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This work considers algorithms for maritime search and surveillance missions. During
these type of missions, an agent searches for a target using its various sensors. Performing
target identification and classification of sensor returns is a crucial component of the mis-
sion. This paper investigates a system to process returns from a low dimensional sensor
and automatically classify the data. This system uses an algorithm that employs the sen-
sor and motion model of the agent to augment the limited data from the sensor. Several
differentiating features are then extracted and used to train various classifiers and machine
learning algorithms.

Nomenclature

∆ψ Change in heading
σsensor Standard deviation of sensor
χt Particle filter set at time t
ψ Heading
Ct Sum of particle filter weights at time t
f Feature vector
g() Sampling function
h() Target magnetic signature function
h̃i() False anomaly i signature function
M Total number of particles
p(A|B) Conditional probability of A given B
T Number of particle filter updates for a trajectory
u Control vector
Va Airspeed
Vt Variance of weights at time t

w
[m]
t Weight on particle m at time t

Wt Weight set at time t
x State of agent
zt Sensor measurement made by agent
z
[m]
t Sensor measurement expected by particle m

I. Introduction

In many modern missions, unmanned system have shown potential and promise to greatly increase
efficiency and success rates. One such mission is the search and surveillance type application which is
a specialized type of Intelligence, Surveillance, and Reconnaissance (ISR) mission. Although Unmanned
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Aerial Vehicles (UAVs) appear to be ideal for these operations, these missions typically require heavy human
involvement. High operator involvement is required in logistics and operation; for example, distributing
assignments such as which regions to search and coordinating and interpreting subsequent sensor measure-
ments. Often times, the number of required operation crew for these autonomous systems exceed those of
their manned counterparts. Therefore, the primary limitation to concurrent operation of multiple vehicles
remains lack of autonomy of these vehicles.

A primary goal in a searching mission is typically to find a target in some region.1 As an agent performs
its search, it may encounter the target it is searching for or it may encounter an object which produces
a sensor reading but is not the desired target (a false anomaly). The main challenge in this situation is
to correctly identify or classify these encountered anomalies. Typically, the target identification process is
handled by a human operator. It is the operator’s responsibility to monitor sensor outputs and determine
if readings correspond to the desired target, false anomalies, or extraneous noise. Many unmanned systems
carry optical sensors such as cameras or infra-red imaging devices. Autonomously processing the output of
these sensors and classifying readings requires significant computational resources and effort and in many
cases, a human operator will outperform a computer generated algorithm in terms of classification accuracy
and reliability. This can be mainly attributed to the fact that the output of the sensor is a complex multi-
dimensional set of data with many features being explicit and more easily extracted and recognized by a
trained human operator. As the number of agents involved in the search mission increases, so does the
required number of human operators. A large team of expensive agents with sophisticated sensors may not
be the most effective system. A more scalable and implementable team would be comprised of several smaller
agents with less complex sensors. These more primitive sensors may output a smaller dimension signal which
a human operator may have difficulty interpreting. Automating the target identification process may have
more promise in this context. In a noisy environment, it becomes difficult for a human operator to classify
sensor readings and assign confidence in these readings because the useful features are implicit in the signal.
In this situation, the useful features in the signal can be extracted and then used to train a machine learning
algorithm to perform the classification which may have better accuracy and reliability than the human
operator.

The topic of machine learned classifiers is a large and well studied field. One of the most well known
family of classification algorithms are the boosting algorithms generated by Schapire2 and Viola et al.3

Groups such as Lester et al.4 have applied this idea and studied the problem of fusing data from a wearable
unit with multiple sensors and extracting features from which to train boosting algorithms for automatic
classification of human activities. Raj5 and Fox6 et al. addressed a similar problem using Rao-Blackwellized
particle filters and hidden Markov models (HMMs) to incorporate temporal smoothness into the task of
classifying human activities from the same wearable multi-sensor unit. Previous work7 has investigated the
potential for using particle filters for target identification on a basic level.

This work contributes to the large area of research in autonomous target identification. The main research
focus is to develop a system which processes the output from a low dimensional sensor and extract relevant
features from which to train a classifier. This paper investigates the use of particle filters instead of the
traditional HMMs to incorporate temporal smoothness and regularity into the target identification system.

