
Formation Flight of Swarms of Autonomous Vehicles In Obstructed
Environments Using Vector Field Navigation

Christopher Lum, Juris Vagners, Matthew Vavrina, and John Vian

Abstract— Maneuvering a single vehicle from one location
to another is a common problem encountered by many au-
tonomous systems. This problem becomes more complicated
when an operator desires to maneuver multiple vehicles si-
multaneously in a coordinated fashion through a complex
and potentially dynamic environment. This work investigates
a modular control strategy which allows a group of vehicles,
or swarm, to move in formation from a starting location to
an ending location in space while navigating various obstacles
and obstructions in a cluttered environment. The algorithm
structure allows different aspects of the controller to be tuned
and modified as desired for a specific task. High fidelity
simulation is used to verify the algorithm before transitioning
to flight test using multiple autonomous vehicles in real time.

I. INTRODUCTION

A large portion of missions tasked to autonomous systems
include intelligence, surveillance, and reconnaissance (ISR)
scenarios. In recent years, there has been an increased interest
in using micro air vehicles (MAVs) and other small aerial
platforms which have the capability to operate indoors and
in cluttered and complex environments to perform this type
of ISR work. While their small form factor allows unique
mission capabilities, these systems tend to have somewhat
low reliability in comparison to other, larger unmanned
aerial systems (UAS). To combat this problem, redundancy
can be added by using multiple vehicles simultaneously in
a cooperative fashion to perform the mission [1, 2]. An
interesting problem in this context is the issue of allowing a
single operator to move a swarm of vehicles from a starting
location to a final destination while avoiding both inter-
vehicle collision and environmental obstructions. A modular,
autonomous algorithm which increases the autonomy of this
type of system is the focus of this paper.

Multi-vehicle control has been studied by several groups in
the past. Reynolds et al. performed some of the earliest work
concerning formation and multi-vehicle control in the context
of modeling groups of biological agents in schools and
swarms [3]. This work was extended to computer graphics
and modeling in later work [4–6]. Reynolds’ work focused
mostly on uncontrolled formation and swarm modeling.
Other groups such as Popovic [7] and Kumar [8] have also
looked at modeling movement of autonomous formations
from a computer graphics and vision perspective. More
traditional formation control work was performed by Balch

C. Lum and J. Vagners are with the Department of Aeronautics
and Astronautics, University of Washington, Seattle, WA, USA [lum,
vagners]@u.washington.edu

M. Vavrina and J. Vian are with the Boeing Company, Seattle, WA, USA
[matthew.a.vavrina, john.vian]@boeing.com

et al. [9, 10] where they looked at formation control of multi-
vehicle systems. These works investigated control algorithms
to allow a group of vehicles to perform formation based
navigation.

The strategy in this paper uses a different, less tightly
coupled control algorithm to maneuver a large group of
vehicles in a cluttered environment. The control algorithm
follows ideas similar to work presented by Lipinski [11], Kim
[12], and Murray [13] where vehicle navigation is achieved
using stream functions and fluid models.

This paper presents a modular algorithm and control
architecture that can be used to navigate a large number of
heterogeneous agents in formation in a potentially cluttered
environment. The main motivation for this work is to allow
a single operator to efficiently and safely move a swarm
of vehicles in formation from one location to another. The
swarm should be able to autonomously navigate environmen-
tal obstructions such as obstacles, choke-point, and canyons.
Vector fields representing individual desired vehicle veloci-
ties are generated by modeling how incompressible, inviscid
fluid would naturally flow around these obstructions. These
basis vector fields can be used to construct more complicated
vector fields for other obstruction classes such as choke-
point and canyons. These desired velocity vectors are then
filtered by a tactical collision avoidance algorithm which
takes into account vehicle volume and scales the magnitude
of the desired velocity vector as a function of the conflict
distance between agents. This system allows vehicles to
deconflict and maintain spacing during various navigation
maneuvers. These algorithms are then tested in a high fidelity
simulation environment developed by Boeing Research and
Technology. Once proved in simulation, the algorithms are
seamlessly transitioned to the Vehicle Swarm Technology
Laboratory (VSTL), an indoor test facility equipped to test
multiple agent scenarios. Previous work at the University of
Washington [14, 15] explored the use of various techniques
to address the search problem with a group of heterogeneous
agents.

