware verification and validation. Implementing this on currently existing

Georangers or other UAV systems would require significant effort in terms of logistics and

hardware interfaces but would have significant commercial and military applications.

The most mature part of this research is the autonomous search strategy. It provides

provably correct and efficient behavior in many real world scenarios. There are several

improvements, however, that can be used to increase performance even further. One major

disadvantage of the current architecture is that the algorithm requires a centralized topology.

This limits the flexibility and robustness of the overall algorithm. Current research activities

are directed towards modifying the algorithm for decentralized deployment. In addition,

there are situations where different policies work better for different phases of the mission.

For example, it was shown that map coverage performance is maximized using the full

algorithm with explicit cooperation. However, once an agent finds a target, it is difficult

for the same strategy to plan efficient paths for the other agents in the team to converge on

the same spot. In this situation, switching modes to use the full algorithm by itself would

increase performance. Questions such as when is the best time to switch modes and which

modes should be used can be investigated in future research. On this note, studies in terms

of the explore vs. exploit paradigm may be conducted. An information theoretic framework

has already been established and may be used to determine when operating in an explore

mode (standard search) or an exploit mode (target tracking and identification) yields more

information.

In terms of hardware development and deployment, the human-in-the-loop distributed

simulator can currently support only one human operator. All other simulated agents

are required to be simulated on computers located in the same laboratory. Furthermore,

the actual agent is limited to being simulated by a full software simulation rather than

184

a hardware-in-the-loop simulation. Current research is directed towards allowing the dis-

tributed simulator to interface with hardware-in-the-loop simulators and also with agents

simulated at other facilities or deployed in the field.

9.3 Final Remarks

Despite the large amount of research in the field of autonomous systems, many consider the

subject to be in its infancy. The study of autonomous systems is a relatively young field

and there are many opportunities and research to be done before it can be considered a

mature technology. Many state of the art systems have basic autonomous capabilities but

still require a large amount of human interaction and infrastructure to manage multiple

vehicles. The primary limitation to the concurrent operation of multiple vehicles remains

the lack of autonomy of these vehicles. The field is at the brink of a revolution. The demand

for autonomous systems with ever increasing aptitudes will most likely continue to rise. As

long as this occurs, technologies such as those described in this dissertation that serve to

increase the autonomous abilities of teams of agents must continue to be developed in order

to meet this demand.

185

BIBLIOGRAPHY

[1] Boeing-insitu scaneagle uav achieves 10,000 flight hours in support of australian
army operations. Insitu Press Release. http://www.insitu.com/index.cfm?navid=
20&cid=2305.

[2] Department of defense world geodetic system 1984, its definition and relationships
with local geodetic systems 3rd edition. Technical Report TR8350.2, National
Geospatial-Intelligence Agency.

[3] International geomagnetic reference field. Public Information. http://www.ngdc.
noaa.gov/IAGA/vmod/igrf.html.

[4] Puget sound aeromagnetic maps and data. Public Information. http://pubs.usgs.
gov/of/1999/of99-514/.

[5] Scaneagle uas flies with heavy fuel in iraq. Insitu Press Release. http://www.insitu.
com/index.cfm?navid=20&cid=2582.

[6] U.s. air force fact sheet mq-1 predator unmanned aircraft system. Public Information.
http://www.af.mil/factsheets/factsheet.asp?fsID=122.

[7] U.s. air force fact sheet rq-4 global hawk unmanned aircraft system. Public Informa-
tion. http://www.af.mil/factsheets/factsheet.asp?fsID=13225.

[8] Flightgear flight simulator. Public Information, 2006. http://www.flightgear.org/.

[9] R. Alexander and N. Rowe. Path planning by optimal-path-map contruction for
homogeneous-cost two-dimensional regions. In Proceedings of the IEEE International
Conference on Robotics and Automation. IEEE, 1990.

[10] Jayesh N. Amin, Jovan D. Boskovic, and Raman K. Mehra. A fast and efficient ap-
proach to path planning for unmanned vehicles. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference, Keystone, CO, 2006.

[11] David E. Anderson and Alejandro C. Pita. Geophysical surveying with georanger uav.
In Proceedings of the 2005 Infotech@Aerospace Conference, Arlington, VA, September
2005. The Insitu Group.

186

[12] P. J. Antisaklis and Kevin M. Passino. Towards intelligent autonomous control sys-
tems: Architecture and fundamental issues. Journal of Intelligent and Robotic Sys-
tems, 1(4):315–342, 1989.