The example used in this paper is an agent searching for a target based on its magnetic sigature. The
agent is equipped with a simple scalar magnetometer which can measure the magnetic field magnitude at its
current location. Section II introduces the concept of a local total magnetic intensity (TMI) map. The use of
this map in searching for magnetic anomalies is also explained. With this framework in place, a Monte-Carlo
type simulation is performed to generated training data which is detailed in Section III. Section IV describes
the extraction of relevant features from the training data to train a classification algorithm discussed in
Section V. Finally, conclusions and continuing research directions are presented in Section VI.

II. Aeromagnetic Data Surveys

A. The Georanger autonomous aeromagnetic survey vehicle

For aeromagnetic surveys, the agent (UAV) is essentially a mobile sensor. The vehicle autonomy serves the
engineering user who simply specifies an area of interest and, after some processing, receives a corresponding
set of data. In this idealized perspective, the data-analyst is unconcerned with the method with which the
data was obtained. To achieve such an objective, autonomy is required at several hierarchical levels. The
current work focuses on target detection and classification tactics. The vehicle serving as the sensor platform
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in this work is the Fugro Georanger, provided by The Insitu Group, and is shown in Figure 1.
The Georanger is a derivative of the ScanEagle vehicle which has the following performance specifications:

Max Takeoff Weight 41.9 lb / 19 kg
Payload 15.4 lb / 7 kg
Endurance 15 hours
Service Ceiling 16400 ft / 5000 m
Max Level Speed 70 knots / 36 m/s
Cruise Speed 49 knots / 25 m/s
Wing Span 10.2 ft / 3.1 m
Fuselage Diameter 7.0 in / 0.2 m
Length 4.9 ft / 1.5 m

Each agent is equipped with a magnetometer to measure the total magnetic intensity at its current
location. This data is relayed to a ground station. The crucial piece of information required by the ground
station is a local magnetic map of the region where the search is taking place. This map of the TMI of the
region may be acquired using analytical models such as the WMM-2000 or WGS-84 model.8 However, since
these models are coefficient-based analytical models, they do not capture temporal or small local variations
in magnetic field strength. Therefore, a more accurate map is obtained by performing an actual survey over
the area of interest to collect the necessary data.

Figure 1. Image of the Fugro autonomous aeromagnetic survey vehicle, the ‘Georanger I’ by the Insitu Group.

B. Total Magnetic Intensity maps

When an actual search is executed, differences between the ground station map of the magnetic field and
the actual magnetic field will appear as magnetic anomalies. In this work, to minimize the number of false
anomaly encounters and to increase the accuracy of the evaluation, actual magnetic survey data is used as
a local TMI map. This data is provided by Fugro Airborne Surveys. The data was collected by a manned
aircraft equipped with a magnetometer to measure the TMI. This information, coupled with a GPS position,
provides the TMI in “line data” form. This data can then be interpolated into a 100x100 meter grid. TMI
readings at locations other than survey points are linearly interpolated from this grid. A magnetic map of a
region in the Gulf of Mexico and a simple grid search trajectory are shown below in Figure 2(a). Here, the
data is acquired in an approximate 60x50 km grid. The regions of uniform color denote areas where survey
data is not available, creating the staircase appearance. Assuming that there are only permanent fixtures in
the region when the map is acquired, this map now makes up the reference set of data on the ground station.

In addition to a local magnetic map, a magnetic model of the desired target is also required. In the
following example, the magnetic signature of the target (an idealized submarine) is modeled as a simple two
dimensional Gaussian distribution, shown in Figure 3. The magnetic signature of the target is a function
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(a) Total magnetic intensity map. (b) Associated magnetic traces.

Figure 2. The total magnetic intensity map and trajectory over area with corresponding magnetometer
readings.

of many variables, namely depth of target, sensor altitude, etc. For current purposes, the target is assumed
stationary and at a fixed depth, thereby rendering the magnetic signature static. Assuming that the magnetic
signature of the target simply adds to the total magnetic intensity of the local region in a linear fashion,9

anomalies can easily be identified by simply subtracting the magnetometer reading from the local reference
map which is stored on the ground station.

Figure 3. Magnetic signature of target.
Magnetic signature given by z = h(x, y).