Section II describes the algorithm development and its
function. In addition to the main formation flight algorithm,
a tactical collision avoidance filter is described in Sec-
tion III. Simulation results for various scenarios are shown
in Section IV. This section also describes the flight test
environment and presents flight test data. Finally, Section V
presents conclusions and some future directions of research.

Fig. 1. 3 main sub-algorithms which allow swarm to navigate obstacles,
choke-points, and maintain formation.

II. ALGORITHM DESCRIPTION

The motivating scenario for this work involves a single
operator controlling a large group of vehicles during an ISR
mission. The algorithm developed is used to move the swarm
from one location to another. While in transit, the swarm
should be able to autonomously navigate environmental
obstacles such as buildings or other obstructions. It should
also be able to maneuver through constricted areas such as
windows or narrow canyons (these are referred to as choke-
points). Finally, the swarm should be able to maintain a
formation during transit in unobstructed airspace. The control
algorithm is comprised of three sub-algorithms which handle
each of these three cases as illustrated in Figure 1.

The control architecture is modular in the sense that differ-
ent control laws may be used at different times, depending
on the scenario [16]. For example, in Figure 1, a class 1
controller would be first used to navigate the obstacle. Once
the swarm has cleared the obstacle, a class 2 controller
would be activated to bring the swarm through the choke-
point. Once the swarm passed the choke-point, a class 3
controller would be used to regroup the formation and move
the group together as a single, cohesive unit. We investigate
each of these three classes on controllers in the following
subsections.

A. Class 1: Navigating Obstacles

When the swarm encounters an obstacle in its path,
vehicles in the swarm should autonomously navigate around
the obstacle. If the obstacle is directly in the path of the
swarm, the swarm should bifurcate around the obstacles.
If the obstacle does not significantly encumber the swarm
(most vehicles have an unobstructed line of sign to the
goal position), vehicles in the swarm should not significantly
deviate from straight line paths from their current location
to the goal position. This behavior is similar to how an
incompressible fluid might flow around a solid obstacle
(similar to a rock in the middle of a flowing stream). The
class 1 control algorithm uses these ideas by creating a vector
field which represents a virtual set of streamlines around an
obstacle. This is done by using inviscid, incompressible flow
theory and combining a uniform flow with doublet flow to
generate a vector field of non-lifting flow over a cylinder
[17–19] as shown in Figure 2.

Fig. 2. Generating obstacle avoidance vector field using inviscid, incom-
pressible flow theory.

Fig. 3. Geometry showing various frames and vectors used for algorithm.

The stream function, ψ, corresponding to Figure 2 with a
cylinder of radius r in a field of velocity V∞ is given by

ψ = V∞rsin(θ)(1−
R2

r2
) (1)

The stream function can be differentiated to obtain flow
field velocities in polar coordinates

Vr =
1

r

∂ψ

∂θ
Vθ = −

∂ψ

∂r
(2)

The vector field defined by Eq. 2 only produces flow from
left to right. This vector field needs to be rotated depending
on the location of the centroid of the formation, rf/w, the
location of the centroid of the obstacle, ro/w, and the location
of the goal position, re/w. The global, world frame, Fw can
be translated to the centroid of the obstacle to become the
obstacle frame, Fo. This frame is then rotated by angle θ =
atan2(re/f (2), re/f (1)) to obtain frame Fo2. The geometry
of the situation is shown in Figure 3.

Eq. 2 can then be converted to cartesian coordinates
in order to obtain a vector of flow field velocity at any
given point, expressed in Fo2. This is effectively the desired
velocity for the vehicles to follow and is denoted V

o2

d . For
implementation purposes, this desired velocity vector is then
expressed in the world frame

Fig. 4. Composite vector field and regions associated with a choke-point.
Choke point of width, L, shown in red.