[13] Alessandro Arsie and Emilio Frazzoli. Efficient routing of multiple vehicles with no
communication. In Proceedings of the 2007 American Control Conference, New York
City, New York, 2007.

[14] Dimitar Baronov and John Baillieul. Search decisions for teams of automata. In
Proceedings of the 47th Conference on Decision and Control, Cancun, Mexico, 2008.

[15] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, pages
87–90, April 1958.

[16] Stanley J. Benkoski, Michael G. Monticino, and James R. Weisinger. A survey of the
search theory literature. Naval Research Logistics, 38:469–494, 1991.

[17] Dimitri P. Bertsekas. Network Optimization: Continous and Discrete Models. Athena
Scientific, Belmont, Mass, 1st edition, 1998.

[18] Lars Blackmore. A probabilistic particle control approach to optimal, robutst predic-
tive control. In Proceedings of the AIAA Guidance, Navigation, and Control Confer-
ence, Keystone, CO, 2006.

[19] Donald Borrett, Sean Kelly, and Hon Kwan. Phenomenology, dynamical neural net-
works and brain function. Philosophical Psychology, Vol. 13, No. 2, pages 213–228,
2000.

[20] Frederic Bourgault and Hugh F. Durrant-Whyte. Communication in general decentral-
ized filters and the coordinated search strategy. In Proceedings of the 7th International
Conference on Information Fusion, Stockholm, Sweden, 2004. Australian Centre for
Field Robotics.

[21] Frederic Bourgault, Tomonari Furukawa, and Hugh Durrant-Whyte. Coordinated de-
centralized search for a lost target in a bayesian world. In Proceedings of the 2003
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Las Vegas, NV, Octo-
ber 2003. Australian Centre for Field Robotics.

[22] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, UK, 2004.

[23] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, Vol. 4, No. 1, pages 25 – 30, January 1965.

187

[24] Ming Cao, Andrew Stewart, and Naomi Ehrich Leonard. Integrating human and
robot decision-making dynamics with feedback: Models and convergence analysis. In
Proceedings of the Conference on Decision and Control, Cancun, Mexico, 2008.

[25] Brian J. Capozzi and Juris Vagners. Navigating annoying environments through evo-
lution. In Proceedings of the 40th IEEE Conference on Decision and Control, Orlando,
FL, 2001. University of Washington.

[26] John M. III Carson and Behcet Ackmese. A model predictive control technique with
guaranteed resolvability and required thruster silent times for small-body proximity
operations. In Proceedings of the AIAA Guidance, Navigation, and Control Confer-
ence, Keystone, CO, 2006.

[27] Bruce T Clough. Metrics, schmetrics! how the heck do you determine a uav’s au-
tonomy anyway? In Proceedings of the Performance Metrics for Intelligent Systems
Workshop, Gaithersbug, MD, 2002.

[28] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control
for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20:243–
255, 2004.

[29] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory 2nd Edition.
John Wiley and Sons, 2006.

[30] Robert L. Dollarhide, Arvin Agah, and Gary J. Minden. Evolving controllers for
autonomous robot search teams. Artificial Life and Robotics Journal, 5:178–188,
2002.

[31] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic motion
planning. Journal of the Association for Computing Machinery, pages 1048–1066,
November 1993.

[32] Mark Dransfield, Asbjorn Christensen, and Guimin Liu. Airborne vector magnet-
ics mapping of remanently magnetised banded iron-formations at rocklea, western
australia. In Proceedings of the ASEG 16th Geophysical Conference and Exhibition,
Adelaide, Australia, February 2003.

[33] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Ap-
plications and algorithms. Society for Industrial and Applied Mathematics Review,
41:637–676, 1999.

[34] Alberto Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception and
Navigation. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 1989.

188

[35] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
IEEE Computer, pages 46–57, 1989.

[36] Charles A. Erignac. An exhaustive swarming search strategy based on distributed
pheromone maps. Technical report, Boeing, Seattle, WA, 2004.

[37] Gregory L. Feitshans, Allen J. Rowe, Jason E. Davis, Michael Holland, and Lee Berger.
Vigilant spirit control station (vscs) the face of counter. In Proceedings of the AIAA
Guidance, Navigation, and Control Conference, Honolulu, HI, 2008.

