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Searching for a target in a complex environment is a common problem encountered by
many autonomous systems. This work considers the problem of searching for targets using
a team of heterogeneous agents. The system maintains a grid-based world model which
contains information about the probability that a target is located in any given cell of the
map. Agents formulate control decisions for a fixed number of time steps using a modular
algorithm that allows for individual capabilities and characteristics of individual agents to
be encoded in several parameters. This paper investigates one aspect of the search strategy
and presents a solution that guarantees total map coverage. The resulting search patterns
executed by agents guarantee an exhaustive search of the map in the sense that all cells
will be searched sufficiently to ensure that the probability of a target being located in any
given cell is driven to zero.

Nomenclature

B Set of z values defining spatial domain of occupancy based map
BR Locations reachable by agent in d steps
B̃ Set of z values defining center of occupancy based map cells
B̃R Cell centers reachable by agent in d steps
d Prediction horizon
fχ() Reward function for course deviation
fd() Reward function for distance
fh() Reward function for high score cell
h Sensor reliability factor in range [0, 1]
J0() Total reward function for (℘2)
Lx, Ly Width and height of map cell in x-direction and y-direction, respectively
Nx, Ny Number of columns and rows, respectively, of occupancy based map
(℘1) Subproblem of creating future world state estimates
(℘2) Subproblem of finding desirable cells for agent to search
(℘3) Subproblem of finding trajectories for agent flight path
p(A|B) Conditional probability of A given B
PE , PN East and north position of agent, respectively
q(a, b) Calculates absolute angular difference between angles a and b
Rmax Maximum distance agent can travel in a d steps
sk Score of given occupancy map cell at step k (p(Xk = xB) at step k)
Vmax Maximum velocity of agent
w? Controls/waypoints which take agent from current location to z?

xA, xB Event of target not in cell and target in cell states, respectively
xmin, xmax Minimum and maximum x value of occupancy based map
xw(k, z) Actual state of the world at time step k and location z
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x̂w(k, z) Estimated world state at time step k and location z
xagt(k) Agent state (PE PN χ)T at step k
xtgt(k) State of the target at time step k
x̂tgt(k) Estimated target state at time step k
ymin, ymax Minimum and maximum y value of the occupancy based map
z (x, y) coordinate (PE PN )T

z? Most desirable cell in (℘2)
zagt Agent’s current position
Z Set of all cell centers that the agent can reach in d steps
zA, zB Observation of target not in cell and in cell, resectively
zH Location of cell center with highest score in map and closest to agent
zh Location of cell center in agent’s reachable set closest to zH

zs Location of cell center of same cell that agent is currently in
α Scalar tradeoff parameter for x̂w(k + d, z)
β Scalar tradeoff parameter for fχ(z)
δ Scalar tradeoff parameter for fh(z)
∆T Time between steps
η Maximum score of cell within agent’s reachable set
γ Scalar tradeoff parameter for fd(z)

I. Introduction

The overwhelming majority of current missions tasked to autonomous systems revolve around intelligence,
reconnaissance, and surveillance (ISR). This work seeks to increase the autonomy and capabilities of a
heterogeneous team of agents involved in a search and surveillance type mission. The system maintains a
world model which includes an estimate of possible target states and the state of the environment. The
issue of compelling agents to converge on possibly moving targets and continuing to search new regions is
formulated as a model predictive control problem. The world model is propagated forward in time and
strategic decisions are made based on the predicted future state of the world. Agents formulate control
decisions for a fixed number of time steps by optimizing an objective function that allows for control and
timing constraints.

The overall objective of this work is to develop robust and scalable control laws to apply to a heterogeneous
group of agents so that they operate in a cooperative fashion to achieve a common goal. The goal in this
application considers the specific mission of coordinating a group of agents to search a two dimensional
space for a target. Although this goal may seem narrow in scope, many of the technologies developed for
this application are easily adaptable to more general tasks encountered in autonomous systems. This paper
investigates a modular algorithm which can efficiently coordinate a team of possibly heterogeneous agents
and ensure that the team performs an exhaustive search of the map.

This type of search mission has been previously studied by several other groups. Classically, it has been
addressed as classical exploration missions by Monekosso1 and Dollarhide2 et al. It also fits the model of
search and rescue applications as shown by Kurabayashi,3 Kantor,4 and Jennings5 et al. A survey of classical
searching techniques by Benkoski6 provides additional background and references.

One modern approach that has become popular is to consider possible target locations as a continuous
or discrete probability density function. Groups such as Durrant-Whyte et al.7,8,9 studied the problem of
searching for a target using a Bayesian probabilistic approach and have investigated some of the communi-
cation issues involved in such a search. Polycarpou et al.10,11,12 applied optimization techniques to generate
search patterns over a finite amount of steps. Many of these methods are successful and effective but have
difficulty providing guarantees on target detection and map coverage. To address this, Erignac13 devel-
oped exhaustive searching strategies that also provide guarantees about map coverage with ideas based on
pheromone maps. Coverage of maps and domains have also been studied in the context of minimum service
time to spontaneously occurring targets. Many of these techniques use Voronoi partitioning of the domain
to maintain agent separation and coverage. This approach has been studied by Du,14 Cortes15,16 , and
Frazzoli17,18 . Searching and map building has been studied extensively by the robotics community as well.
Groups such as Fox et al.19 have looked at generating searching algorithms with the ideas of exploration and
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map building in mind. Others such as Baillieul et al.20 and Hoffman21 have posed the searching mission in
an information theoretic framework which provides useful metrics for search effectiveness. Previous work at
the University of Washington by Rubio et al.22 investigated searching algorithms in the context of adaptive
algorithms. Previous work23 explored the use of novel optimization techniques to address the search problem.

These methods, while effective for their respective applications, contain shortcomings when addressing the
search problem considered in this application. To address the problem at hand, a modular search algorithm
is presented in this paper. The algorithm is modular in the sense that it is comprised of three main steps.
Each step is somewhat independent of the others and different algorithms can be used to accomplish the
same goal within any of the three main steps.

The first step involves propagating the world state forward in time. By providing a predictive aspect to
the problem, each agent can then make control decisions based on the predicted future state of the world
rather than only using the current information. Once the system generates a predicted future world state,
each agent determines a desirable coordinate to visit in the future by solving a numerical optimization
problem. This formulation allows for each agent in the team to have a different set of parameters; therefore,
each agent in the team can have its own notion of desirability. Finally, once this desirable coordinate is
determined, a path that transitions the agent from its current location to the desirable coordinate can be
applied.

The focus of this paper is an algorithm for solving the second step (desirable location selection) of
the process which will guarantee that the team exhaustively searches the map for the target. The first23

(generating a predictive world estimate) and third24 (path planning) steps have already been addressed in
previous works.