V
w

d = Cw/o2(θ)
V
o2

d

||V o2d ||
(3)

where Cw,o2(θ) is standard coordinate rotation matrix
[20]. The class 1 controller consists of agents following the
vector field defined by Eq. 3. As long as the vehicle is able
to follow the generated streamlines, this method generates
collision free trajectories which emulate how fluid would
flow around the given obstacle as it travels from the centroid
of the formation towards the goal location. These trajectories
are smooth in the sense that there are no discontinuities
and therefore are suitable for fixed wing aircraft or agents
with non-holonomic constraints such as unicycle models.
Furthermore, if the agents are not in conflict to start with and
they have negligible volume, this method ensures that flight
paths will not cross and generate collisions. Modifications
to allow for finite volume agents are shown in Sections III.
Another benefit of this approach is that it allows obstacles
of a known radius to be directly modeled in the control
algorithm (R in Eq. 1 corresponds to the actual obstacle
radius).

B. Class 2: Navigating Choke-Points

The second type of environmental obstacle that the swarm
may encounter is a choke-point. These are obstructions
such as windows or narrow canyons where the swarm
must somehow ”become smaller” in order to navigate the
obstruction. From a modeling perspective, a standard choke-
point is parameterized by an origin, width, and orientation.
A reference frame, Fc, is centered at the choke point origin
with the positive x axis pointing through the choke-point.

Navigating a choke-point could be modeled using a similar
incompressible fluid flow model by developing a vector field
for uniform flow in a constricted pipe [19, 21]. However,
superior performance was obtained by using a piecewise
constructed vector field as shown in Figure 4.

This composite vector field is generated by adding addi-
tional parameters to the choke-point (effectively a derived
class of the base choke-point described at the start of this
section). We first consider only regions with a positive yc

component (above the dashed horizontal line in Figure 4), a
virtual obstacle is superimposed over the choke-point. The
space is then divided into three separate regions, R1 (yellow),
R2 (green), and R3 (orange). In R1 regions, the vector field
for standard obstacle avoidance is used (Eq. 3).

In R2 regions, a vector field is created which is initially
aligned with the xc axis (at large negative values of xc)
and then transitions to align with the −yc axis when xc =
−R and actually repels the agents from the wall when xc ∈
(−R, 0].

V
c

d =

[
1
0

]
xc ≤ −2R

[
−sin(π2Rx

c + π
2)

−cos(π2Rx
c + π

2)

]
xc ∈ (−2R,−R]

[
−sin(θwall

R xc + θwall)

−cos(θwall

R xc + θwall)

]
xc ∈ (−R, 0]

(4)
Finally, the vector field in R3 regions simply serves to

move the agents away from the choke-point and towards the
goal-position V

c

d = [1 0]
T .

These vector fields are then simply reflected over the xc

axis, therefore defining a composite vector field for the entire
space surrounding the choke-point.

By having the vehicles follow the prescribed velocity
vector field, the emergent behavior is that the vehicles
initially start far from the choke point and are not affected
by the choke-point presence (they simply proceed to the
right). As the agents approach the choke-point (xc increases),
agents which are not aligned with the choke-point (they are
located in region R2) begin to be funneled towards region
R1. Eventually, all vehicles enter the vector field defined in
region R1 which allow them to navigate through-the choke
point. As they pass the choke point, the agents spread out
again by following the stream lines.

C. Class 3: Free Space Formation Maintenance

Several algorithms exist for maintaining formation spacing
and definition in free space [8, 9]. The free space formation
maintenance control algorithm simply directs the vehicles
towards desired formation positions. This has the potential
to cause collision and should be improved in future devel-
opment.

D. Class 4: Canyon Navigation

The previously described algorithms can be combined to
achieve new goals and perform new tasks. For example,
the class 2 algorithms for navigating choke-points can be
used in series to create a vector field suitable for navigating
narrow canyons. Figure 6 illustrates an example canyon
scenario. The grey regions show the fixed geometry of
the canyon walls. In order to generate a vector field for
this scenario, several choke-points are superimposed over
the canyon geometry (red lines in Figure 6). The vector
field for each individual choke-point can be computed using

1 η = sort({C1, C2, ..., Cn})
2 for each choke-point Ci ∈ η
3 if rCi(1) ≤ 0
4 r dominated by Ci
5 break
6 end if
7 end for

Fig. 5. Pseudo code for determining which choke-point is dominant for a
given position.