[38] Brian Ferris, Dirk Hahnel, and Dieter Fox. Gaussian processes for signal strength-
based location estimation. In Proceedings of Robotics: Science and Systems, 2006.

[39] Matthew Flint, Marios Polycarpou, and Emmanuel Fernandez-Gaucherand. Cooper-
ative control for multiple autonomous uav’s searching for targets. In Proceedings of
the 41st IEEE Conference on Decision and Control, Las Vegas, NV, 2004. University
of Cincinnati.

[40] Dieter Fox, Jeffrey Hightower, Lin Liao, and Dirk Schulz. Bayesian filtering for loca-
tion estimation. IEEE Pervasive Computing, pages 23–33, July 2003.

[41] Dieter Fox, Jonathan Ko, Kurt Konolige, Benson Limketkai, Dirk Schulz, and Ben-
jamin Steward. Distributed multi-robot exploration and mapping. In Proceedings of
the 2nd Canadian Conference on Computer and Robot Vision, 2005.

[42] Emilio Frazzoli and Francesco Bullo. Decentralized algorithms for vehicle routing in
a stochastic time-varying environment. In Proceedings of the IEEE Conference on
Decision and Control, December 2004.

[43] Eric W. Frew and Dale A. Lawrence. Cooperative stand-off tracking of moving targets
by a team of autonomous aircraft. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, San Francisco, California, 2005.

[44] Robert M. Gray. Entropy and Information Theory. Springer-Verlag, 1990.

[45] Greg Hodges. Notes on magnetic model for submarine. Technical report, Fugro
Airborne Surveys, Toronto, 2004.

[46] Gabriel M. Hoffman, Steven L. Waslander, and Claire J. Tomlin. Distributed co-
operative search using information-theoretic costs for particle filters, with quadrotor
applications. In Proceedings of the AIAA Guidance, Navigation, and Control Confer-
ence, Keystone, CO, 2006.

189

[47] Greg J. Holland, Tad McGeer, and Harold Youngre. Autonomous aerosondes for
economical atmospheric soundings anywhere on the globe. Bulletin of the American
Meteorological Society, 73:1987–1998, 1992.

[48] Chien-Feng Huang, David H. Wolpert, Stefan Bieniawski, and Charlie E.M. Strauss.
A comparative study of probability collectives based multi-agent systems and genetic
algorithms. In Proceedings of the GECCO 2005 Conference, 2005.

[49] Hui-Min Huang, Elena Messina, Robert Wade, Ralph English, Brian Novak, and
James Albus. Autonomy measures for robots. In Proceedings of the International
Mechanical Engineering Congress, 2004.

[50] Ole C. Jakobsen and Eric N. Johnson. Control architecture for a uav-mounted
pan/tilt/roll camera gimbal. In Proceedings of the Infotech@Aerospace Conference,
Arlington, VA, 2005.

[51] James S. Jennings, Greg Whelan, and William F. Evans. Cooperative search and
rescue with a team of mobile robots. In Proceedings of the International Conference
on Advanced Robotics, 1997.

[52] Yan Jin, Yan Liao, Ali A. Minai, and Marios M. Polycarpou. Balancing search and tar-
get response in cooperative unmanned aerial vehicle (uav) teams. IEEE Transactions
on Systems, Man, and Cybernetics, 36:571–587, 2006.

[53] Nidal Jodeh, Mark Mears, and David Gross. An overview of the cooperative operations
in urban terrain (counter) program. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, Honolulu, HI, 2008.

[54] Eric N Johnson, Nimrod Rooz, Jeong Hur, and Wayne Pickell. A concurrent test-
ing process for research unmanned aerrial vehicles. In Proceedings of the 25th AIAA
Aerodynamic Measurement Technology and Ground Testing Conference, San Fran-
cisco, CA, June 2006.

[55] Eric N Johnson, Daniel P. Schrage, and George Vachtsevanos. Software enabled control
experiments with university-operated unmanned aircraft. In Proceedings of the AIAA
Guidance, Navigation, and Control Conference, Arlington, VA, 2005.

[56] Yeonsik Kang, Derek S. Caveney, and J. Karl Hedrick. Probabilistic mapping for uav
using point-mass target detection. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, Keystone, CO, 2006.

[57] Yeonsik Kang and J. Karl Hedrick. Design of nonlinear model predictive controller
for a small fixed-wing unmanned aerial vehicle. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference, Keystone, CO, 2006.