The search strategy is formulated with a heterogeneous team in mind. Each agent may have different
capabilities and bandwidths. For example, fast agents (Figure 1(a)) are able to maneuver more effectively
but require faster processing speeds. In contrast, slower agents (Figure 1(b)) are more sluggish but the
bandwidth requirements decrease as well. The search strategy must be scalable and able to accommodate
these differences.

(a) The GeoRanger autonomous air vehicle (b) The SeaFox autonomous surface vehicle

Figure 1. Possible agents of a heterogeneous team involved in searching mission.

Section II describes the notion of occupancy based maps and their features. These maps provide the
framework for the search strategy which is initially derived as a single agent search strategy and is described
in Section III. Section IV then analyzes the proposed search strategy and shows that it yields an exhaustive
map search. Simulation results and performance metrics are discussed in Section V. Finally, Section VI
presents conclusions and future directions of research.

II. Occupancy Based Maps

In order to effectively search a two dimensional domain for a target, the system must keep track of the
state of the world in terms of possible target locations. To do this, an occupancy based map is employed.
These constructs were originally developed by Elfs25,26 but functionality such as Bayesian score updates and
time varying models are added to the maps to accommodate the algorithm.
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A. Defining Occupancy Based Maps

The search domain is discretized into rectangular cells. Each cell is assigned a score which is the probability
that the target is located in that cell. This is similar to a two dimensional, discretized probability density
function.7 The main difference between a standard 2D PDF and the occupancy based map is that individual
probabilities in the map are not coupled to other values as they are in a PDF. As will be shown, this allows
the map to be updated more easily and allows for multiple targets to be located in the domain. The spatial
domain of the occupancy based map consists of a box where x is between xmin and xmax. Similarly for the
y dimension.

B =

{
z =

(
z1

z2

)
| z1 ∈ [xmin, xmax], z2 ∈ [ymin, ymax]

}
(1)

The occupancy based map, xw(), is a function defined over the set B × < which assigns a score in the
range [0, 1] to each element z ∈ B ⊂ <2 at a certain time step k ∈ <. In other words, xw : B ×< → <. The
score of a given cell represents the probability that the target is located in that cell.

The occupancy based map is shared and updated by all agents involved in the search. At each time step,
guidance decisions for each agent are computed based on this map. The state of the map at any time k
is also referred to as the world state. This reflects the fact that the map represents the possible locations
of targets and other objects in the environment. In essence, the system’s belief of the state of the world is
embedded in the state of the occupancy based map. For example, the map can represent the locations of
obstacles and reward areas in the environment. The idea of embedding obstacles in the map is similar to
defining obstacles in a configuration space.27 An example of embedded obstacles and reward areas in an
occupancy based map is shown in Figure 2.

(a) Physical environment with soft and hard obstacles
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(b) Occupancy based map representation of environment

Figure 2. Abstraction of urban environment using occupancy based maps.

In this example, the dark blue sections represent cells with zero scores (hard obstacles) and the green
sections represent scores of 0.5 (neutral values). Furthermore, there are regions which correspond to soft
obstacles that should be avoided if possible but entering these regions does not violate a constraint. These
sections are represented by the lighter blue shades with scores ranging from 0 to 0.5. If there were regions
that were beneficial to the agent, these could be assigned scores greater than 0.5.

It is useful to define the cell center set, B̃, as all values z which correspond to the center of a cell in the
occupancy based map.

B̃ =

{
z

∣∣∣∣∣z =

(
xmin + Lx(i− 1/2)
ymin + Ly(j − 1/2)

)
, i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny

}
(2)
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B. Updating Map Scores

The occupancy based map is dynamic and can be updated either by agents involved in the mission, external
sources, or other means. The agents are able to modify the map to reflect their findings during the search
mission. Each agent in the team is able to search the cell at its current location using its sensor. The discrete
state space of the cell is simply Xk = {xA, xB} where Xk = xA corresponds to the target not in the cell and
Xk = xB meaning that the target is in the cell. In a similar fashion, the agent may make one of two sensor
measurements, Zt = zA (observe target not in cell) and Zt = zB (observe target in cell). As mentioned
previously, the score of a given cell in the occupancy based map reflects the scalar probability that the target
is located in that cell at the current time step k. For convenience, the score of the cell at time step k is
denoted sk = p(Xk = xB).

To model a heterogeneous team of agents with stochastic sensors, each agent’s sensor is assigned a
reliability factor h ∈ [0, 1]. A value of h = 0 implies that the sensor is completely unreliable and no
information can be gained from this sensor. Conversely, h = 1 corresponds to a completely reliable sensor
that can ascertain if the target is or is not located in the agent’s current cell in a single measurement. The
probabilistic sensor model can be formed as

p(Zt = zA|Xt = xB) = 1− 1
2 (h + 1)

p(Zt = zB |Xt = xB) = 1
2 (h + 1)

(3)

Assuming that the state of any given occupancy map cell score is not affected by the action of taking a
measurement, the probabilistic score of a given occupancy based map cell can be updated using the sensor
model of Eq. 3 which yields the following Bayesian update rule.

sk =

{
sk−1(1−h)

1+(1−2sk−1)h
if Zk = zA

sk−1(1+h)
1+(2sk−1−1)h if Zk = zB

(4)

In Eq. 4, sk represents the score of the occupancy map cell (sk = xw(k, z) for z in some cell region).
This update rule has several interesting properties. It can be shown that the scores of each cell either

monotonically increase or decrease with each sensor measurement for the majority of values of h and sk−1.
It is trivial to see that if sk−1 = 1 then sk = 1 and if sk−1 = 0, then sk = 0 for either case of Zk = zA or
Zk = zB and for all values of h. The physical significance of this is that if the target is absolutely certain to
either be in the cell or not, then no further updates will change this fact. Similarly, for Zk = zA, if h = 0
then sk = sk−1 and if h = 1 then sk = 0. This implies that if the sensor is completely unreliable (h = 0)
and making a measurement with this sensor will not change the state of the cell. Conversely, if the sensor is
completely reliable with h = 1, then only a single measurement of Zk = zA is all that is required to change
the score of the cell to 0. A similar situation arises for Zk = zB where if h = 0 then sk = sk−1 but if h = 1
then sk = 1. This is because zB with h = 1 is the event of detecting the target with a 100% reliable sensor.
The more interesting cases are when sk−1 and h are in the interval (0, 1).

Theorem II.1. Under the update rule of Eq. 4, sk < sk−1 if Zk = zA and sk > sk−1 if Zk = zB ∀sk−1, h ∈
(0, 1).

Proof. For the case of Zk = zA the burden is to now show that sk < sk−1 ∀k for the cases where sk−1, h ∈
(0, 1).

One can examine the denominator of Eq. 4 and note that ∀sk−1 ∈ (0, 1) the term 1 − 2sk−1 > −1.
Therefore, the denominator term must be greater than 1 − h. Noting that for all h ∈ (0, 1) the term
1− h > 0. Therefore, the denominator term must always be positive.