Fig. 6. Combining multiple choke-point vector fields to create a controller
for navigating narrow canyon environments. Note that the left and right
images are not correlated to one another.

methods described in Section II-B. The vector field for
each choke-point is effective for the region directly in front
of it, with precedence going to the choke-point which is
encountered first when navigating the canyon. An algorithm
for determining which choke-point is dominant for a given
position in space is shown in Figure 5.

In line 1, the sort function is defined to sort the choke-
points in order that they would be successfully navigated.
This composite vector field and regions of dominance are
shown in the right side of Figure 6.

As can be seen, this generates a vector field which will
guide all vehicles through complicated geometry such as a
canyon.

III. COLLISION AVOIDANCE

The control algorithms described in Section II generate
collision free trajectories by assuming that agents are able
to follow the prescribed velocity vectors exactly and that the
vehicles are point masses. However, for realistic scenarios
with actual vehicle dynamics, imprecise inner loop con-
trollers, and finite volume agents, these assumptions are not
realistic. For example, during a class 1 maneuver (avoiding
an obstacle), vehicles which are initially conflict free may
encounter a conflict as the streamlines compress near the
obstacle as shown in Figure 7. This section investigates a
collision avoidance filter that may be applied to the desired
velocity vectors to allow vehicles to deconflict and remain
in conflict free trajectories [22].

Fig. 7. Agents which are initially conflict free come into conflict during
obstacle avoidance maneuver.

Fig. 8. Geometry showing conflict distance and geometry for two agents
in conflict.

A. Tactical Filtering

The collision avoidance filter used in this application takes
inspiration from how cars merge when entering a highway.
In this scenario, the driver in front takes precedence and
maintains their desired velocity. It becomes the job of the
merging driver to modify their velocity vector in order to
avoid a conflict. This is typically done by slowing down and
allowing the separation distance between the two vehicles
to grow to an acceptable distance before the merging driver
resumes their desired velocity. In the scenario presented here,
the concept of ”in front” is achieved by expressing the agents
velocity vectors in the Fo2 frame as shown in Figure 8.

The separation distance between agents i and j is simply
given as sd = ||ri/w−rj/w|| where rk/w denotes the position
vector of agent k. Agents i and j are said to be in conflict if
their separation distance is less than the sum of their radii.
The magnitude of the conflict, dc, is simply the difference
between the sum of their radii and the separation distance

dc = ri + rj − ||ri/w − rj/w|| (5)

If the conflict distance is non-zero, then the trailing
vehicle should slow down. Algorithmically, this translates
to lowering the magnitude of the desired velocity vector of
following agent as a function of the conflict distance, dc. The

Fig. 9. Signal flow diagram for formation controller and various collision
avoidance filters.

collision avoidance filter used in simulation and flight test is
given by

V
w

d,c = (||V wd || −
α||V wd ||dc
dc,max

)
V
w

d

||V wd ||
(6)

Eq. 6 describes the desired velocity vector of the trail-
ing vehicle in the event of a conflict, V

w

d,c. The term in
parenthesis is the amount of velocity magnitude modification.
The term α is a scalar which can be tuned to increase
or decrease the aggressiveness of the collision avoidance
filter. For example, with α = 0, the collision avoidance
filter is effectively turned off since V

w

d,c = V
w

d ∀dc. The
aggressiveness of the filter can be increased by increasing
α. For α = 1 if the agents are not in conflict, then dc = 0
and the trailing vehicle simply maintains the original velocity
vector V

w

d,c = V
w

d . However, if the vehicles are in maximal
conflict (they are on top of one another), then dc = dc,max
and the trailing vehicle actually stops completely. The filter
aggressiveness can be increased to actually make vehicles
reverse direction by further increasing α past 1. In simulation
and flight test with quadrotor aircraft, it was determined that
α = 4 yields desirable performance.

This filter is implemented in series with the original
formation flight algorithms of Section II. The benefit of this
is that the presence or absence of the collision avoidance
filter does not affect algorithm behavior for formation control
and environmental navigation.