190

[58] George Kantor, Sanjiv Singh, Ronald Peterson, Daniela Rus, Aveek Das, Vijay Ku-
mar, Guilherme Pereiera, and John Spletzer. Distributed search and rescue with robot
sensor teams. In Proceedings of the 4th International Conference on Field and Service
Robotics, 2003.

[59] Byoung S. Kim and Anthony J. Calise. Nonlinear flight control using neural networks.
Journal of Guidance, Control and Dynamics, pages 26–33, January 1997.

[60] Daniel J. Klein. Coordinated Control and Estimation for Multi-agent Systems: Theory
and Practice. PhD thesis, University of Washington, Seattle, WA, September 2008.

[61] Daisuke Kurabayashi, Hironori Tsuchiya, Ikki Fujiwara, Hajime Asama, and Kuniaki
Kawabata. Motion algorithm for autonomous rescue agents based on information
assistance system. In Proceedings of the 2003 IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Kobe, Japan, 2003.

[62] Cody Kwok, Dieter Fox, and Marina Meila. Real-time particle filters. IEEE Special
Issue on Sequential State Estimation, 2004.

[63] Emmett Lalish, Kristi A. Morgansen, and Takashi Tsukamaki. Decentralized reactive
collision avoidance for multiple unicycle-type vehicles. In Proceedings of the 2008
American Control Conference, Seattle, WA, 2008.

[64] Paul Lambrechts, Samir Bennani, Gertjan Looye, and Anders Helmersson. Robust
flight control design challenge problem formulation and manual: the reserach civil
aircraft model (rcam). Technical report, Group for Aeronautical Research and Tech-
nology in Europe, Europe, 1997.

[65] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[66] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[67] Steven M. LaValle and James J. Kuffner Jr. Randomized kinodynamic planning.
International Journal of Robotics Research, pages 378–400, May 2001.

[68] Katie Laventall and Jorge Cortes. Coverage control by robotic networks with limited-
range anisotropic sensory. In Proceedings of the 2008 American Control Conference,
Seattle, Washington, 2008.

[69] Jonathan Lester, Tanzeem Choudhury, Nicky Kern, Gaetano Borriello, and Blake
Hannaford. A hybrid discriminative/generative approach for modeling human activ-
ities. In Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence, Edinburgh, Scotland, 2005.

191

[70] Christopher W. Lum. A single agent search of a two dimensional space using probabil-
ity collectives and convex optimization. Technical report, University of Washington,
Seattle, WA, 2006.

[71] Christopher W. Lum, Matthew L. Rowland, and Rolf T. Rysdyk. Human-in-the-
loop distributed simulation and validation of strategic autonomous algorithms. In
Proceedings of the 2008 Aerodynamic Measurement Technology and Ground Testing
Conference, Seattle, WA, June 2008.

[72] Christopher W. Lum and Rolf T. Rysdyk. Feature extraction of low dimensional sensor
returns for autonomous target identification. In Proceedings of the 2008 Guidance,
Navigation, and Control Conference, Honolulu, HI, August 2008.

[73] Christopher W. Lum and Rolf T. Rysdyk. Time constrained randomized path planning
using spatial networks. In Proceedings of the 2008 American Control Conference,
Seattle, WA, June 2008.

[74] Christopher W. Lum, Rolf T. Rysdyk, and Anawat Pongpunwattana. Autonomous
airborne geomagnetic surveying and target identification. In Proceedings of the 2005
Infotech@Aerospace Conference, Arlington, VA, September 2005. AIAA.

[75] Christopher W. Lum, Rolf T. Rysdyk, and Anawat Pongpunwattana. Occupancy
based map searching using heterogeneous teams of autonomous vehicles. In Pro-
ceedings of the 2006 Guidance, Navigation, and Control Conference, Keystone, CO,
August 2006.

[76] Christopher W. Lum and Juris Vagners. A modular algorithm for exhaustive map
searching using occupancy based maps. In To appear in Proceedings of the 2009
Infotech@Aerospace Conference, Seattle, WA, April 2009.

[77] Jason S. McCarley and Christopher D. Wickens. Human factors concerns in uav flight.
Technical report, Institude of Aviation, Aviation Human Factors Division, University
of Illinois aat Urbana-Champaign, 2004.

