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Abstract— Searching a complex environment for a hidden
target is a common problem encountered by many autonomous
systems. Many modern autonomous systems use a hierarchical
structure for mission management where different algorithms
perform different tasks to give agents desired behavior. This
work investigates a search policy that guarantees both an ex-
haustive search of the map and conflict free paths of all agents.
Agents formulate control decisions for a fixed number of time
steps using a modular algorithm that allows parameterizations
of agent capabilities. High fidelity simulation and flight test
data using multiple autonomous vehicles are used to verify and
validate the algorithms in real time.

I. INTRODUCTION

This paper investigates an algorithm which can efficiently

coordinate a team of possibly heterogeneous agents and

ensure that the team performs an exhaustive search of the

map and simultaneously guarantees agent flight paths are

collision free.

Searching a space for a target has been a well studied

field. One modern approach that has become popular is to

consider possible target locations as a continuous or dis-

crete probability density function. Groups such as Durrant-

Whyte et al. [1, 2] studied the problem of searching for

a target using a Bayesian probabilistic approach and have

investigated some of the communication issues involved in

such a search. Polycarpou et al. [3] applied optimization

techniques to generate search patterns over a finite amount

of steps. Many of these methods are successful and effective

but have difficulty providing guarantees on target detection

and map coverage. To address this, Erignac [4] developed

exhaustive searching strategies that also provide guarantees

about map coverage using ideas based on pheromone maps.

Coverage of maps and domains have also been studied in the

context of minimum service time to spontaneously occurring

targets. Many of these techniques use Voronoi partitioning of

the domain to maintain agent separation and coverage. This

approach has been studied by Cortes [5] and Frazzoli [6, 7].

Searching and map building has been studied extensively

by the robotics community as well. Groups such as Fox et

al. [8] have looked at generating searching algorithms with

the ideas of exploration and map building in mind. Previous

work at the University of Washington [9, 10] explored the

use of various techniques to address the search problem with

a group of heterogeneous agents.
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These methods, while effective for their respective appli-

cations, contain shortcomings when addressing the search

problem considered in this application. To address this, a

search policy is presented in this paper. Each agent de-

termines a desirable coordinate to visit in the future by

solving a numerical optimization problem. This formulation

allows for each agent in the team to have a different set of

parameters; therefore, each agent in the team can have its

own notion of desirability. Once this desirable coordinate is

determined, a straight path that transitions the agent from its

current location to the desirable coordinate can be applied.

An additional feature of this algorithm is the guarantee of

collision free flight paths while engaged in the search.

These algorithms are then tested in a high fidelity sim-

ulation environment developed by Boeing Research and

Technology. Once proved in simulation, the algorithms are

seamlessly transitioned to the Vehicle Swarm Technology

Laboratory (VSTL), an indoor test facility equipped to test

multiple agent scenarios.

Section II describes the notion of occupancy based maps

and their features. These maps provide the framework for the

search strategy which is described in Section III. Section IV

presents flight test results and performance metrics. Finally,

Section V presents conclusions and some future directions

of research.

II. OCCUPANCY BASED MAPS

In order to effectively search a two dimensional domain

for a target, the system must keep track of the state of the

world in terms of possible target locations. To do this, an

occupancy based map is employed. These constructs were

originally formalized by Elfs [11] but functionality such as

Bayesian score updates and time varying models are added

to the maps to accommodate the algorithm.

A. Occupancy Based Maps Definition

The search domain is discretized into rectangular cells.

Each cell is assigned a score which is the probability that

the target is located in that cell. This limits the score of any

given cell in the map to the range of [0, 1] and is similar to a

two dimensional, uncoupled, discretized probability density

function [12]. The spatial domain of the occupancy based

map, B, consists of a box where x is between xmin and

xmax and similarly for the y dimension.

The occupancy based map, xw(), is a function defined

over the set B ×ℜ which assigns a score in the range [0, 1]
to each element z ∈ B ⊂ ℜ2 at a certain time step k ∈ ℜ.

In other words, xw : B ×ℜ → ℜ. The score of a given cell
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represents the probability that the target is located in that

cell.

The occupancy based map is shared and updated by all

agents involved in the search. At each time step, guidance

decisions for each agent are computed based on this map.