Furthermore, it is easy to see that 1− sk−1 > 0 and 2h > 0 for these conditions. So one can write

0 < 2h(1− sk−1) (5)
1− h < 1 + h− 2hsk−1 (6)

1− h

1 + h− 2hsk−1
< 1 (7)

(8)
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Multiplying both sides by sk−1 yields the final result

sk−1(1− h)
1 + (1− 2sk−1)h

= sk < sk−1 ∀h, sk−1 ∈ (0, 1) (9)

It is trivial to show that sk > 0 ∀k. This in conjunction with Eq. 9 shows that with enough sensor
measurements of Zk = zA, the score of a given cell will proceed monotonically towards 0.

A similar proof can be applied for the case of Zk = zB with the result showing that with enough sensor
measurements of Zk = zB , the score of a given cell will proceed monotonically towards 1.

A standard Markov assumption is used to remove the dependence of the next score on past scores, and
therefore only one version of the occupancy based map must be maintained at any given time step. The
map can be made time varying using a number of techniques.28

One final aspect of system modeling that concerns updating the map is how the agents update the map
when they encounter a target. If the agent searches the cell where the target is located and successfully finds
the target, it can update the scores of its current cell and those around it. The sensor reliability factor is also
used to model a sensor which may miss a positive target identification. If h is low, there is a high probability
that the agent will not find the target even if it searches the correct cell. This behavior affects several
performance metrics such as the average time to target detection, which is discussed later in Section V.

The occupancy based map and its associated features provides a versatile framework from which to build
a searching algorithm.

III. Single Agent Search Strategy

This section concentrates on how a single agent is to find an optimal location to search using the occupancy
based map. The goal for the agent is to converge on regions of high score (a high probability that the target
is located there). Once an agent locates an anomaly, it should loiter there until a positive identification29

can be made. The overall flow of the search strategy for a single agent is shown below in Figure 3.

Figure 3. Flow diagram for single agent search strategy.

The process is comprised of three subproblems which are referred to as (℘1), (℘2), and (℘3). The process
starts by finding the agent’s state at the current time, xagt(k). Next, (℘1) is solved to obtain the estimated
world state at time k + d. Next, (℘2) is solved to find a desirable coordinate, z?, which the agent will visit
within the next d steps. Finally, (℘3) consists of finding a set of waypoints/controls, w?, which will take the
agent from its current location to the location of the desirable coordinate found in (℘2).

A. (℘1) Predictive World Model

The first problem, (℘1), involves projecting the current state of the world forward in time to create an
estimate of the world state at step k + d. Previous work investigated using various linear predictive models
to generate future estimates of the world state23,.30 In practice, any methods may be used to accomplish
this goal. This aspect of the control algorithm is not the main focus of this paper and will not be covered
further.

6 of 22

American Institute of Aeronautics and Astronautics



Once the the state of the world is estimated at step k + d, the system attempts to find a coordinate that
has desirable properties and is located within the agent’s reachable set. This is addressed in (℘2).

B. (℘2) Desirable Location Selection

The agent needs to choose a location that it must travel to based on the estimated future state of the world.
This section describes a method that can be used to choose a desirable cell to search.

1. Defining the Reward Function

In (℘1), the state of the world is propagated forward in time by d steps. Subproblem (℘2) concerns finding
a desirable location (a desirable z value) for the agent to travel to in d steps. The desirability of a location
is determined by a reward function of the following form

J0(z) = αx̂w(k + d, z) + η (βfχ(z) + γfd(z)) + δfh(z) (10)

The reward function is a combination of terms which model both the environment and agent states.
For example, the term x̂w(k + d, z) measures the estimated state of the world d steps into the future. The
function fχ() is a function which penalizes heading/course angle changes. In a similar fashion, fd() rewards
locations which are farther away from the agent. Finally, fh() is an indicator function which serves to drive
the agent towards the highest score in the map. This describes the general behavior of the cost function,
but a more detailed look at its construction is necessary.

With the cost function defined, the most desirable location is then found via an optimization scheme
using Eq. 10 as an objective function. Typically, the set over which one optimizes Eq. 10 is the set of all
locations that the agent can reach in d steps. This set is determined by parameters such as its maximum
velocity and time step. The set of all locations that the agent can reach in d steps is referred to as the agent’s
reachable set, BR ⊆ B. This application defines BR as

BR = {z ∈ B | ||z − zagt|| ≤ Rmax} (11)

Eq. 11 assumes that the agent has no turn rate limits and the agent has simple planar kinematics. In a
practical application where there may be saturation concerns, it is possible that BR may not be a perfect
circle as described in Eq. 11. In this case, it simply becomes more difficult to define and compute BR but
the following analysis is not affected by the geometry of BR.

It is useful to also define the set of cell centers that the agent can reach in d steps. This is simply

B̃R = BR

⋂
B̃ (12)

In Eq. 10, the function fχ() is given by

fχ(z) =

{
0 if z in same cell as current agent

1− q(χagt,π/2−atan2(z2−yagt,z1−xagt))
π otherwise

(13)

In Eq. 13, the function q(a, b) computes the absolute angular difference between the two angles, a and b.
A simple absolute value of the difference of a and b is not sufficient and some simple heuristics are included
in the function q() of Eq. 10 to take care of situations such as where a = 1 ·π/180 radians and b = 359 ·π/180
radians. A simple absolute value of the difference would return an angle of 358 · π/180 radians, which is
incorrect. However, the function q() returns the correct angular difference of 2 · π/180 radians. Note that
the range of fχ() is [0, 1]. An example of this function is shown in Figure 6(c).

The function fd() of Eq. 10 is given by

fd(z) =

{ ||z−zagt||
Rmax

if z ∈ BR

0 otherwise
(14)

The function fd() effectively rewards locations that are farther away from the current agent position until
the distance Rmax is reached; past this point, the function returns 0. An example of this function is shown
in Figure 6(d).
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Finally, the function fh() of Eq. 10 is an indicator function. To define this function, it becomes necessary
to first define some intermediate variables. The first of these variables is given by

B̃max =
{

z ∈ B̃ | x̂w(k + d, z) is maximum ∀z ∈ B̃
}

(15)

The set B̃max is simply the set of cell centers that have the highest score in the map. Note that this set
may have more than one cell center. For further clarification, the relationship between the sets B̃max, B,
BR, and B̃R are shown in Figure 4.

Figure 4. Relationships between sets B, B̃,
B̃max, BRi

, and B̃Ri
(subscript i denotes set

for agent i).