[78] Jason S. McCarley and Christopher D. Wickens. Human factors implications of uavs
in the national airspace. Technical Report AHFD-05-05/FAA-05-01, Institude of Avia-
tion, Aviation Human Factors Division, University of Illinois aat Urbana-Champaign,
Atlantic City International Airport, NJ, 2005.

[79] Tad McGeer and Juris Vagners. Flying the atlantic - without a pilot. GPS World,
10:24–30, 1999.

[80] Tad McGeer and Juris Vagners. Wide-scale use of long-range miniature aerosondes
over the world’s oceans. In Proceedings of the AUVSI 26th Annual Symposium, As-
sociation for Unmanned Vehicle Systems International, Baltimore, MD, July 1999.

192

[81] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: Finding
shortest paths through a weighted planar subdivision. Journal of the ACM, pages
18–73, January 1991.

[82] Ndedi Monekosso and Paolo Remagnino. Robot exploration using the expectation-
maximization algorithm. In Proceedings of 2003 IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Kobe, Japan, 2003.

[83] Sujit Nair and Jerry Marsden. Collision avoidance and surveillance measures for
multivehicle systems. Technical report, California Institute of Technology, Pasadena,
CA, 2008.

[84] Laurence R. Newcome. Unmanned Aviation: A Brief History of Unmanned Aerial
Vehicles. American Institute of Aeronautics and Astronautics, 2004.

[85] NIMA. National imagery and mapping agency technical repport tr8350.2: Depart-
ment of defense world geodetic system 1984, its definition and relationships with
local geodetic systems, 3rd edition. Technical report, National Imagery and Mapping
Agency, 2000.

[86] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations Concepts
and Applications of Voronoi Diagrams. John Wiley and Sons, 1996.

[87] Jarurat Ousingsawat. Quasi-decentralized task assignment for multiple uav coordi-
nation. In Proceedings of the AIAA Guidance, Navigation, and Control Conference,
Keystone, CO, 2006.

[88] Richard Partner. Georanger aeromagnetic uav: Development to commercial survey.
Fugro Explore, 3:1–4, 2006.

[89] Marios M. Polycarpou, Yanli Yang, and Kevin M. Passino. A cooperative search
framework for distributed agents. In Proceedings of the 2001 IEEE International
Symposium on Intelligent Control, Mexico City, Mexico, 2001.

[90] Anawat Pongpunwattana. Real-Time Planning for Teams of Autonomous Vehicles in
Dynamic Uncertain Environments. PhD thesis, University of Washington, Seattle,
WA, June 2004.

[91] Anawat Pongpunwattana and Rolf T. Rysdyk. Real-time planning for multiple au-
tonomous vehicles in dynamic uncertain environments. AIAA Journal of Aerospace
Computing, Information, and Communication, pages 580–604, December 2004.

193

[92] Anawat Pongpunwattana, Rolf T. Rysdyk, Juris Vagners, and David Rathbun.
Market-based co-evolution planning for multiple autonomous vehicles. In Proceedings
of the AIAA Unmanned Unlimited Conference. Autonomous Flight Systems Labora-
tory, 2003.

[93] Anawat Pongpunwattana, Richard Wise, Rolf T. Rysdyk, and Anthony J. Kang.
Multi-vehicle cooperative control flight test. In Proceedings of the 25th Digital Avionics
Systems Conference, October 2006.

[94] Alison A. Proctor, Suresh K. Kanna, Chris Raabe, Christophersen Henrik B., and
Eric N. Johnson. Development of an autonomous aerial reconnaissance system at
georgia tech. In Proceedings of the Association of Unmanned Vehicle Systems Inter-
national Unmanned Systems Symposium and Exhibition, 2002.

[95] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[96] Alvin Raj, Amarnag Subramanya, Dieter Fox, and Jeff Bilmes. Rao-blackwellized
particle filters for recognizing activities and spatial context from wearable sensors.
In Experimental Robotics: The 10th International Symposium, Springer Tracts in
Advanced Robotics, 2006.

[97] David Rathbun and Brian Capozzi. Evolutionary approaches to path planning through
uncertain environments. In Proceedings of the AIAA Unmanned Unlimited Conference.
AIAA, May 2002.

[98] R.T. Rockafellar. Network Flows and Monotropic Optimization. Athena Scientific,
Belmont, Mass, 1st edition, 1998.

[99] R.T. Rockafellar. Fundamentals of optimization. Technical report, University of
Washington, Seattle, WA, 2006.