The described approach can be used to compare magne-
tometer readings with the reference data to create a differen-
tial measurement. Large differential measurements imply the
presence of a new magnetic anomaly and possible target. If
the agent does not fly over any targets, the magnetic anomaly
should be near zero. Small non-zero anomaly encounters can
be attributed to temporal variations in magnetic field and sen-
sor noise. A simple grid search pattern was shown previously
in Figure 2(a). The location of the target is shown as a dashed
red box and the trajectory of the agent is shown in the solid
red line (starting in the lower left corner). The associated total
magnetic intensity trace and differential measurement trace is
shown in Figure 2(b). The total magnetic intensity reading as
the agent flies over this trajectory is shown in the upper trace
and the differential measurement is shown in the lower trace.
As the agent flies this search trajectory, the sensor measure-
ment is constantly compared to the reference data set to gen-
erate a differential measurement. As can be seen in Figure 2(b),
given the differential magnetometer reading, the anomaly en-
counter can be easily detected (two spikes at approximately
2700 and 3700 seconds) even though the actual range of absolute measurements may be large.

Magnetic anomalies can be caused by many factors such as temporal variations in the magnetic field or
false anomaly encounters (i.e. boats/vessels). Once a magnetic anomaly is encountered, it must be identified
and classified. On a simplistic level, the overall goal is to either classify the anomaly as the desired target or
a false reading. Obviously, it would be simple to identify the anomaly if the entire magnetic signature of the
anomaly is obtained (the UAV flies over the entire boxed region in Figure 2(a)). However, this requires many
passes over a potential target, and significant time to make the necessary measurements. If the anomaly is
moving or evading, this may not be feasible. To further exacerbate the problem, if the agent is equipped with
a simplistic sensor (like a simple scalar magnetometer as in this case), the data obtained from a single pass
may be limited. The question now becomes, given only one or two passes over the anomaly, is it possible
to correctly identify or provide a probability that this anomaly is indeed the target being sought after using
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this limited sensor data?

III. Generating Training Data

Generating a representative set of training data is crucial to the performance of the resulting classifier.
This section describes how the training data is generated.

A. Simulated Trajectories

In practice, it is assumed that the agent’s orientation in the earth frame is known via GPS. Because the
anomaly’s location and orientation is not known, the anomaly’s frame of reference with respect to the earth
frame is unknown. In practice, the agent will fly over a region and encounter an unexpected sensor reading
(Figure 2(b)). It can be inferred from this reading that an anomaly was encountered, but it is unknown
which part of the anomaly was flown over that generate this spurious measurement. One problem that
comes to mind in this situation is how to estimate the state of the agent with respect to the target’s frame
of reference. In this context, the agent’s state and control vectors are given by

x(t) =




x1(t)
x2(t)
x3(t)


 =




x(t)
y(t)
ψ(t)


 =




xtgt
uav/tgt(t)

ytgt
uav/tgt(t)

ψuav/tgt(t)


 u(t) =

[
u1(t)
u2(t)

]
=

[
Vuav(t)

∆ψuav/tgt(t)

]
(1)

The agent is model as a simple planar kinematic vehicle with dynamics given by

x(t + 1) = u1(t)∆T

[
cos(x3(t) + u2(t)) + x1(t)
sin(x3(t) + u2(t)) + x2(t)

]
(2)

A simulation environment was developed that allowed an agent to fly over a magnetic anomaly. The
magnetic anomaly is either the true target with magnetic signature as described previously in Figure 3 or
a false anomaly. To make the problem challenging, the false anomalies are similar to the true anomaly. An
example of three false anomaly functions are shown below in Figure 4.

(a) h̃1(x, y) (b) h̃2(x, y) (c) h̃3(x, y)

Figure 4. Possible false anomaly signatures

A single trajectory consists of an agent flying a path over an anomaly. As the agent flies over an
environment, its sensor makes a scalar reading (z(k) ∈ <) at each time step. Because only the differential
measurement is desired, the magnetic contribution by the environment is neglected. The sensor is modeled
as

z(t) =

{
h(x1(t), x2(t)) + g(N(0, σ2

sensor)) if true target encounter
h̃i(x1(t), x2(t)) + g(N(0, σ2

sensor)) if false anomaly encounter
(3)

In Eq. 3, g is a sampling function which simply chooses a sample from a probability density function (in
this case, a Gaussian distribution with zero mean and variance σ2

sensor). The noise parameterized by σsensor
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is used to model the variation in the magnetic field and also to model sensor noise. The anomaly function
h or h̃i is either the true target or one of the false anomalies described previously.