B. Low-Level Collision Avoidance
The previously described collision avoidance filter is re-

ferred to as a tactical collision avoidance filter because it
operates at a planning level by modifying the desired velocity
commands which are sent to the vehicle controller. A second,
low-level collision avoidance filter is implemented in the
Boeing simulation and flight test environment to guarantee
collision avoidance in the event of an emergency. Experience
has shown that if the tactical collision avoidance filter is
implemented properly, the low-level collision avoidance filter
does not activate, all trajectory deconfliction is handled by
the tactical collision avoidance filter.

The control signals originate from the class 1,2,3, or 4
algorithms and are then passed through the various collision
avoidance filters before being applied to the actual vehicles.
This signal flow is shown in Figure 9.

IV. RESULTS

The algorithms are tested in both a rapid prototyping
simulation environment developed at the University of Wash-
ington and a high fidelity simulation environment developed

Fig. 10. Vehicle trajectories during obstacle avoidance maneuver.

by Boeing Research and Technology. After passing software-
in-the-loop verification and validation, the algorithms are
transitioned to hardware flight test at the Boeing Vehicle
Swarm Technology Laboratory (VSTL) in Seattle, WA.

A. Simulation Results

Several scenarios were simulated to exercise various as-
pects of the control algorithm and tactical collision avoidance
filter. A simple mission is shown in Figure 10. In this
scenario an operator assembles 4 vehicles at a rally point
and then commands the formation to transition to the far
side of an obstacle before regrouping in the same formation.
As can be seen, the formation bifurcates around the obstacle
with agents 100, 101, and 102 passing to one side of the
obstacle while agent 103 navigates around the other side of
the obstacle.

The agent velocities during this mission are shown in
Figure 11. Each agent has a maximum velocity of 1 m/s.
During the transition around the obstacle, the agents are
constrained to a maximum velocity of 0.5 m/s. Between
times 0 and 10 seconds, the formation is forming at the
operator specified location using a class 3 algorithm. After
the formation is assembled, the control is switched to a class
1 algorithm in order to move the formation to the far side of
the obstacle. The effects of the tactical collision avoidance
filter can be seen during this maneuver. Because agent 103 is
not in conflict with other vehicles (it passes to the left of the
obstacles whereas all other vehicles pass to the right), it is
free to proceed at its maximal desired velocity V

w

d,c = V
w

d .
However, the other three vehicles are initially in conflict at
the start of the obstacle avoidance maneuver. After some
initial transient effects resolve themselves, vehicle 100 is
determined to be the vehicle in front. Therefore it proceeds
along the stream lines at full velocity. Agents 101 and 102
actually reverse direction to deconflict with each other and
vehicle 100 (Figure 11 is the magnitude of velocity, so the
reversal is seen the sinusoidal motion of the vehicle 101 and
102 traces). Once vehicle 101 becomes deconflicted from

Fig. 11. Vehicle velocities during obstacle avoidance maneuver.

vehicle 100, it is the next vehicle to proceed towards the goal
along the streamlines. Finally, vehicle 102 is able to proceed
forward once vehicle 101 has progressed forward sufficiently.
Finally, at time 32 seconds, the swarm has successfully
navigated the obstacle and the class 3 controller is used to
regroup the formation.

One particularly interesting mission which exercises all
aspects of the control strategy is shown in Figure 12. The
mission timeline is as follows

t00 Start simulation/mission with 3 vehicles. Vehicles
assemble at rally point.

t01 Operator adds a 4th vehicle to formation.
t02 Operator commands newly formed formation to

other side of an obstacle.
t03 Swarm clears obstacles and regroups in original

formation on far side of obstacle.
t04 Operator changes formation configuration (from

diamond to line) and moves centroid.
t05 Operator commands formation to navigate choke-

point.
t06 Clears choke-point and regroups in original forma-

tion on far side of choke-point.
t07 Operator commands swarm back to original posi-

tion.
The trajectories of the agents during the composite mission

are shown in Figure 13. In this scenario, the complicated
geometry of the obstacle is enclosed with an equivalent sized
circular obstacle (black dashed circle). The choke-point is
shown in the lower left corner as a black dashed line. As can
be seen, the vehicles initially move from their initial positions
and form a diamond formation in the northern region of
the area. The operator then commands the swarm to the far
side of the obstacle and the class 1 algorithm maneuvers
the agents successfully around the obstacle. During this
maneuver, the collision avoidance filter is active and the
agents deconflict as they travel around the obstacle. After
the swarm clears the obstacle, the class 3 controller is
used to regroup the formation. The user then decides to
change the formation from a diamond to a line formation.