[100] Juan Carlos Rubio, Juris Vagners, and Rolf T. Rysdyk. Adaptive path planning for
autonomous uav oceanic search missions. In Proceedings of the 1st AIAA Intelligent
Systems Technical Conference, 2004.

[101] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach. Pearson
Education, Inc., Upper Saddle River, NJ, 2nd edition, 2003.

[102] Rolf T. Rysdyk. Unmanned aerial vehicle path following for target observation in
wind. Journal of Guidance, Control, and Dynamics, pages 1092–1100, September
2006.

[103] Rolf T. Rysdyk, Christopher W. Lum, and Juris Vagners. Autonomous orbit coor-
dination for two unmanned aerial vehicles. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference, San Francisco, CA, August 2005.

194

[104] Ketan Savla, Carl Nehme, Tom Temple, and Emilio Frazzoli. Efficient cooperative
strategies between uavs and humans in a dynamic environment. In Proceedings of the
AIAA Guidance, Navigation, and Control Conference, Honolulu, HI, 2008.

[105] Ketan Savla, Tom Temple, and Emilio Frazzoli. Human-in-the-loop vehicle routing
policies for dynamic environments. In Proceedings of the Conference on Decision and
Control, Cancun, Mexico, 2008.

[106] Robert E Schapire. A brief introduction to boosting. In IJCAI, 1999.

[107] Eric Sholes. Evolution of a uav autonomy classification taxonomy. In Proceedings of
the IEEE Aerospace Conference, Big Sky, MT, 2007.

[108] Bruce D. Smith, Michael J. Cain, Allan K. Clark, David W. Moore, Jason R. Faith,
and Patricia L. Hill. Helicopter electromagnetic and magnetic survey data and maps,
northern bexar county, texas. Technical report, U.S. Geological Survey, Reston, VA,
2005.

[109] Brian L. Stevens and Frank L. Lewis. Aircraft Control and Simulation. John Wiley
and Sons, Hoboken, NJ, 2nd edition, 2003.

[110] Zheng Sun and John H. Reif. On finding approximate optimal paths in weighted
regions. Journal of Algorithms, pages 1–32, January 2006.

[111] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox,
D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Probabilistic algo-
rithms and the interactive museum tour-guide robot minerva. International Journal
of Robotics Research, 2000.

[112] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, 2005.

[113] Anthony P. Tvaryanas, Bill T. Thompson, and Stefan H. Constable. U.s. military
unmanned aerial vehicle mishaps: Assessment of the role of human factors using
hfacs. Technical Report HSW-PEBR-TR-2005-0001, 311th Performance Enhancement
Directorate, United States Air Force, 2005.

[114] Anthony P. Tvaryanas, Bill T. Thompson, and Stefan H. Constable. U.s. military un-
manned aerial vehicle (uav) experience: Evidence-based human systems integration
lessons learned. Technical Report RTO-MP-HFM-124, 311th Performance Enhance-
ment Directorate, United States Air Force, 2005.

[115] Unmanned Dynamics, Hood River, OR. AeroSim Aeronautical Simulation Blockset
User’s Guide Version 1.2.

195

[116] Thaddeus Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with
application of nested equations. Survey Review, 176:88–93, 1975.

[117] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 1, 2001.

[118] Linh Vu and Kristi A. Morgansen. Modeling and analysis of dynamic decision making
in sequential two-choice tasks. In Proceedings of the Conference on Decision and
Control, Cancun, Mexico, 2008.

[119] Xudong Wang and Vassilis L. Syrmos. Interacting multiple particle filters for fault di-
agnosis of non-linear stochastic systems. In Proceedings of the 2008 American Control
Conference, Seattle, WA, June 2008.

[120] Richard Wise and Rolf T. Rysdyk. Uav coordination for autonomous target track-
ing. In Proceedings of the 2006 AIAA Guidance Navigation and Control Conference,
Keystone, CO, 2006.

[121] Ian H. Witten and Eibe Frank. Data Mining. Morgan Kaufmann Publishers, San
Francisco, CA, 2nd edition, 2005.

[122] El-Mane Wong and Tomonari Bourgault, Frederic Furukawa. Multi-vehicle bayesian
search for multiple lost targets. In Proceedings of the 2005 IEEE Internationalo Con-
ference on Robotics and Automation, Barcelona, Spain, April 2005.

