
© Christopher W. Lum lum@u.washington.edu Page 1/8

Christopher Lum
lum@u.washington.edu

Intermediate Matlab Tutorial

Introduction

This document is designed to act as a mini homework assignment to familiarize the
reader with more Matlab functions and operations. Every step will not be explained
complete and only periodic checks will ensure that the reader does not become lost. The
reader should have already read through the Beginner’s Matlab Tutorial document or
have an introductory level of experience with the program. For any questions or
concerns, please contact

 Christopher Lum
 lum@u.washington.edu

Problem Statement

For this problem, let’s consider the standard mass/spring/damper problem as shown in
Figure 1. To avoid confusion, we will denote the horizontal distance as z(t).

Figure 1: Spring mass damper

Recall that the equations of motion can be obtained by applying Newton’s second law.
This yields a second order, linear, differential equation of the form

)()()(
1

)(tz
m

c
tz

m

k
tu

m
tz &&& −−= Equation 1

By choosing the state vector as ()Tzzx &= and the output as zy = , the state space
representation of this system can be written as

© Christopher W. Lum lum@u.washington.edu Page 2/8

BuxAx +=& Equation 2

DuxCy +=

where

−−
=

mcmk
A

//

10

=

m
B

/1

0
 ()01=C 0=D

Analyzing with Matlab

For this problem, let k = 1, m = 1, c = 1.

1. Start a new m-file and enter these matrices.

Functions: None
Note: Enter matrices using square brackets. Use spaces or commas to

separate elements in the same row and use the semicolon to start a
new row

2. To check the internal stability of the system, calculate the eigenvalues of the A
matrix. Also obtain the eigenvectors.

Functions: eig
Note: Remember, to obtain help about a function type “help eig” in the

Command Window.

You should obtain eigenvalues of i866.05.0 ±−=λ

3. Verify that the eigenvectors and eigenvalues obtained satisfy the definition

() 0=− ii vIA λ Equation 3

Functions: eye
Note: Remember, you can reference individual elements of a matrix using

the parentheses (ie A12 is obtained using A(1,2)).

Also, you can reference entire rows or columns by using the :
symbol which stands for “all rows” or “all columns” (ie the entire
2nd column of the A matrix is A(:,2))

4. Calculate the characteristic equation for this system. Recall that the characteristic

equation is given by

© Christopher W. Lum lum@u.washington.edu Page 3/8

() 0det =− AIλ Equation 4

Functions: none
Note: Matlab requires an extra toolkit to perform symbolic manipulations

so you will have to do this by hand.

5. Write a function which solves the quadratic equation to obtain the roots of the

characteristic equation. You should obtain the same results as part 2.

Functions: sqrt
Note: See “Writing a Custom Matlab Function” section for more

information regarding writing your own function.

6. Perform a similarity transformation on the A matrix to diagonalize it and place the

eigenvalues on the diagonals. Recall that a similarity transform is defined as

ATTA 1~ −= Equation 5

 where T = Matrix of eigenvectors of A

Functions: inv
Note: Remember that Matlab treats most variables as matrices, so the *

operation is actually matrix multiplication.

7. Compute the controllability matrix. Recall that this is given by

()BAABBP n
c

1... −= Equation 6

Check the rank of the controllability matrix to see if the system is controllable or
not.

To double check the results from the rank function, calculate the determinant of
Pc and verify that it is not close to zero.

Functions: rank, det
Note: You should see that the rank of the Pc matrix is 2

8. Given that the Pc matrix is full rank, its columns form a basis for the controllable
subspace. Use the two columns of the Pc matrix as two separate basis vectors and
plot these vectors as blue lines.

© Christopher W. Lum lum@u.washington.edu Page 4/8

Also given that the basis vectors are not unique, find a set of orthonormal basis
vectors which spans the same space. Plot these as thick, red lines.

Add a title to the plot, label the axis, add a grid, and add a legend to the plot. Also
make the x and y axes run from -1.5 to 1.5.

Functions: orth, figure, plot, title, grid, xlabel, ylabel, axis, legend
Note: When plotting more than 1 set of data, it is sometimes useful to use the

“hold on” feature. A sample code is shown below

Your plot should look like this

© Christopher W. Lum lum@u.washington.edu Page 5/8

© Christopher W. Lum lum@u.washington.edu Page 6/8

Writing a Custom Matlab Function

1. Start a new m-file
2. The first line of the new m-file must have the form

function [“returned variables”] = “function name”(“input arguments”)

For example, a function which takes two number and then returns the sum and the
difference of the two numbers would have the first line similar to Figure 2.

Figure 2: 1st line of MATLAB function

3. Type in the function body anywhere underneath the function header. Be sure that

the returned variables are assigned somewhere in the function body.

4. Save the m-file. Be sure to save this file in the same directory where the calling
function is located. Also, be sure to name the file the same as the name of the
function as shown in Figure 3.

© Christopher W. Lum lum@u.washington.edu Page 7/8

Figure 3: Saving the m-file

Note that it is good form to make the two names match, but it is not required. The
name of the function in the m-file can be anything since Matlab only uses the
name of the actual m-file when calling the function.

5. You can now call your custom function from another m-file in the same directory
or from the Command Window (assuming that the Current Directory is the same
place where you saved your custom function).

© Christopher W. Lum lum@u.washington.edu Page 8/8

Figure 4: Calling your custom function

Version History: 09/14/04: Created:
 11/23/05: Updated: made this format match other to-do documents

and removed references to AA547.
 12/01/05: Updated: changed headers to match how-to template
 12/09/05: Updated: Made changes to layout and added footer.
 09/15/09: Updated: Added second order differential equation.
 09/25/10: Updated: Minor changes