Fig. 12. Composite mission which exercises class 1, 2, and 3 algorithms.

Fig. 13. Vehicle trajectories during composite mission.

This is perhaps the least optimal formation to achieve when
attempting to navigate the upcoming choke-point (akin to 4
people walking abreast towards a single open door). This
scenario was chosen since it would be the most taxing on
the class 2 controller and tactical collision avoidance filter.
As can be seen, all vehicles successfully enter and exit
the choke-point in a collision free manner. Once the agents
navigate the choke-point, the class 3 algorithm is used to
regroup the formation and move it back towards the original
location.

B. Boeing Hardware Environment

The algorithms were tested in the Vehicle Swarm Technol-
ogy Laboratory (VSTL) developed by the Boeing Research
and Technology group [23, 24]. This facility provides a large,
indoor flight test arena where heterogenous teams may con-
duct various types of missions. The autonomous algorithms
for each vehicle are executed on dedicated computers and the
position information of all vehicles is captured with a system
of cameras and coordinated pulses of light. The overall

Fig. 14. Vehicle Swarm Technology Laboratory (VSTL) developed by the
Boeing Research and Technology group.

Fig. 15. Quadrotor vehicle equipped with reference markers.

laboratory is shown in Figure 14. Data acquisition at 100Hz
with sub 40ms latency is possible with this system for a
large number of vehicles. The number of controlled vehicles
is limited to 14 due to software and hardware architectures.

The flight test vehicles are heavily-modified, commercially
available quad-rotor helicopters as shown in Figure 15.

The formation flight and tactical collision avoidance algo-
rithm is developed in Python and integrated into the Boeing
SwarmController software application. This is an application
designed to interface with Boeing controllers and implement
tactical or strategic control algorithms. Operators can inter-
face with the vehicles and controllers via the SwarmView
software application. A diagram of the software architecture
and various applications in shown in Figure 16.

The algorithms can then be tested using a high fidelity
numerical simulation environment developed in Matlab and
Simulink. Once the algorithms are verified in simulation,
they can be seamlessly integrated onto the actual hardware
for real time operations. This facility has been used pre-
viously to validate other strategic, autonomous algorithms
using this work flow [14, 15, 25].

C. Flight Test Results

Various flight tests were conducted at the Boeing VSTL
during December 2011. These include

• Obstacle avoidance using actual physical obstacles

Fig. 16. Software architecture and applications in the Boeing VSTL.
Formation flight control algorithms are implemented as part of the Swarm-
Controller application.

• Composite missions requiring both obstacle avoidance
and choke-point navigation (Figure 12)

• Moving and dynamic obstacles and choke-points
• Complicated canyon missions

The most interesting flight test that was performed made
use of existing choke-point algorithms to maneuver the
swarm through a narrow canyon. The geometry of the canyon
is shown in Figure 17. This example is unique because there
is no direct line of sight from the entrance to exit. In other
words, no straight line trajectories will allow a vehicle or
swarm to navigate this obstruction. Based on this geometry,
multiple choke-points are overlaid around the canyon and
their vector fields are combined based on whichever choke-
point is dominant in a given region. Finally, the collision
avoidance filter is added on top of the controller. This allows
a swarm to navigate the canyon without colliding with walls
or other agents. The flight test telemetry of this canyon
mission is shown in Figure 17.

During this mission, the operator first specifies that the
three agents rally to an approximate line formation in front
of the canyon mouth (Figure 17(a)). After the vehicles have
assembled in formation, the operator commands the swarm
to navigate the canyon by switching control from the class
3 controller to the class 4 controller. The agents begin to
enter the canyon and almost immediately, agents 100 and
102 come into conflict (Figure 17(b)). The tactical collision
avoidance filter activates and agent 100 actually reverses
direction (α = 4 for the filter) to deconflict with agent 102
which is in front (Figure 17(c). The agents then proceed
through the canyon in single file while maintaining spacing
due to the tactical collision avoidance filter (Figure 17(d)).
During the flight test, the operator prematurely switched
the control algorithm from the canyon navigation algorithm
(class 4 algorithm) to the formation maintenance algorithm
(class 3) before agent 100 clears the canyon (Figure 17(e)).
This causes agent 100 to collide with the virtual canyon
walls in its attempt to achieve the desired final formation
(Figure 17(f)). Future iterations of this algorithm will check
that agents have successfully cleared the canyon, obstacle,
or choke-point before allowing the algorithm to switch to
the formation maintenance controller. Despite this minor
setback, this mission was completely successfully during the