A single cell center from B̃max can be chosen using one of
two methods. The first method involves choosing the point in
B̃max which is closest to the agent. This location is designated
as zH

zH ∈ arg minimize
z∈B̃max

||z − zagt|| (16)

An alternative method for choosing zH is to use

zH ∈





arg minimize
z∈B̃max

||z − zagt|| if B̃max

⋂
B̃R = ∅

arg maximize
z∈B̃max

⋂
B̃R

||z − zagt|| otherwise
(17)

The method for choosing zH in Eq. 17 entails first checking
if the set B̃max

⋂
B̃R = ∅. If this is true, this implies that there are no cells that have the highest score of

the map in the agent’s reachable set. If this is the case, Eq. 16 and Eq. 17 will choose the same point for zH .
This can be seen in Figure 5(a). The two methods deviate if there is a cell with the highest score of the map
within the agent’s reachable set. In this case, Eq. 16 would still choose the cell in B̃max which is closest to the
agent as shown in Figure 5(c). On the other hand, Eq. 17 would instead choose the cell with the maximum
score that is farthest from the agent, but is still in the agent’s reachable set as shown in Figure 5(b). Either
method can be used and each has advantages and disadvantages which can be used to tailor to behavior of
the agents for different scenarios. For example, using Eq. 17 tends to generate behaviors where the agents
must move a large distance within d steps. This leaves little flexibility when it comes to planning a path
from the agent’s current location to z? (defined in Eq. 21). Alternatively, Eq. 16 tends to choose z? locations
which are close to the agent’s current location and therefore, the path planning algorithm24 in (℘3) will be
allow to choose paths other than straight paths to z?.
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(a) zh using either Eq. 16 or 17
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(b) zh using Eq. 17
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(c) zh using Eq. 16

Figure 5. Differences between using Eq. 16 and 17 for choosing zH .

With the point zH defined, the point in the agent’s reachable cell centers that is closest to zH is given by

zh ∈ arg minimize
z∈B̃R

||z − zH || (18)

With zH and zh defined, the function fh() is simply given as

fh(z) =

{
1 if z is in cell containing zh

0 otherwise
(19)
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An example of the fh() function is shown in Figure 6(e).
The final parameter in the reward function is the variable η which is the maximum score within the

agent’s reachable set.

η = max
z∈B̃R

x̂w(k + d, z) (20)

An example of the various functions that make up the reward function are shown below in Figure 6.
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(a) xw(k, z)
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(b) x̂w(k + d, z). α = 0.5
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(c) fχ(z).χagt = 243◦. β = 0.5

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3  
 

x

 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) fd(z). γ = 0.5
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(e) fh(z). δ = 0.05
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(f) J0(z)

Figure 6. Various functions which compose the reward function, J0().

Figure 6(a) shows the state of the world at the current time. This is the system’s belief of the world
without making any estimates of the target location.

Figure 6(b) shows the estimated state of the world in d steps. In this case, an external source has provided
information that the target is likely located in the lower right corner. This estimate can be made by a team
member or another source in the system. The dashed red line shows the maximum distance the agent can
reach in d steps. Maximizing this function over B̃R requires choosing the cell with the highest score within
the dashed red line.

Figure 6(c) shows the fχ() function for the particular case of the agent having a course angle of 243◦.
Maximizing this function requires picking a location z which minimizes the course change required to visit
this location (z locations which are in line with the pink arrow).

Figure 6(d) shows the fd() function. Maximizing this function corresponds to choosing a z location which
is farthest away from the current location.

Figure 6(e) shows the indicator function fh(). In this scenario, the set B̃max is the set of cell centers
which maximize x̂w(k + d, B̃). These correspond to the cell centers of the dark red rectangle in Figure 6(b).
From the set B̃max, zH is chosen as the cell that is closest to the agent (the lower left corner point). Finally,
the point zh is determined as the point within the agent’s reachable cell centers which is closest to zH . As
can be seen, maximizing fh() requires simply choosing z in the same cell as zh.

Figure 6(f) shows the normalized total reward function. The reward function can typically exceed 1 but
it is normalized so that the max value is 1 for plotting purposes.

The parameters α, β, γ, and δ can be chosen differently to reflect different agent capabilities. For example,
small α values yield agents which will not be adverse to large course changes. This may be appropriate for
more agile agents such as small UAVs. Conversely, large α values correspond to agents which may deem a
coordinate more desirable if it has a somewhat low score but is in line with its current course. This may be
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appropriate for cumbersome agents like large boats. One important aspect of Eq. 10 is that α, β, γ, δ, x̂w(),
fχ(), fd(), and fh() are all in the range [0, 1]. This is explained further in Section ??.IV.B.

Previous work23 investigated using adaptive sampling methods to provide quasi-optimal solutions of
Eq. 10 over the feasible set BR. Although this method worked well for most cases, it was nondeterministic.
The stochastic nature when selecting z? makes analysis difficult. Therefore, instead of optimizing J0()
over the compact set BR, the problem is reduced to optimizing over the feasible set of B̃R. With this
approximation, the most desirable cell, and solution to (℘2) is given by

(℘2) z? ∈ arg maximize
z∈B̃R

J0(z) (21)

The problem formulated in Eq. 21 differs in that the feasible set is manageably finite. Therefore, the
optimization is reduced to an exhaustive search over the set B̃R. An additional benefit of this method is
that it can be easily implemented by evaluating the reward function at each cell center in the set B̃R.

C. (℘3) Transition From Current Location to Desired Location

The final subproblem, (℘3), concerns finding feasible waypoints which take the agent from the current loca-
tion, z0, to the desirable cell location z? found in (℘2). Any path planning algorithm may be used as long as
they meet the requirement that the agent arrives at the point z? in d steps or less. Previous work investigated
addressing this problem as a convex optimization scheme23 and using a graph-based approach.24 Many other
authors have investigated the path planning in complex environments using evolutionary programming,31

rapidly exploring random trees,32 and weighted regions.33

The path planning algorithm used to solve (℘3) is not the focus of this paper, so the reader is referred
to the previously mentioned papers for more information.

IV. Exhaustive Searching

The primary goal of a search mission is to find one or more targets which are located somewhere in
the domain. One would be concerned if there are conditions where the target might be able to hide in the
environment and avoid detection by the agents. This paper shows that under a reasonable set of assumptions,
the agents are guaranteed to visit all cells in the map with non-zero score sufficiently often to drive the cell
scores to zero. In other words, they will exhaustively search and cover the entire area of interest. The
assumptions are

Assumptions: h ∈ (0, 1) (A.1)
δ ∈ (0, 1] (A.2)
Rmax ≥ max(Lx, Ly) (A.3)
Zk = zA ∀k (A.4)
x̂w(k + d, z) = xw(k, z) ∀k (A.5)
xw(0, z) ∈ [0, 1) ∀z (A.6)
δ > β + γ (A.7)

The physical meaning of assumption A.1 is to ensure that each agent has a sensor that can be relied
upon to some degree. Eliminating the possibility that h = 0 ensures that with each sensor measurement, the
score of the searched cell decreases. Note that the case of h = 1 implies an infinitely reliable sensor which
is actually the best scenario. However, this requires rewording several following theorems so it is simply
excluded using this set of assumptions. All of the following analysis can apply for the case of h = 1 with
slight changes.

Recall from Section III.B.1, the scalars α, β, γ, and δ are in the range of [0, 1]. Assumption A.2 ensures
that δ 6= 0. Its significance will become clear in Section IV.B.