A Monte Carlo simulation is run with random, linear trajectories over the target. This generates many
examples of trajectories and measurements of the agent flying over both the true target and the false
anomalies. Of these runs, only ones that meet a certain requirement are selected to be used as training
examples.

B. Selecting Sufficient Runs

The rate of convergence of most learning algorithms is dependent on the quality of the training data. It is
desirable to train a classifier using examples which are distinguishable and are good representations of actual
trajectories and to eliminate ambiguous examples which may confuse the classifier. In this application, a
run is deemed sufficient if it satisfies several criteria. It is unlikely that a measurement trace over a false
anomaly will be able to be discerned from a trace over the true anomaly if there are only a small number
of measurements made. Therefore, a run is deemed sufficient only if the agent makes a minimum number
of measurements as it flies over an anomaly. Similarly, a run is deemed sufficient only if the magnitude of
the differential sensor measurement exceeds a certain threshold. This eliminates runs where the agent flies
over the edge of the anomaly parallel with the axis of the anomaly (where the anomaly magnetic signature
is nearly zero).

The runs that are used as training examples must meet both requirements. This process helps ensure
that the training examples that are fed to the learning algorithm are distinctive enough to train a decent
classifier. An example of the total output of the Monte Carlo simulation and the selection of sufficient runs
is shown in Figure 5.

(a) All trajectories (b) Sufficient trajectories used as training examples

Figure 5. Removing insufficient trajectories from Monte Carlo simulation

Despite being selective about the runs to use as training data, at this point, the raw sensor measurements
from these trajectories do not provide enough distinction to differentiate the class of anomaly. An example
of the raw sensor measurements from both a true and false anomaly encounter are shown in Figure 6. In
this example it can be seen why it is difficult to discern the class of the anomaly based solely on these raw
sensor readings because the traces are so similar. It is difficult to determine the relevant features to look for
in order to classify the anomaly. The task of extracting the relevant features from the sensor measurements
is addressed in the next section.

IV. Feature Extraction

This section discusses processing the raw sensor measurements in order to generate a feature vector which
can be used to train a classification algorithm.

As evidenced by Figure 6, the raw sensor measurements offer limited amounts of useful data when it

6 of 15

American Institute of Aeronautics and Astronautics



comes to classifying the anomaly. One option is to simply use the the sensor measurement at each time step
as an individual training example. Theoretically, it should be possible to create a classifier which is more
successful than random guessing using this simple feature. For example, if the maximum sensor reading
exceeds the maximum of the target signature, one can be fairly certain that the anomaly encountered is a
false anomaly. However, this allows for multiple classifications within the same trace. Although this method
provides an abundance of training data, it is virtually impossible to generate a reliable classifier using this
simple a feature set.

Figure 6. Raw sensor measurements from
both a true and false anomaly encounter.

Improvements to the accuracy can be made by using the
assumption that during an anomaly encounter, the agent only
encounters the true target or a false anomaly (it cannot en-
counter both together). This means that an entire trace should
be classified as one or the other. Instead of using the sensor
value at every time step, one can extract features like the maxi-
mum/minimum sensor values over the entire trace. This yields
a single training example for each trajectory. This helps incor-
porate some temporal smoothness to the classification as this
yields only a single classification per anomaly encounter.

Basic features such as maximum/minimum sensor readings
and averages can be extracted fairly easily. These basic features
help discern the classes somewhat. However, more ambiguous
cases require additional features.

A. Particle Filter Features

The previously mentioned features based on the raw sensor
measurements still prove to be insufficient to train an accurate
classifier. Further information can be gleaned by considering both the sensor model (Eq.3) and the dynamic
motion model (Eq.6) of the agent. Since the data traces are generated using these models, a method which
considers these temporal aspects has a much greater potential to yield useful features.