(a) Start canyon navigation (b) 100 and 102 come into conflict

(c) 100 backs up to deconflict (d) Agents maintain spacing

(e) Switch to class 3 controller (f) Agents achieve final formation

Fig. 17. Agent trajectories during canyon mission. Data is obtained from
Vicon telemetry during flight test at Boeing VSTL.

flight test.

V. CONCLUSIONS

This paper presents a modular algorithm and control
architecture that can be used to navigate a large number of
heterogeneous agents in formation in a potentially cluttered
environment. The main motivation for this work is to allow
a single operator to efficiently and safely move a swarm
of vehicles in formation from one location to another. The
swarm should be able to autonomously navigate environmen-
tal obstructions such as obstacles, choke-point, and canyons.
Vector fields representing individual desired vehicle veloci-
ties are generated by modeling how incompressible, inviscid
fluid would naturally flow around the obstruction. These
basis vector fields can be used to construct more complicated
vector fields for other obstruction classes such as choke-
point and canyons. These desired velocity vectors are then
filtered by a tactical collision avoidance algorithm which
takes into account vehicle radii and scales the magnitude
of the desired velocity vector as a function of the conflict
distance between agents. This system allows vehicles to
deconflict and maintain spacing during various navigation
maneuvers.

The versatility of this algorithm lies in its modular struc-
ture. Future improvements to various aspects of the controller
can be contained to specific classes of algorithm and not

influence the behavior of other classes. Future work is
directed towards augmenting the class 3 formation mainte-
nance controller. Currently, the controller is not guaranteed
to provide collision free trajectories. As a consequence,
during formation creation and maintenance, agents come into
conflict and the tactical collision avoidance (or in extreme
cases, the low level collision avoidance) must activate to
deconflict the vehicles.

These algorithms are verified using an advanced numerical
simulator from the VSTL. They are then transitioned to the
hardware test bed and validated using multiple vehicles in
real time flight tests. Future research directions involve using
the versatile Boeing test bed to investigate human/automaton
interactions using the VSTL interface. Currently user inter-
action with the autonomous system is somewhat onesided
where users dictate the behavior. Current research at the Uni-
versity of Washington is directed towards two way commu-
nication and information flow between human operators and
autonomous systems with the goal of improving performance
and mission success rates.

REFERENCES

[1] Lum, C. W., Rysdyk, R. T., and Pongpunwattana, A.,
“Occupancy Based Map Searching Using Heteroge-
neous Teams of Autonomous Vehicles,” Proceedings
of the 2006 Guidance, Navigation, and Control Con-
ference, Keystone, CO, August 2006.

[2] Lum, C. W., Coordinated Searching and Target Iden-
tification Using Teams of Autonomous Agents, Ph.D.
thesis, University of Washington, Seattle, WA, March
2009.

[3] Reynolds, C. W., “Flocks, Herds, and Schools: A Dis-
tributed Behavioral Model,” ACM Computer Graphics,
Vol. 21, No. 4, 1987, pp. 25–34.

[4] Reynolds, C. W., “Steering Behaviors for Autonomous
Characters,” Proceedings of the 1999 Game Developers
Conference, San Francisco, CA, 1999.

[5] Reynolds, C. W., “Interaction with Groups of Au-
tonomous Characters,” Proceedings of the 2000 Game
Developers Conference, San Francisco, CA, 2000.

[6] Reynolds, C. W., “Big Fast Crowds on PS3,” Proceed-
ings of the 2006 Sandbox a Video Games Symposium,
Boston, MA, 2006.

[7] Treuille, A., Cooper, S., and Popvic, Z., “Continuum
Crowds,” ACM Transactions on Graphics, Vol. 25,
No. 3, 2006, pp. 1160–1168.