Assumption A.3 effectively specifies a minimum size of the set B̃R. This states that there must be more
than one cell center in B̃R. Furthermore, this guarantees that B̃R includes the cells centers to the North,
East, South, and West of the current agent location and ensures that the agent can move in any direction
and eventually reach any other cell under an appropriate control law.
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Assumptions A.4, A.5, and A.6 deal with the nature of the complete coverage of the map. Complete
coverage implies the agents will search each cell in the map sufficiently to drive its score to zero. In a scenario
involving complete coverage of the map, the target is located in the last cell that the agents would search
or is simply not located in the map at all. These assumptions ensure that the scores of the map are never
increasing and can in fact decrease under Eq. 4.

Assumption A.7 is crucial for the proof of complete coverage and is explained in Section IV.B.
All of these assumptions are reasonable and can be implemented easily. Under these assumptions we will

show that the agents operating under this strategy will exhaustively search the map and drive all cell scores
towards zero given sufficient time.

A. Decreasing Scores

As the agents search a cell, it is desired that the score of the cells decrease. We show that the scores of each
cell monotonically decrease with each sensor measurement.

Theorem IV.1. Under assumptions A.1, A.4, A.5, and A.6 and the previously described and search strategy,
the score of any given occupancy map cell with a score not equal to 0 or 1 will monotonically decrease towards
0.

Proof. Recall that the score of the cell is updated via Eq. 4 with Zk = zA ∀k. It is trivial to see that if
sk−1 = 1 then sk = 1 and if sk−1 = 0, then sk = 0. The burden is to now show that sk < sk−1 ∀k for the
cases where sk−1 ∈ (0, 1). This was already proved in Theorem II.1

It is trivial to show that sk > 0 ∀k. This, in conjunction with Eq. 9, shows that with enough sensor
measurements of Zk = zA, the score of a given cell will proceed monotonically towards 0.

B. Guaranteed Coverage

Theorem IV.1 shows that if a cell is searched a sufficient number of times, its score will decrease towards
zero. In order to show that the agents exhaustively search the map, the burden is to show that under the
given control law, the agent will visit each cell enough times to decrease the scores to zero.

Theorem IV.2. Under assumptions A.3, A.4, A.5, and the previously described search strategy, if an agent
is not currently in the cell containing zH , the agent must move to a new cell once the quantity αxw(k, zagt)
decreases below the value δ.

Proof. If the agent is not in the cell containing zH , then it cannot be at the location zh either since A.3 ⇔
|B̃R| > 1 and by definition of zh, zh must be closer to zH than the current agent position. This implies
that fh(zagt) = 0. Similarly, by definition in Eq. 13, fχ(zagt) = 0. The maximum possible reward gained by
choosing the same cell as the current agent (denoted zs) is

J0(zs) = αxw(k, zs) + ηγfd(zs) (22)

By definition, zh ∈ B̃R. It is possible that xw(k, zh) = fχ(zh) = 0 (if the score is already zero and the
cell is located directly behind the agent) so the minimum possible value of the reward function at this point
is

J0(zh) = ηγfd(zh) + δ (23)

If the control solution from (℘3) performs correctly, the agent should be located at the point z? from (℘2)
and fd(zs) = 0. However, the proof can be applied for the case where the agent is not necessarily located on
a cell center at all times. From a geometric perspective, the maximum value of fd(zs) = (L2

x + L2
y)1/2/Rmax

which corresponds to the agent located in the corner of the cell. The distance to any other cell in B̃R must
be at least that if not greater, so fd(zh) ≥ fd(zs). This result, combined with Eq. 22 and Eq. 23, yields the
result that

{αxw(k, zs) < δ} ⇒ {J0(zh) > J0(zs)} (24)
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This shows the existence of a point with a higher score than the agent’s current cell. This gives a lower
bound of the score when the agent must choose to leave the current cell. It is possible that the agent will
chose a different cell before αxw(k, zs) < δ.

Theorems IV.1 and IV.2 ensure that an agent searching a non-zero score cell will decrease the score
consistently and an agent cannot remain at a given cell indefinitely. Combined, these two ensure movement
of the agent to different cells but does not guarantee that the map is covered. In fact, there are counter
examples where an agent can constantly choose cells of nearly zero score and never search all of the map,
thereby ignoring certain cells which have non-zero scores. So far, the previous theorems only required
assumptions A.1 - A.6. The example in Figure 7 shows that although assumptions A.1- A.6 may be satisfied,
this is not sufficient to guarantee exhaustive map coverage.
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Figure 7. Example with α = 0.15, β = 0.95, γ = 0.85, δ = 0.10 showing a map not being covered due to Assumption
A.7 violation.

In this example, the agent continues to fly around the perimeter of the map and never explores the
interior. This is due to the fact that the cost of changing heading to turn into the interior of the map is too
high relative to the other terms in the cost function. In order to guarantee complete coverage of the map,
the restriction of A.7 must be enforced.

Theorem IV.3. Under assumption A.7 and the previously described search strategy, the agent must choose
either a cell which has non-zero score, contains zh, or both as the solution to (℘2).

Proof. Assume there exists a point z0 which has a score of zero and is not zh. In this case xw(k, z0) =
fh(z0) = 0. The maximum value of the reward function at this point is

J0(z0) = η(β + γ) (25)

The minimum value of the reward function obtained by choosing zh is

J0(zh) = δ (26)

Since η ∈ [0, 1], these two results along with the assumption δ > γ + β ensures that J0(zh) > J0(z0).
This guarantees that the agent will not choose a cell if it has zero score and is not zh. Therefore, the only
other options are to choose a cell which has a non-zero score, contains zh, or both.

Theorem IV.4. Under assumptions A.4, A.5 and the previously described search strategy, if Eq. 16 is used
to choose zH and the agent chooses zh as the solution to (℘2) and zh 6= zH , then at the next time step the
point zH will remain unchanged unless it is searched by another agent.

Proof. Consider the distance between zH and zagt at a given time step k (||zH − zagt||). By definition,
zh 6= zH ⇔ zH /∈ B̃R. So if the agent chooses zh as the solution to (℘2) and zh 6= zH , the agent must move
closer to the point zH in the sense that ||zH − zagt|| cannot increase. Since the point zh is not equal to zH

then the agent cannot search the cell containing zH and score at zH will not change. Therefore, at the next
time step, the same point zH ∈ B̃max. Furthermore, since the distance between the agent and the same
point zH has decreased, it will be chosen again as zH using Eq. 16.

Of course, if the point zH is searched first by another agent, its score may decrease and it is possible that
at the next step the same point is no longer in B̃max due to the fact that the score decreased.

A similar theorem can be stated for the case where zH is chosen using Eq. 17.
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Theorem IV.5. Under assumptions A.4, A.5 and the previously described search strategy, if Eq. 17 is used
to choose zH and the agent chooses zh as the solution to (℘2) and zh 6= zH , then at the next time step the
point zH will either remain unchanged or be located in the agent’s reachable set, B̃R unless it is searched by
another agent.