Typically, temporal smoothness is incorporated using Hidden Markov Models or Dynamic Bayesian Net-
works. These are useful to reduce classification noise in continuous traces. Some applications are classifying
human activities4,5 where the classification can switch between different affectivities in a reasonable manner
(for example, humans might transition from walking to sitting but typically do not rapidly transition be-
tween sitting and riding a bike). In effect, this makes use of the agent’s motion model to predict the state
and thereby augment the classification. Although this method can be used in this application to smooth
the data, it does not explicitly use information about how the sensor measurements are gathered (the sensor
model in Eq. 3). In this application, the temporal aspects of both the motion and sensor model are addressed
using particle filters.10

A particle filter is a recursive, non-parametric Bayes filter technique which estimates the states of a
system using a finite number of state hypotheses.11 In this situation, the state vector that is being estimated
is the position of the agent with respect to the target, expressed in the target’s frame of reference and the
relative heading of the agent with respect to the target.

x
[m]
t =




xtgt
uav/tgt

ytgt
uav/tgt

ψuav/tgt


 (4)

Each individual state hypothesis, x
[m]
t , is referred to as a particle, and together they make up the particle

filter set, χt.

χt =
⋃

M

x
[m]
t =

{
x

[1]
t , x

[2]
t , . . . , x

[M ]
t

}
(5)

Historically, particle filters have been employed in this manner to perform tasks such as localization12

and state estimation.13 In this situation, the goal of the filter is to estimate the state of the agent (position
and orientation with respect to the target, expressed in the target’s frame of reference). The particle filter
performs this estimate using two main steps, a prediction and correction step.
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1. Prediction

In the prediction step, each particle is propagated forward in time using a motion model of the individual
agent.

x
[m]
t = g

(
p

(
x

[m]
t |ut, x

[m]
t−1

))
(6)

Each new particle is created from the old particle and the current control (applied to transition particle
at time t−1 to time t). The term p

(
x

[m]
t |ut, x

[m]
t−1

)
is a multi-dimensional probability density function of the

new state given the old state and current control. Notice that in this formulation, the state transition is not
a deterministic process. This stochastic aspect actually has important implications regarding the robustness
of the particle filter.11

Although p
(
x

[m]
t |ut, x

[m]
t−1

)
may be difficult to compute analytically, Eq. 6 is implemented in simulation

by simply adding noise to the control and then propagating the state forward using a deterministic motion
model in Eq. 6. In simulation, the noise added to each element of the control vector is obtained by sampling
from a normal, Gaussian distribution with a variable standard deviation, σ. The standard deviation is a
function of the actual control applied to the agent, ut. In effect, as ||ut|| increases, so does σ. Physically, this
translates into a model whose state transition becomes more uncertain as the agent moves faster or executes
larger heading changes.

In addition to the control input at each time step, the actual sensor measurement observed by the agent,
zt, is made available to the particle filter. Each particle is then assigned a weight, w

[m]
t , based on how likely

it is to make the same sensor measurement at its current state
(
w

[m]
t ∝ p

(
zt|x[m]

t

))
. In effect, a higher

weight should be assigned to particles whose states are close to the actual state, xt. Notice that this does
not require a sampling function like Eq. 6 because zt and x

[m]
t are known at this point. This is another

description of the sensor model of the agent. It allows for the fact that even though a particle’s state may
be vastly different than the true state of the agent, if the sensor is poor or unreliable, it has the possibility
of still making the same sensor reading as the agent.

The sensor model used in simulation calculates the weights by creating an error between the particle
sensor measurement and the true sensor measurement and then using this as the argument of a Gaussian
distribution.

w
[m]
t = (2πσ2

sensor)
− 1

2 exp

(
−1

2
(zt − z

[m]
t )2

σ2
sensor

)
(7)

In Eq. 7, z
[m]
t is the predicted sensor measurement made by particle m computed using the same sensor

model in Eq. 3. As stated previously, σsensor is a measure of the sensor’s accuracy. A larger σsensor implies
an unreliable sensor; therefore, particles that do not make the same measurement as the true agent still
receive high weights. Note that the weight is not a probability, but this still achieves the goal of assigning
high weights to particles that are more likely to have states which are similar to the true agent state. Similar
to the particle set, χt, the weight set at a given time step t is given by

Wt =
⋃

M

w
[m]
t =

{
w

[1]
t , w

[2]
t , . . . , w

[M ]
t

}
(8)

2. Correction

Now that each particle has been propagated forward and assigned a weight, it becomes necessary to correct
the particle filter set so that it comes closer to representing the actual state of the agent. This process is
known as resampling.