The state of the map at any time k is also referred to as the

world state. This reflects the fact that the map represents

the possible locations of targets and other objects in the

environment. In essence, the system’s belief of the state of

the world is embedded in the state of the occupancy based

map. For example, the map can represent the locations of

obstacles and reward areas in the environment. An example

of embedded obstacles and reward areas in an occupancy

based map is shown in Figure 1.

(a) Physical environment with soft
and hard obstacles
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(b) Occupancy based map represen-
tation of environment

Fig. 1. Abstraction of urban environment using occupancy based maps.

In this example, the dark blue sections represent cells

with zero scores (hard obstacles) and the green sections

represent scores of 0.5 (neutral values). Furthermore, there

are regions which correspond to soft obstacles that should

be avoided if possible but entering these regions does not

violate a constraint. These sections are represented by the

lighter blue shades with scores ranging from 0 to 0.5. If

there were regions that were beneficial to the agent, these

could be assigned scores greater than 0.5.

The world state can be propagated forward in time to

create an estimate of the world d steps in the future [10].

This estimate is referred to as x̂w(k + d, z) and for most

applications in this paper, the future estimate is assumed to

be identical to the current world state.

It is useful to define the cell center set, B̃, as all values

z which correspond to the center of a cell in the occupancy

based map.

In a similar fashion, the set of cell centers which have the

highest score in the map is denoted as B̃max.

The set of all locations that agent i can reach in d steps

is referred to as the agent’s reachable set, BRi
⊆ B. This

application defines BRi
as

BRi
= {z ∈ B | ||z − zagti

|| ≤ Rimax
} (1)

Eq. 1 assumes that the agent has no turn rate limits and the

agent has simple planar kinematics. In a practical application

where there may be saturation concerns, it is possible that

BRi
may not be a perfect circle as described in Eq. 1. In

this case, it simply becomes more difficult to define and

compute BRi
but the following analysis is not affected by

the geometry of BRi
.

It is useful to also define the set of cell centers that the

agent can reach in d steps. This is simply

B̃Ri
= BRi

⋂

B̃ (2)

B. Updating Map Cell Scores

The occupancy based map is dynamic and can be updated

either by agents involved in the mission, external sources,

or other means. The agents are able to modify the map to

reflect their findings during the search mission. Each agent

in the team is able to search the cell at its current location

using its sensor. The discrete state space of the cell is simply

Xk = {xA, xB} where Xk = xA corresponds to the target

not in the cell and Xk = xB denotes that the target is in

the cell. In a similar fashion, the agent may make one of

two sensor measurements, Zt = zA (observe target not in

cell) and Zt = zB (observe target in cell). As mentioned

previously, the score of a given cell in the occupancy based

map reflects the scalar probability that the target is located

in that cell at the current time step k. For convenience, the

score of the cell at time step k is denoted sk = p(Xk = xB).

To model a heterogeneous team of agents with stochastic

sensors, each agent’s sensor is assigned a reliability factor

h ∈ [0, 1]. A value of h = 0 implies that the sensor is

completely unreliable and no information can be gained

from this sensor. Conversely, h = 1 corresponds to a

completely reliable sensor that can ascertain if the target

is or is not located in the agent’s current cell in a single

measurement. Although this scenario is not presented in this

work, reliability factors can change during the mission as

long as they remain in the range [0, 1]. For example, lowering

the reliability factor during the mission can be used to model

failing or destroyed sensors on an agent. The probabilistic

sensor model can be formed as p(Zt = zA|Xt = xB) =
1 − 1

2 (h + 1) and p(Zt = zB|Xt = xB) = 1
2 (h + 1).

Assuming that the state of any given occupancy map cell

score is not affected by the action of taking a measurement,

the probabilistic score of a given occupancy based map cell

can be updated using the sensor model which yields the

following Bayesian update rule.

sk =

{

sk−1(1−h)
1+(1−2sk−1)h if Zk = zA

sk−1(1+h)
1+(2sk−1−1)h if Zk = zB

(3)

In Eq. 3, sk represents the score of the occupancy map

cell (sk = xw(k, z) for z in some cell region).

This update rule has several interesting properties. It can

be shown that the scores of each cell either monotonically

increase or decrease with each sensor measurement for the

majority of values of h and sk−1 [9].