Proof. Recall that if B̃max

⋂
B̃R = ∅ (there are no cells with maximum score within the agent’s reachable

set), then both Eq. 16 and Eq. 17 choose the same cell center for zH , so the proof of Theorem IV.4 applies
and shows that as long as B̃max

⋂
B̃R = ∅, the point zH will remain unchanged under these assumptions.

The difference between Eq. 16 and Eq. 17 occurs when B̃max

⋂
B̃R 6= ∅.

Assume at step k, the B̃max

⋂
B̃R = ∅ ⇒ zH /∈ B̃R. Assuming that the agent chooses zh as the solution

to (℘2) and zh 6= zH , the previous analysis shows that zH does not change. However, at the next step k +1,
if the same point zH ∈ B̃R, then it is possible that Eq. 17 will not choose the same point zH again because
there might be another member of B̃max

⋂
B̃R which is farther away from zagt. However, it is guaranteed

that B̃max

⋂
B̃R 6= ∅ since the same point zH from step k is in B̃max and B̃R under these assumptions, thus

ensuring that zH ∈ B̃R.
Of course, if the point zH is searched first by another agent, its score may decrease and it is possible that

at the next step the same point is no longer in B̃max due to the fact that the score decreased.

Figure 5 can be used as a visual aid for understanding the proofs of both Theorems IV.4 and IV.5. These
theorems can be used to guarantee that the team performs an exhaustive search of the map given the proper
conditions.

Theorem IV.6. Under the previously described assumptions and search strategy, xw(k, z) → 0 ∀z ∈ B (the
scores of all cells in the map will approach 0).

Proof. Theorem IV.2 guarantees that an agent cannot remain in a single cell indefinitely and Theorem IV.3
ensures that it must choose either a cell of non-zero score, zh, or both as the solution to (℘2) at any given
time step. If the agent chooses a cell of non-zero score, Theorem IV.1 ensures that the score of that cell is
monotonically decreased towards 0.

If the agent does not choose a cell of non-zero score, the only alternative scenario allowed by Theorem IV.3
is that the agent chooses zh and xw(k, zh) = 0. By definition of zH , if xw(k, zH) = 0, then the map has been
completely covered since all scores are at most 0. Therefore, assuming that the map has not been entirely
searched yet, xw(k, zh) = 0 ⇒ zh 6= zH .

Theorem IV.4 and Theorem IV.5 ensure that if zh 6= zH , choosing zh as the solution to (℘2) does not
change the value of zH at the next time step or if zH does change, zH ∈ B̃R at the next time step.

At this next time step, the agent once again must choose a cell with non-zero score, zh, or both. If the
agent continues to choose zh, eventually zH ∈ B̃R and at this point, choosing a cell with non-zero score, zh,
or both guarantees that a cell of non-zero score is chosen. Therefore, the score of some cell will be ensured
to decrease and given sufficient time, xw(k, z) → 0 ∀z ∈ B.

Note that the results of Theorem IV.6 yield a stronger result than simply ensuring that each cell is visited
during the mission. In the specified framework, visiting a cell once may not be enough to guarantee that
the target is not located in that cell. In the case where the agent has an unreliable sensor, the amount
of information obtained from a single visit to a cell may not decrease the score of that cell sufficiently.
Theorem IV.6 and its associated proof show that the map will be exhaustively searched for the target using
any number of agents in the sense that each cell is visited a sufficient number of times to drive the scores of
all cells in the map to zero.

Note that only one agent must be constricted by Assumption A.7 in order to guarantee an exhaustive
search by the team. Performance may be increased by relaxing Assumption A.7 for some agents but it cannot
be guaranteed that the map will be covered by the agents who do not satisfy Assumption A.7

V. Simulation Results

After analyzing the previously described search algorithm, it can be verified in simulation. A het-
erogeneous team of agents can be simulated in different environments using the framework described. A
heterogeneous team can be modeled by varying parameters in Eq. 10. The parameters used for the different
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agents using the full algorithm in are listed in Table 1. Simulation results of this test scenario are shown in
Figure 8.

Table 1. Parameters of agents in team during search missions (d = 3 for all agents) using full algorithm (no
explicit cooperation).

Agent α β γ δ h A.7 zH method
1 (purple) 0.75 0.40 0.95 0.15 0.25 No Eq. 17
2 (red) 0.90 0.50 0.90 0.05 0.35 No Eq. 17
3 (gold) 0.10 0.05 0.25 0.35 0.55 Yes Eq. 17
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(d) xw(k, z) at t = 3640

Figure 8. Full algorithm applied to 3 agents with typical sensors using Eq. 17 to choose zH .

The ‘x’ shows the location of the agent. The ‘o’ marks illustrate the agent’s path, w?, which are the
waypoints determined to be the solution to (℘3). In this situation, the prediction horizon is d = 3, so there
are 3 ‘o’ marks for each agent. Recall that the only constraint is that the last location of w? must be equal to
z?. Note that only agent 3 (gold) meets the requirement that δ > β + γ. Having one such agent is sufficient
to guarantee complete coverage and eventually the team of agents exhaustively searches the entire map.

In this scenario, the agent’s sensors are considerably degraded. Due to their decreased reliability, a single
visit to a cell only decreases the score to slightly less than the original score. This can be seen since the cell
colors change from green to a light blue instead of a dark blue. Multiple visits to the same cell are required
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to change the color to dark blue (a score of near 0). Recall the results from Theorem IV.6 ensure that the
agents visit each cell sufficiently often to drive the scores to zero. Therefore, the algorithm routes the agents
to initially search the cells of high probability and then revisits cells as required to drive the scores to zero,
guaranteeing an exhaustive search of the map. Additional test cases and analysis28 have been conducted
which support this conclusion.

A. Scenarios and Performance

To evaluate the performance of the various algorithms, several test scenarios are created. These scenarios
are used to emulate situations and environments where a general search algorithm might be used.

1. Testing Scenarios

The algorithm can be tested using several different scenarios. Three representative scenarios are shown in
Figure 9. Scenario 1 (S1) is used to represent a possible urban scenario where there are hard obstacles
such as buildings to avoid. Scenario 2 (S2) represents a maritime environment where the agents might be
searching for a lost ship on the water. Finally, scenario 3 (S3) is another urban environment where there is
some a priori knowledge regarding the target’s possible location.
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(b) Scenario 2 (S2)
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(c) Scenario 3 (S3)

Figure 9. Several test scenarios used to verify algorithm performance.