As stated before, the particle filter’s estimate of the state is made up of all the particles. Currently,
the particle filter set contains particles which have both high and low weights. As more and more sensor
measurements are acquired, it is desired that high scoring particles are replicated and kept in the next
generation population whereas low scoring particles are discarded. The important feature in this evolutionary
process is that the particles are resampled with replacement so that the total number of particles remains
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constant at each cycle. Any type of evolutionary scheme, such as survival of the fittest, can be used to evolve
the current population to the next.

In simulation, a roulette wheel method is used. In this method, M bins are created (one for each particle).
The size of each bin is directly proportional to the weight of the associated particle. The bins are placed
next to each other and a random number is then generated. The bin in which the random number falls
then has its associated particle included in the next population. This process is repeated M times and is
synonymous to spinning a roulette wheel M times where the number and size of the slots on the wheel are
directly proportional to M and the weights, respectively.

Using the roulette wheel method yields resampling proportional to the weights. This allows for a particle
to be copied multiple times in the next generation. This also generates a small probability that particles
with low weights have the possibility to survive to the next generation as well.

One important feature of the particle filter is the ability to use different motion and sensor models. This
allows for a team of agents to be comprised of different types of vehicles and sensors. This simply requires
modifying the motion and sensor models of each particle filter for each member of the heterogeneous team.

3. Execution

When an agent encounters an anomaly whose magnitude exceeds the noise threshold (approximately 1 nT
in this case), the particle filter is started in an attempt to estimate the state of the agent with respect to the
target. The particle filter’s progression as the agent flies diagonally over the target is displayed over a top
down view of the target signature (Figure 3) and is shown below in Figure 7.

In this sequence, the large red circle represents the actual location of the agent and the solid red line
represents the agent’s trajectory over the target. The smaller purple dots represent the particle filter’s many
different hypotheses of the possible state of the agent (position north, position east, and heading). The actual
agent crosses over the target starting in the lower left corner and flies over it to the upper right corner. Also
note that the initial distribution of particles is not simply random over the domain. Since the algorithm
is recursive, the number of iterations before convergence is based on its initial condition. Incorporating a
priori knowledge that the particle filter is started when the anomaly magnitude exceeds 1 nT suggests that
the particles be clustered along the level curves where the target signature is 1 nT.

As the agent obtains more and more sensor measurements (at a simulated rate of 1 Hz), the particle
filter is able to eliminate particles which are inconsistent with the current measurement and resample these
particles to regions which have a higher probability of producing the actual sensor reading, zt. This is why
as time progresses, the particles become concentrated around the actual UAV location. Near the end of the
simulation, there are four distinct groups of particles. This is due to the symmetry of the underlying target
signature. Each of these four groups of particles are equally likely because each group would produce the
correct actual sensor readings. In effect, z

[m]
t ≈ zt ∀m. Because of this symmetry, the particle filter is not

able to uniquely identify the position of the agent with respect to the target. This would require multiple
passes over the target and more sensor measurements.

Although the goal of the particle filter is to estimate the position of the agent with respect to the target
in the target frame of reference, in the larger picture, the location of the target with respect to the agent in
the agent frame of reference is more useful because it then becomes simple to locate the target in the earth
frame of reference (agent’s position and orientation in the earth frame of reference is known from GPS).
Each particle can be transformed using Eq. 9.




xuav
tgt/uav

yuav
tgt/uav

ψtgt/uav


 =



− cos(ψuav/tgt) sin(ψuav/tgt) 0
− sin(ψuav/tgt) − cos(ψuav/tgt) 0

0 0 −1







xtgt
uav/tgt

ytgt
uav/tgt

ψuav/tgt


 (9)

When each particle is transformed in this fashion, the distribution of the target location with respect to
the agent in the agent’s frame of reference becomes as shown in Figure 8.