The occupancy based map and its associated features pro-

vides a versatile framework from which to build a searching

algorithm.
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III. SEARCH STRATEGY

On a simplistic level, the search problem involves choos-

ing a desirable location, z⋆
i , for the agent i to search within

the next d steps. Previous work investigated formulating a

search policy where agents had no explicit knowledge of each

other [9]. Without explicit cooperation, there are scenarios

where two or more agents might choose the same location

to search. This is undesirable for several reasons. In terms

of safety, the agents must now have some type of reactive

collision avoidance [13] since collision free trajectories are

not guaranteed at the planning level. Furthermore, the per-

formance of the system may suffer if there are multiple

agents searching the same cells. One method to alleviate

these problems is to partition the search space. In essence,

this is a divide and conquer approach. The search space

can be partitioned using a Voronoi diagram, which is a

tessellation of a Euclidean space and is described in a purely

mathematical sense by Okabe [14]. This paper investigates

applying them to previously developed search algorithms. In

this sense, the location of the agents are considered to be

generators for the Voronoi polygons P = {p1, p2, ..., pn} =
{zagt1 , zagt2 , ..., zagtn

, }.

The Voronoi diagram embeds information about an agent’s

position relative to the other agents. Each agent now has

an influence on the diagram and each agent will have an

influence on the algorithm. The degradation of algorithm

scalability is immediately visible when employing this type

of cooperation as the Voronoi diagram requires at least

O(n log n) at best [14] where n is the number of generators

(or agents). Previously, the single agent search strategy scaled

linearly with n.

Formulating the search policy requires the definition of

several intermediate values.

A. Intermediate Variables

The point in B̃max that is closest to agent i is given as

zHi
∈ arg minimize

z∈B̃max

||z − zagti
|| (4)

With zHi
defined, the distance between agent i and zHi

is given by

di = ||zHi
− zagti

|| (5)

An example of these distances and locations is shown

in Figure 2. In this figure, the black dots represent B̃ (the

cell centers of the occupancy map). The black dots circled

in purple represent z ∈ B̃max. These are the cell centers

that correspond to cells which have the highest score in the

map. As defined previously, locations inside the dashed red

circles represent BRi
(agent i’s reachable set). The black

dots within the dashed red circles represent B̃Ri
(the discrete

approximation of agent i’s reachable set).

The distance di is computed by checking the distance

between agent i and each z ∈ B̃ with the minimum value

assigned as di. The corresponding location z ∈ B̃ which

yields di for agent i is denoted as zHi
.

Fig. 2. Example with 3 agents showing di and zHi
.

Note that zHi
may not be in the agent’s reachable set

(either the compact set BRi
or its discrete approximation

B̃Ri
). In other words, it is possible that zHi

/∈ BRi
and

zHi
/∈ B̃Ri

. This is the case with both agent 1 and agent 2

but not agent 3 in Figure 2.

The Voronoi edges are shown as the solid black lines. The

Voronoi polygon associated with each agent is enclosed by

the solid black lines.

V (zagti
) =

{

z | ||z − zagti
|| ≤ ||z − zagtj

||
}

for i 6= j
(6)

Note that it is possible that zHi
/∈ V (zagti

). In Figure 2,

this is the case for agent 3 where the point zH3
is not in agent

3’s Voronoi polygon. It is also possible that zHi
= zHj

for

some i 6= j as shown with agent 2 and agent 3 in Figure 2.

Most of the following analysis requires identifying the

agent which is closest to the set B̃max. The index of the

agent closest to the set B̃max is denoted as I . The index I
is given by (recall that In = {1, 2, ..., n})

I ∈ arg minimize
i∈In

di (7)

Therefore, zHI
denotes the location of the point in B̃max

that is closest to any agent.

The point zHi
is used to define the point z′hi

as

z′hi
∈

{

arg minimize
z∈B̃Ri

⋂

V (zagti
)
||z − zHi

|| if A 6= ∅

zagti
otherwise

(8)

Where A = B̃Ri

⋂

V (zagti
).