2. Performance Metrics

In order to gauge performance, several metrics are used. Perhaps the most intuitive is to sum the scores of
all the cells. This is directly proportional to the mean of the cell scores. The cumulative map score for a run
i at time step k is denoted

S(i, k) =
∑

z∈B̃

xw(k, z) (27)

Along a similar vein, the variance of the map scores is defined as

V (i, k) = Var(xw(k, z)) for z ∈ B̃ (28)

The average values across n runs are simply

Save(k) =
1
n

∑

i∈In

S(i, k) (29)

Vave(k) =
1
n

∑

i∈In

V (i, k) (30)

In terms of map coverage, the best and worse case scenarios can be given by

Smax(k) = max
i∈In

S(i, k) (31)
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Smin(k) = min
i∈In

S(i, k) (32)

In addition to coverage metrics, performance metrics which measure expected time to target detection
can be defined. The number of agents which find the target in run i is given by Ñ(i). The average number
of agents which find the target in n runs can be defined as

Ñave =
1
n

∑

i∈In

Ñ(i) (33)

The time when the mth agent finds the target is given by Tm(i). Note that by definition, T1(i) ≤ T2(i) ≤
... ≤ TM (i). The average time to target detection for the encounters is slightly more complicated. This is
because in some runs, Tm(i) is undefined (in the case that the mth agent does not find the target). Therefore,
the values of Tm(i) which contribute to the average are only those when it is defined

Tm,ave =
1

n̂(m)

∑

i∈In̂(m)

Tm(i) (34)

Where n̂(m) is the number of runs where at least m agents find the target and In̂(m) corresponds to
the indices where the times occur. The ramifications of this definition are explained in the context of the
simulation in Section V.C.2.

B. Alternative Search Strategies for Comparison

The searching algorithm can be compared with other common search strategies to evaluate its perfor-
mance. One of the simplest search strategies is the simple raster scan. This involves the agents moving
in a north/south or east/west lines until the boundary of the search is reached. The agent then moves over
by one row and then turns around.

Another heuristic search strategy that is related to the raster scan is the “lawn mower” algorithm. It is
referred to as a lawn mower algorithm because the agents follow a set of heuristics which might be similar
to a person mowing a lawn and involves the agent moving in a straight line until it encounters an obstacle
and turning in a direction clear of obstacles.

A third simple search strategy is the gradient climb algorithm. In this case, the algorithm evaluates the
scores of the cells surrounding it (to the north, east, south and west) and then chooses the cell which has
the highest score. If two or more cells have the same maximum score, the algorithm chooses the cell which
requires the smallest course change to visit. This is similar to a steepest ascent algorithm34,35 where the
feasible directions are only the four cardinal directions.

Finally, the Voronoi partitioning method has been used by several groups to generate coverage algorithms
which can be applied in this situation17,16 . In this case, the Voronoi diagram V is generated using the agent’s
positions as generators. Then the point for the agent to search within the next d steps is chosen to be within
the agent’s Voronoi polygon and its reachable set. This algorithm is outlined in Figure 10.

For purposes of comparison, the full algorithm refers to the algorithm described in Section III.

C. Comparison Results

The various comparison algorithms are used in the three different scenarios. The performance metrics defined
previously in Section V.A.2 can then be used to judge each algorithm’s efficiency.

1. Map Coverage

When evaluating the map coverage by the different strategies, the relevant quantities to analyze are the
cumulative map scores and other related metrics. These scenarios involve multiple agents in the team
searching the map with no targets.
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Figure 10. Pseudo code for randomized Voronoi partitioning al-
gorithm.

In order to judge the general behav-
ior of the algorithms, a series of Monte
Carlo simulations are used. In these sim-
ulations, the performance of each algo-
rithm is gauged over a series of 20 runs
and then averaged using Eq. 29. The best
and worst case scenarios for the series of
runs (in terms of map coverage) are also
computed using Eq. 32 and Eq. 31, re-
spectively. The results for scenario 3 are
presented in Figure 11 (the traces for the
other scenarios display similar trends).

Figure 11. Save(k) and Smax(k) for scenario 3.

In Figure 11, the solid line repre-
sents Save(k) and the dashed line rep-
resents Smax(k) for the corresponding
search strategy. The performance of the various search strategies using Save(k) and Smax(k) as metrics
is summarized in Table 2. In this table, 1 corresponds to the best performance and 6 corresponds to the
worst performance.

Table 2. Rankings of search strategies using Save(k) and Smax(k) as metrics (1 = best).

Save(k) Smax(k)
Strategy S1 S2 S3 S1 S2 S3
Lawn Mower 5 5 5 5 5 4
Randomized Voronoi 4 4 4 3 3 3
Raster Scan 3 3 3 4 4 2
Gradient Climb 2 1 2 2 1 5
Full Algorithm 1 2 1 1 2 1
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Looking at average performance measured by Save(k), it can be seen that in scenarios 1 and 3, the
performance of the algorithms from worst to best appears to be, lawn mower, randomized Voronoi, raster
scan, gradient climb, and finally the full algorithm. This is the expected result and shows that the best
performance and guarantee of map coverage is achieved with the full algorithm. It should be noted that
if the simulation were run for a longer amount of time, it is expected that the raster scan algorithm will
eventually outperform the gradient climb when using Save(k) as the metric for map coverage. Map coverage
is guaranteed with the raster scan algorithm, but it is obvious that the performance is suboptimal. Note
that in scenario 2, it appears that the gradient climb algorithm performs the best. As mentioned previously,
this occurs because the areas to be searched are connected and the environment is fairly simple. If the
environment was comprised of long, narrow corridors, the gradient climb algorithm would perform poorly
due to the fact that it would not cross over areas of low score whereas the full algorithm would.

The guarantees of map coverage are more evident when looking at the worst case scenario for map
coverage. Recall that Smax(k) is a measure of the worst case scenario possible over all test cases. In this
case, it is obvious that the full algorithm with explicit cooperation is the best policy to use. Although the
gradient climb strategy may work well for some situations, there are situations where it performs the worst
out of all the possible strategies (Smax(k) for scenario 3).

The variance of the scores, Vave(k) for scenario 3 is shown in Figure 12(a). The results of this figure
reinforce the notion that the full algorithm performs the best in terms of driving the variance to zero as well.

Improving performance in a searching mission typically involves increasing the number of agents involved
in the search. The main challenge with current unmanned systems is that raising the number of agents greatly
increases operator workload required to manage the team. If the team is comprised of heterogeneous agents
with different capabilities, the mission management task becomes even more complicated. The benefits of
the full algorithm within this framework can be seen when looking at the coverage vs. time for varying
number of agents. For example, the effects of varying the number of homogeneous agents operating under
the full algorithm strategy are shown shown in Figure 12(b).
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Figure 12. Coverage metrics for varying number of agent using scenario 3.