As shown in the first two plots in Figure 8(b), it appears that the particle filter now has a somewhat
unique estimate of the location of the target relative to the agent as shown by an approximate unimodal
distribution in xuav

tgt/uav and yuav
tgt/uav centered at approximately 0 and -2250, respectively. However, notice

that the distribution of ψtgt/uav is obviously a multimodal distribution. This distribution is actually the sum
of four peaks which should ideally be centered at ±11.3 degrees and ±168.7 degrees. Since the number of
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(a) Initial particle distribution, χ0 (b) χ98

(c) χ198 (d) χ248

Figure 7. Particle filter progression during a target encounter. The solid line indicates actual aircraft position
relative to target signature, while the particles concentrate about possible positions

particles was not large enough and since the motion and sensor models of the particle filter were not highly
accurate, the two peaks centered at ±11.3 degrees appear as a single peak at 0 degrees.

This multimodal distribution in ψtgt/uav reflects the four distinct state hypotheses shown previously in
Figure 7(d). However, if the orientation of the target is not desired, then by transforming the particles, it
is possible to obtain a unique estimate of simply xuav

tgt/uav and yuav
tgt/uav. Note that this is only the case when

the agent happens to fly directly over the target as shown in this example. In a more general case where the
agent passes over the target off-centered, then even with the transformation of the particles, the location of
the target cannot be determined uniquely (but the number of possible locations may be reduced).

B. Generating a Feature Vector

The majority of this section has discussed addressing the state estimation problem using the particle filter
method. Deviating from the standard usage of the filter, a closer look at the weights, w

[m]
t , is warranted in

the context of target identification.
A scalar quantity which collectively measures the overall accuracy of the particle filter can be obtained

by simply summing all the weights. If most of the particles are in locations that are similar to the true state,
then the sum of the overall weights should be large.

10 of 15

American Institute of Aeronautics and Astronautics



(a) Distribution of transformed particles (b) Histogram distribution of xuav
tgt/uav

, yuav
tgt/uav

, and ψtgt/uav

Figure 8. Particles now represent position and orientation of target with respect to the agent in the agent’s
frame of reference.

Ct =
M∑

m=1

w
[m]
t (10)

This trace of a Ct vs. t might be considered a side-effect of estimating xt, but as will be shown later,
this is the main piece of information that will be used to address the target identification problem.

The particle filter will attempt to estimate the agent’s state regardless of whether the anomaly encoun-
tered is the actual target or a false anomaly. A method to identify the target is now required. The sum
of all the particle weights, Ct, provides a quantitative measure of how confident the particle filter is that
the anomaly encountered is the actual target. If all or most of the particles are resampled to areas which
are near the actual state of the agent, then most of the weights will be fairly high. The sum of the particle
weights for an encounter with the actual target and an encounter with a false anomaly is shown below in
Figure 9.

(a) True target encounter (b) False anomaly encounter

Figure 9. Sum of all particle weights during a true target encounter and a false anomaly encounter.

In Figure 9, the difference between a true target encounter and a false anomaly encounter is fairly clear.
In the situation where the agent encounters the true target, the confidence measure increases initially as the
particles are quickly resampled to locations which are consistent with the actual sensor measurements and
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then stays fairly constant. However, in the case where the agent encounters a false anomaly, the particle
filter regularly “loses confidence” as inconsistent sensor measurements are obtained. This is characterized
by the sharp drops in the sum of the particle weights.

The variance of the particle weights also is a good indicator of filter confidence. If the variance is high,
this implies that the weight of the particles are spread out. Since a high weight indicates a good state
estimate, if the filter is not very confident in its state estimate, the variance is high. The variance at each
time step of a single trajectory is recorded to be used in generating features later.

