
© Christopher W. Lum lum@u.washington.edu Page 1/7

Christopher Lum
Autonomous Flight Systems Laboratory
Updated: 12/09/05

Creating External Header Files for Functions in
Mathematica

Introduction
In this document, we go over how to create complex functions (Modules) in Mathematica
and then have them in an external file similar to a header file in C or C++.

Creating a Simple Function

Relevant Help Files

• SetDelayed
• :=

We can easily create a simple function. This can be defined as shown below in Figure 1.

Figure 1: Creating a simple function

Items to notice

1. The function arguments are enclosed with square brackets, []
2. Each argument on the left side is followed by an underscore, _
3. The left side (function name and arguments) and the right side (function

definition) is separated by a colon equal, :=. This is the SetDelayed concept
(note that in many cases, a simple = is sufficient, but := and = mean different
things. := is more versatile).

© Christopher W. Lum lum@u.washington.edu Page 2/7

Creating a Module (Complex Function)

Relevant Help Files

• Module

The above method for defining a function is simple but falters if the function you want to
define is complex (ie multiple steps). A more complex function can be can be generated
using Module in Mathematica.

Functions: Module
Note: Module[{a,b,…},procedure] defines a procedure with local

variables a, b,…

For example, let’s create a function which sums the two arguments and then checks if this
sum is above a certain threshold. This is shown below in Figure 2.

Figure 2: Example use of Module to create a complex function

Items to notice

1. _ and SetDelay := used as before

© Christopher W. Lum lum@u.washington.edu Page 3/7

2. Use of returns and spacing to make overall function more readable
3. Only 1 line of the function has no semi-colon (this is the desired output of the

function). Every other line (including for loops and if statements) have semi-
colons.

In this example, threshold, sum, and above are all local variables. That is, they are
not defined outside the scope of the function.

It may be helpful for debugging purposes have some variables not be defined as local
functions. This way, we may view the value of the variable once the function has been
run.

© Christopher W. Lum lum@u.washington.edu Page 4/7

Creating a Library and Header File

Relevant Help Files

• Off
• SetDirectory
• Put
• Save
• <<

If there are a lot of custom functions that we would like to create or if they are
exceedingly complex, we would like to be able to define them in a separate file (known
as a library) and then simply include this library into other notebooks.

The procedure for this is

1. Define functions in library file (.nb file)
2. From library file, save the desired functions to a header file (.nbd file)
3. Include the header file (.nbd file) into other notebooks

Figure 3: Diagram showning how different files are created/used

Step 1: Define functions in library file (.nb file)

We first define the library file. This file has all the comments about the function and the
function definition. An example of a library file is shown below in Figure 4.

© Christopher W. Lum lum@u.washington.edu Page 5/7

Figure 4: Sample library file (moduleH.nb)

© Christopher W. Lum lum@u.washington.edu Page 6/7

Items to notice
1. The Off[“…”] is helpful for turning off similar spelling warnings
2. It may be helpful to group the comments for a function and the function definition

together.
3. Set the directory to where you want to save the header file (.nbd)
4. Put[1,”moduleH.nbd”] creates a file moduleH.nbd and places a 1 at the

very top of the file if it does not exists already. If the file already exists, then this
simply deletes the old file and then puts a 1 at the top of the file. The 1 is
arbitrary, we simply use it so that the old file is deleted and we start from scratch.

5. Save[“moduleH.nbd”,{MyFunComplex,AnotherMyFunComplex}]
appends the functions to the file moduleH.nbd. Note that MyFunComplex
requires the definition of MyFunSimple, but MyFunSimple is not explicitly
saved. This is automatically saved by Mathematica.

Step 2: From library file, save the desired functions to a header file (.nbd file)

We already saved the desired functions to the header file (.nbd file). The file
moduleH.nbd is shown below in Figure 5.

Figure 5: Header file (moduleH.nbd)

Items to notice

1. This is the 1 that was placed using Put[1,”moduleH.nbd”]
2. Function definition for MyFunComplex
3. Although MyFunSimple was not saved explicitly in library file, it is saved

automatically by Mathematica because MyFunComplex requires its definition.
4. Function definition for AnotherMyFunComplex

Step 3: Include the header file (.nbd file) into other notebooks

Now that we have a header file (.nbd extension), it can be included in other notebooks
using the << operation as shown below in Figure 6.

© Christopher W. Lum lum@u.washington.edu Page 7/7

Figure 6: Example of including the header file in a notebook

Version History: 11/23/05: Created:
 12/01/05: Updated: Made this so it fits the template of all how-to

documents
 12/09/05: Updated: Made changes to layout and added footer.