196

Appendix A

PUBLICATION LIST

• Rolf T. Rysdyk, Christopher W. Lum, and Juris Vagners. Autonomous Orbit Co-

ordination for Two Unmanned Aerial Vehicles. In Proceedings of the 2005 AIAA

Guidance, Navigation, and Control Conference, San Francisco, CA, August 2005.

• Christopher W. Lum, Rolf T. Rysdyk, and Anawat Pongpunwattana. Autonomous

Airborne Geomagnetic Surveying and Target Identification. In Proceedings of the 2005

Infotech@Aerospace Conference, Arlington, VA, September 2005.

• Christopher W. Lum, Rolf T. Rysdyk, and Anawat Pongpunwattana. Occupancy

Based Map Searching Using Heterogeneous Teams of Autonomous Vehicles. In Pro-

ceedings of the 2006 AIAA Guidance, Navigation, and Control Conference, Keystone,

CO, August 2006.

• Christopher W. Lum and Rolf T. Rysdyk. Time Constrained Randomized Path Plan-

ning Using Spatial Networks. In Proceedings of the 2008 American Control Confer-

ence, Seattle, WA, June 2008.

• Christopher W. Lum, Matthew L. Rowland, and Rolf T. Rysdyk. Human-in-the-

Loop Distributed Simulation and Validation of Strategic Autonomous Algorithms. In

Proceedings of the 2008 Aerodynamic Measurement Technology and Ground Testing

Conference, Seattle, WA, June 2008. Outstanding Paper Award.

• Christopher W. Lum and Rolf T. Rysdyk. Feature Extraction of Low Dimensional

Sensor Returns for Autonomous Target Identification. In Proceedings of the 2008

AIAA Guidance, Navigation, and Control Conference, Honolulu, HI, August 2008.

197

• Christopher W. Lum and Juris Vagners. A Modular Algorithm for Exhaustive Map

Searching Using Occupancy Based Maps. Accepted to the 2009 Infotech@Aerospace

Conference, Seattle, WA, April 2009.

198

Appendix B

MIN PATH/MAX TENSION ALGORITHM

The Min Path/Max Tension Algorithm is best described by Rockafellar [98]. Given a

directed graph with a starting node set N+ and an ending node set N−, assigned span

intervals d+(j) and d−(j), and initial potential uo which is feasible with respect to the span

intervals, it may be used to find a path through the graph which minimizes the cost function

given by Eq. 5.55. The flow diagram for the algorithm is shown in Figure B.1.

199

Figure B.1: Flow diagram of the Min Path Algorithm.

200

Appendix C

RESEARCH CIVIL AIRCRAFT MODEL

A high-fidelity, nonlinear, 6 degree of freedom model of a medium sized twin engine

transport jet is used as a verification model. This is based off the Research Civil Aircraft

Model [64]. This is modeled as a 12 state system and implemented in simulation using the

Matlab/Simulink environment [109]. The general block diagram of the simulation is shown

Figure C.1.

Figure C.1: Simulink block diagram of aircraft simulation.

The ‘OPC Configuration’ block is a block from the OPC blockset which forces the

Simulink model to execute in real time. This is crucial when interfacing with human oper-

ators who must be trained on real-time simulations. It is also useful for measuring latency

and performance. Relevant data from the model is then written to the OPC DataHub server

as shown in Figure C.2.

The ‘Joystick Input’ block is a custom subsystem which handles the inputs from the

joystick. The actual interface to the joystick is achieved via a block from the Aerosim

blockset.

The ‘Sensors and Navigation’ block is shown in Figure C.3. This block is mostly con-

201

Figure C.2: Expanded view of the ‘DataHub Write’ block.

cerned with implementing navigation equations and calculating the inertial and geodetic

position of the aircraft [64]. This information is crucial for visualization of the state of the

aircraft via FlightGear as shown in Figure C.4.

In Figure C.4, the ‘FlightGear 0.9.8 Interface’ is provided by the Aerosim blockset to send

relevant states to the FlightGear simulator in order to visualize the state of the aircraft.

202

Figure C.3: Expanded view of the ‘Sensors and Navigation’ block.

203

Figure C.4: Expanded view of the ‘FlightGear Visualization’ block.