Vt = Var(Wt) (11)

Using the raw sensor readings and the particle filter outputs, an eleven dimensional feature vector is
generated

f =




T

M(2πσ2)−1/2

maxt=1,...,T (zt)

1
T

∑T
t=1 zt

1
T

∑T
t=1 Vt

1
T

∑T
t=1 Ct

1
T

∑T
t=1

Ct

M(2πσ2)−1/2

maxt=1,...,T (Vt)−mint=1,...,T (Vt)

maxt=1,...,T (Ct)−mint=1,...,T (Ct)

maxt=1,...,T−1 |Vt+1 − Vt|

maxt=1,...,T−1 |Ct+1 − Ct|




(12)

The first two features are constants which are functions of the particle filter execution. The first feature
is simply the number of measurements made by the agent. The second feature is the maximum sum of the
weights possible at any point during the particle filter execution. The third feature is simply the maximum
sensor reading encountered and is included for reasons discussed previously. The next three features are the
average sensor reading, variance of weights, and sum of weights, respectively. The seventh feature is the
average weight proportion which is somewhat redundant but is helpful when visualizing data. The next two
are the changes in variance of the weights and sum of the weights over the entire particle filter execution.
Finally, the last two features are the maximum change in variance of the weight and sum of the weights in
a single step, respectively.

A single feature vector is generated for each measurement trace and represents a single example for
training a classifier. Using these features with various learning algorithms are discussed in the next section.

V. Learning a Classifier

A. Training Classification Algorithms

The flow chart for the classification system is shown in Figure 10. A simulated trajectory over an anomaly
is generated using the specified sensor and motion model. If this trajectory is deemed sufficient, the particle
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filter is run using the controls and measurements. Features are then extracted from these controls and
measurements and the outputs from the particle filter algorithm.

Figure 10. Flow diagram for classification system.

To generate training examples, 1700 random trajectories were flown over both the true target and various
false anomalies (roughly equal proportions). Of these 1700 trajectories, 836 were deemed sufficient for feature
extraction. Once the features are extracted from these sufficient runs, a set of 836 training/testing examples
are generated. This data set is evaluated with several different learning schemes as described in the next
section.

B. Results

Several different classifiers are trained and tested using these examples. This is done using the Weka toolkit.14

Each classifier was trained and tested using a stratified 10-fold cross-validation scheme. The results for four
learning methods are displayed in Table 1

Table 1. Classification results for various learned algorithms.

C4.5 Revision 8 Decision Stump Alternating Decision Tree Multi-Layer Perceptron
Classified As Classified As Classified As Classified As

True False True False True False True False
Actual True 232 40 0 272 197 75 247 25
Actual False 70 494 0 564 57 507 59 505

Accuracy 86.84% 67.46% 84.21% 89.95%

As can be seen from Table 1, most of the learning algorithms perform very well with an average accuracy
of 87% (excluding the overly simplistic decision stump method). These results are encouraging considering
that there are only 11 features in each example. Often times, hundreds of features are extracted for each
example in order to obtain these accuracies. Of course, of these large feature sets, only several features are
useful for the classification. This leads to the belief that these 11 features are valuable in this application.
Extracting more features might serve to increase accuracy but probably not by a large margin.

The decision tree generated by the C4.5 Revision 8 algorithm is shown in Figure 11. Although there is not
much to be learned by looking at the individual nodes and leaves of the tree, the structure illustrates why this
method of extracting a low number of features is desirable. The computational cost of executing the particle
filter (and extracting the feature vector) is relatively high. However, once the features are extracted, the
actual classification is fairly simple. The resulting decision tree is small enough to write down and illustrate.
Therefore, this tree can be implemented easily for a real-time application. Once the features are extracted
from the data, the actual classification is not computationally intensive (in this case requiring at most eight
if-statements).

VI. Conclusion and Further Research

The main challenge in searching for a target in a noisy environment is identifying the anomalies that
are encountered by the agent. This is challenging because in many cases, the agent is equipped with a
simple sensor which captures a limited amount of data. The particle filter method gracefully captures the
temporal aspects of how the data was captured by using both the motion and sensor model of the agent
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Figure 11. Decision tree generated by C4.5 Revision 8 algorithm.

and maximizes the amount of information gained from the sensor returns. The outputs from the particle
filter and the sensor data are then used to generate a low dimensional feature vector. This feature vector is
able to distinguish between the true target and a false anomaly very effectively and can be used to train any
number of machine learning algorithms for classification.

Training and learning a classifier off line saves computational resources which can instead be directed
towards feature extraction during a real time mission. Current research is directed towards optimizing the
particle filter routine or finding other less computationally intensive methods for incorporating temporal
smoothness and consistency into the feature vector. The high classification accuracies are very encouraging
and efforts to find other features which may increase the accuracy even further are also being investigated.
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