Figure 12(b) displays several interesting phenomena. First, the guarantee of exhaustive map searching
is reinforced. Also, the effect of increasing the number of agents involved in the search is evident since in
both cases, the time to drive the map scores to zero decreases as the number of agents increase. The effect
of increasing the number of agents in the team can be investigated by calculating the settling time for the
coverage metric. In this context, the settling time is defined as the time it takes for Save(k) to drop below
15% of the initial cumulative map score. As expected, the settling time decreases as the number of agents
increases. Notice that the settling time does not decrease in a linear fashion. Instead, the relative increase in
performance decreases with each successive addition of a team member. In other words, adding more agents
to the team does not greatly increase performance after a certain point.
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2. Time to Target Detection

There are several parameters that measure the efficiency of the algorithm in terms of target detection time.
One metric is the average number of agents that find the target for a given scenario. Related to this metric
is the number of scenarios where at least 1, 2, or 3 agents find the target. All runs for the time to target
detection Monte Carlo simulation use 200 time steps with 3 agents.

The values of Ñave, n̂(1), n̂(2), and n̂(3) for 30 runs are summarized in Table 3.
The easiest metric to interpret is the average number of agents that find the target. This is shown in the

first three columns of Table 3. As can be seen, the full algorithm performs the best in all scenarios in terms
of getting the most agents to find the target.

It is also worth noting that the raster scan method does not appear to be affected by the different
scenarios. This makes sense considering that information about the environment is not taken into account
when using this method. It should be noted that in scenario 3, many of the algorithms which use information
about the environment (gradient climb and full algorithm) show a decrease in performance. This is because
the initial world map (shown previously in Figure 9(c)) has several regions of high score. These would
correspond to a priori knowledge of possible target locations. Despite this being the initial state of the
world, the locations of the targets are placed according to a uniform distribution across the map. In other
words, the initial target location is not distributed according to the distribution shown in Figure 9(c). This
simulates a situation where the agents are given inaccurate a priori knowledge before starting the mission,
thus leading to a decrease in performance. To simulate a situation with accurate information, the initial
target location would need to be distributed according to the distribution shown in Figure 9(c).36

The columns for n̂(m) show the number of runs where m agents find the target. Once again, it is apparent
that methods which use information about the environment perform the best.

Table 3. Average number of agents which find target and number of scenarios where at least 1, 2, or 3 agents
finds the target (30 scenarios each).

Average # Agents # Runs w/ # Runs w/ # Runs w/
Which Find Target 1 Encounter 2 Encounters 3 Encounters

Ñave n̂(1) n̂(2) n̂(3)
Strategy S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
Lawn Mower 0.267 0.367 0.233 5 8 5 3 2 2 0 1 0
Randomized Voronoi 0.467 0.433 0.633 14 13 19 0 0 0 0 0 0
Raster Scan 1.000 1.033 1.200 20 23 23 9 8 11 1 0 2
Gradient Climb 1.400 2.067 1.500 23 27 19 13 24 16 6 11 10
Full Algorithm 2.567 2.400 1.500 28 24 16 26 24 15 23 24 14

Information regarding the average amount of time required to find the target are displayed in Table 4.

Table 4. Average time to target detection by first, second, and third agent (30 scenarios each).

Average Time for Average Time for Average Time for
1st Encounter 2nd Encounter 3rd Encounter

T1,ave T2,ave T3,ave

Strategy S1 S2 S3 S1 S2 S3 S1 S2 S3
Lawn Mower 143 322 143 500 774 501 N/A 754 N/A
Randomized Voronoi 1114 845 1115 N/A N/A N/A N/A N/A N/A
Raster Scan 1045 807 1045 1797 1412 1798 1989 N/A 1989
Gradient Climb 1115 814 1116 1222 1316 1223 1481 1715 1481
Full Algorithm 844 915 844 904 1143 904 1238 1264 1238

The results in Table 4 are not as good of a representation of performance as those shown in Table 3.
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The reason can be seen from the definition of Tm,ave in Eq. 34. These averages are computed only for the
situations where the agents find the target. For example, with the lawn mower strategy with scenario 1,
from Table 3, it can be seen only 5, 3, and 0 runs out of 30 show at least 1, 2, or 3 agents finding the target,
respectively. Therefore, the averages T1,ave, T2,ave, and T3,ave are computed using only 5, 3, and 0 samples
(explaining why T3,ave = N/A). Using the lawn mower strategy, the agents tend to become stuck in limit
cycles and therefore, if the agent is going to find the target, it is will happen very quickly or not at all. This
shows why the values of T1,ave and T2,ave are low. This can be compared with the full algorithm where it is
virtually guaranteed that the agents will find the target but it will take a longer amount of time to do so.

Furthermore, notice that it is not required that T1,ave ≤ T2,ave ≤ ... ≤ TM,ave. For example, for the full
algorithm with explicit cooperation using scenario 2, T3,ave < T2,ave. Once again, this is because the average
is computed over a different number of samples.

VI. Conclusions and Further Research

Improving performance in a searching mission typically involves increasing the number of agents involved
in the search. The main challenge with current manned systems is that raising the number of agents
greatly increases operator workload required to manage the team. If the team is comprised of heterogeneous
agents with different capabilities, the mission management task becomes even more complicated. This paper
presents a modular and scalable searching algorithm that can be used to coordinate a large numbers of
heterogeneous agents involved in a searching mission. The centralized occupancy based map represents the
system’s belief of the state of the world at a given time. The map can be propagated forward in time to
provide the estimate of the future state of the world at step k +d. Each agent then decides which coordinate
is the most desirable to search in the next d steps. The team can be comprised of different types of agents
with different capabilities. The formulation allows each agent to determine what is desirable for its individual
capabilities. Each agent then computes control decisions based on the predicted future state of the world.
Although these actions may not be optimal in a single step, they will benefit the agent in the future.

Although there is no explicit cooperation between agents in the team, the agents are implicitly coupled
through the centralized occupancy map. The algorithm remains scalable because each agent does not need
to explicitly know about the existence of other agents. One consequence of this architecture is that multiple
agents may overlap and search the same areas. Other work28 has investigated using Voronoi partitions
to ameliorate this problem. Despite this, each agent executes the searching algorithm and the emergent
behavior is that the team performs a coordinated search.

The modularity of the algorithm allows the user to tailoring specific parts of the algorithm to address
individual agent capabilities. This paper focused mostly on the solution for (℘2) and showed that under
the proposed solution, the agents are shown to perform an exhaustive search of the map regardless of the
methods used to provide solutions to (℘1) and (℘3).

Future work in this area is directed towards increasing searching performance for all agents. As mentioned
previously, it has been observed that using parameters which violate Assumption A.7 tends to yield paths
which cover more ground quicker and in a seemingly more efficient manner. Although an exhaustive search
of the map is guaranteed under the current conditions, Assumption A.7 hinders increased performance of
the system. Work is directed towards tailoring the reward function and finding additional constraints which
may be more relaxed than Assumption A.7 and still guarantees coverage. The issue of system performance
is tied tightly to the way that (℘3) is solved. A closer look at the relationships between (℘2) and (℘3) is the
focus of current research activity. In addition, the target may be moving or evading the searching agents.
Therefore the assumption of a static environment is not valid. Investigations into incorporating a dynamic
world model and changing scores is also being conducted.
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