204

Appendix D

VORONOI DIAGRAMS

The set P = {p1, p2, ..., pn} with 2 ≤ n < ∞ is often referred to as the generator set of

the Voronoi diagram. Given the generator set, the Voronoi polygon or Voronoi partition

associated with the generator point pi is given by

V (pi) = {z | ||z − pi|| ≤ ||z − pj || for j 6= i, j ∈ In} (D.1)

The Voronoi diagram associated with this generator set is referred to as

V = {V (p1), V (p2), ..., V (pn)} (D.2)

Since the Voronoi polygons are defined as closed sets (due to the ≤ instead of a < in

Eq. D.1), the Voronoi edge between two Voronoi polygons V (pi) and V (pj) can be written

as

e(pi, pj) = V (pi)
⋂

V (pj) (D.3)

It is worth noting that the edge e(pi, pj) may consist of a single point or be empty. If it

is neither empty nor a single point, the two the two polygons are considered to be adjacent

to each other.

Similar to the Voronoi edge, the bisector between two Voronoi generators pi and pj is

defined as

b(pi, pj) = {z | ||z − pi|| = ||z − pj ||} (D.4)

Note that the Voronoi edge is a subset of the bisector (e(pi, pj) ⊆ b(pi, pj)) and the

bisectors can be used to define a half space given by

205

H(pi, pj) = {z | ||z − pi|| ≤ ||z − pj ||} (D.5)

The half space H(pi, pj) is often referred to as the dominance region of pi over pj . Using

these dominance regions, a Voronoi polygon can alternatively be defined as

V (pi) =
⋂

i∈In\{i}
H(pi, pj) (D.6)

Eq. D.6 effectively defines the Voronoi polygon V (pi) as an intersection of half spaces.

Given that each half space is convex and the intersection of convex sets is still convex, each

Voronoi polygon is convex by definition.

S is the space in which the generator set P is defined. Notice that the Voronoi diagram

V spans the entire space S in the sense that

⋃

i∈In

V (pi) = S (D.7)

In this sense, almost every point z ∈ S is assigned to at most two Voronoi partitions.

The majority are assigned to single polygon and those points z ∈ e(pi, pj) are assigned to

both polygons V (pi) and V (pj) (since it is equally close to both polygons).

This work considered the case where S ⊆ <2 and pi ∈ <2. In this case, the resulting

Voronoi diagrams are referred to as planar Voronoi diagrams.

An example of such a planar Voronoi diagram is shown in Figure D.1. In this figure,

the generator points P are shown as black dots. The edges between the Voronoi polygons

are shown as the solid black lines. The Voronoi polygon V (p1) is shown as the shaded grey

region. It should be noted that many of these edges extend to infinity.

Voronoi diagrams and their properties are extensively detailed in [86].

206

Figure D.1: Example Voronoi Diagram with n = 4.

207

VITA

Christopher Lum was born in Bellevue, Washington in 1980. He entered the University

of Washington immediately following graduation from Mercer Island High School in 1999.

As an undergraduate, he earned aerospace experience working at the Kirsten Wind Tunnel

on campus and eventually began studies in the Department of Aeronautics and Astronau-

tics in 2001. During this time, he was inducted into the Sigma Gamma Tau Aerospace

Honor Society and awarded the George E. Solomon Academic Award and the University of

Washington Aeronautics and Astronautics Alumni Scholarship. He graduated in 2003 with

a Bachelor of Science in Aeronautical and Astronautical Engineering.

Christopher began work on a graduate degree in the same department in 2003 with a

focus on controls and dynamical systems. During his tenure as a Masters student, he held

various teaching assistant positions in undergraduate and graduate level controls courses and

was nominated for the University of Washington Outstanding Teaching Assistant Award.

In addition, he worked as an engineering intern at the Insitu Group, working on embedded

systems for the ScanEagle UAV. During this time he was awarded the Andris Vagners Lat-

vian Memorial Fellowship. He obtained a Master of Science in Aeronautics and Astronautics

in 2005.

Following his Masters, in 2005, Christopher began his PhD program at the University

of Washington under the supervision of Dr. Rolf Rysdyk and Dr. Juris Vagners. He

continued and expanded his research of autonomous systems and unmanned aerial vehicles.

He also furthered his teaching experience by instructing two graduate classes on aircraft

flight dynamics and simulation. During this time he was awarded the Osberg Family Trust

and the NASA Space Grant Consortium Graduate Fellowships. He obtained a Doctor of

Philosophy in Aeronautics and Astronautics in 2009.

He currently lives on Bainbridge Island, Washington with his lovely wife, Alison.