[8] Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P.,
Spletzer, J., and Taylor, C. J., “A Vision-Based For-
mation Control Framework,” IEEE Transactions on
Robotics and Automation, Vol. 18, No. 5, 2002,
pp. 813–825.

[9] Balch, T. and Arkin, R. C., “Behavior-Based Forma-
tion Control for Multirobot Teams,” IEEE Transactions
on Robotics and Automation, Vol. 14, No. 6, 1998,
pp. 926–939.

[10] Arkin, R. C. and Balch, “Cooperative Multiagent

Robotic Systems,” Artificial Intelligence and Mobile
Robots, Vol. 5, No. 1, 1998, pp. 227–295.

[11] Lipinski, D. and Mohseni, K., “Cooperative Control of
a Team of Unmanned Vehicles Using Smoothed Particle
Hydrodynamics,” Proceedings of the 2010 AIAA Guid-
ance, Navigation, and Control Conference, Toronto,
2010.

[12] Kim, J.-O. and Khosla, P. K., “Real-Time Obstacle
Avoidance Using Harmonic Potential Functions,” IEEE
Transactions on Robotics and Automation, Vol. 8,
No. 3, 1992, pp. 338–349.

[13] Waydo, S. and Murray, R. M., “Vehicle Motion Plan-
ning Using Stream Functions,” Proceedings of the 2003
International Conference on Robotics and Automation,
2003.

[14] Lum, C. W., Vagners, J., Jang, J. S., and Vian, J.,
“Partitioned Searching and Deconfliction: Analysis and
Flight Tests,” Proceedings of the 2010 American Con-
trol Conference, Baltimore, MD, June 2010.

[15] Melander, A., Quadrotor Implementation of the Dis-
tributed Reactive Collision Avoidance Algorithm, Mas-
ter’s thesis, University of Washington, Seattle, WA,
2010.

[16] Lum, C. W. and Vagners, J., “A Modular Algorithm
for Exhaustive Map Searching Using Occupancy Based
Maps,” Proceedings of the 2009 Infotech@Aerospace
Conference, Seattle, WA, April 2009.

[17] Anderson, J. D. J., Fundamentals of Aerodynamics,
McGraw Hill, 2010.

[18] Milne-Thomson, L. M., Theoretical Aerodynamics,
Dover Books, 1966.

[19] Zovatto, L. and Pedrizzetti, G., “Flow About a Circular
Cylinder Between Parallel Walls,” Journal of Fluid
Mechanics, Vol. 440, 2001, pp. 1–25.

[20] Stevens, B. L. and Lewis, F. L., Aircraft Control and
Simulation, John Wiley and Sons, Hoboken, NJ, 2nd
ed., 2003.

[21] Zheng, Z. C., “A Consistent Boundary Condition for
VorticityStreamfunction Simulation of Wall-Bounded
Vortex Flow,” Journal of Applied Mathematics and
Computation, Vol. 206, 2008, pp. 205–213.

[22] Pallottino, L., Scordio, V. G., Bicchi, A., and Frazzoli,
E., “Decentralized Cooperative Policy for Conflict Res-
olution in Multivehicle Systems,” IEEE Transactions on
Robotics, Vol. 23, No. 6, 2007, pp. 1170–1183.

[23] Bieniawski, S., Pigg, P., Vian, J., Bethke, B., and How,
J., “Exploring Health-Enabled Mission Concepts in the
Vehicle Swarm Technology Lab,” Proceedings of 2009
Infotech@Aerospace Conference, Seattle, WA, 2009.

[24] Halaas, D., Bieniawski, S., Pigg, P., and Vian, J.,
“Control and Management of an Indoor, Health En-
abled, Heterogeneous Fleet,” Proceedings of the 2009
Infotech@Aerospace Conference, Seattle, WA, 2009.

[25] Nigam, N., Bieniawski, S., Kroo, I., and Vian, J.,
“Control of Multiple UAVs for Persistent Surveillance:
Algorithm Description and Hardware Demonstration,”
Proceedings of the AIAA Infotech@Aerospace Confer-

ence, Seattle, WA, 2009.