With z′hi
defined, it is convenient to define a flag ζi as

ζi =

{

1 if ||z′hi
− zHi

|| ≥ ||zagti
− zHi

||
0 otherwise

(9)

Physically, ζi = 1 if the point z′hi
is further away from

zHi
than the agent’s current position of zagti

. An example

showing when ζi = 1 is shown in Figure 3. In this situation,

the set B̃Ri

⋂

V (zagti
) is a single point and therefore, Eq. 8

6411



chooses it as z′hi
(denoted by the black dot enclosed by the

orange circle). In this case, z′hi
is obviously farther away

from zHi
than zagti

, so ζi = 1.

Fig. 3. Situation showing ζi = 1.

With the flag ζi defined, the point zhi
is given by

zhi
=







z′hi
if ζi = 0

zagti
if ζi = 1 and i 6= I

zSI
if ζi = 1 and i = I

(10)

where

zSI
= zagtI

+ RmaxI

zHI
− zagtI

||zHI
− zagtI

||
(11)

Previous analysis in [10] showed that the point zhi
has

some interesting properties:

1) zhi
∈ BRi

⋂

V (zagti
)

2) ||zhi
− zHi

|| ≤ ||zagti
− zHi

|| for i ∈ In \ {I}
3) ||zhI

− zHI
|| < ||zagtI

− zHI
|| for i = I

These properties can be used to develop the control law

with explicit cooperation between agents.

B. Reward Function

The desirability of a given location, z, to agent i is

measured with a reward function of the following form

Ĵ0i
(z) = αx̂w(k + d, z) + η · (βfχ(z) + γfd(z)) (12)

In Eq. 12 it is understood that all of the parameters α, β,

and γ and all the functions η, fχ(), and fd() are specific to

agent i. The variable η is defined as

η = max
z∈B̃R

⋂

V (zagti
)
x̂w(k + d, z) (13)

In Eq. 12, the function fχ() is given by

fχ(z) =

{

0 if z in same cell as current agent

∆ otherwise
(14)

where ∆ = 1 −
q(χagt,π/2−atan2(z2−yagt,z1−xagt))

π

In Eq. 14, the function q(a, b) computes the absolute

angular difference between the two angles, a and b. Note

that the range of fχ() is [0, 1].
The function fd() of Eq. 12 is given by

fd(z) =

{

||z−zagt||
Rmax

if z ∈ BR

0 otherwise
(15)

The function fd() effectively rewards locations that are

farther away from the current agent position until the distance

Rmax is reached; past this point, the function returns 0. This

function is used to encourage the agent to move farther and

spend more time at a higher velocity, thereby covering more

ground on the map.

C. Control Law with Explicit Cooperation

With the intermediate variables and reward function de-

fined, the control law to incorporate explicit cooperation is

now of the form

z⋆′

i ∈







arg maximize
z∈B̃Ri

⋂

V (zagti
)
Ĵ0i

(z) if B̃Ri

⋂

V (zagti
) 6= ∅

zagti
otherwise

(16)

z⋆
i ∈

{

zhi
if αx̂w(k + d, z⋆′

i ) < δ

z⋆′

i otherwise
(17)

Agent i chooses z⋆
i as the next location to search and the

process repeats once the agent reaches z⋆
i .

D. Exhaustive Searching and Strategic Collision Avoidance

The primary goal of a search mission is to find one or more

targets which are located somewhere in the domain. One

would be concerned if there are conditions where the target

might be able to hide in the environment and avoid detection

by the agents. This paper shows that under a reasonable set

of assumptions, the agents are guaranteed to visit all cells in

the map with non-zero score sufficiently often to drive the

cell scores to zero. In other words, they will exhaustively

search and cover the entire area of interest. The assumptions

are

Assumptions: h ∈ (0, 1) (A.1)
δ ∈ (0, 1] (A.2)
Rmax ≥ max(Lx, Ly) (A.3)
Zk = zA ∀k (A.4)
x̂w(k + d, z) = xw(k, z) ∀k (A.5)
xw(0, z) ∈ [0, 1) ∀z (A.6)
δ ∈ (0, 1] (A.7)

All of these assumptions are reasonable and can be im-

plemented easily.

Theorem 3.1: The point z⋆
i is always reachable by agent

i and remains in the agent’s Voronoi polygon, z⋆
i ∈

BRi

⋂

V (zagti
).

Proof: In the case where z⋆
i = z⋆′

i , it can be seen from

Eq. 16 that z⋆′

i ∈ BRi

⋂

V (zagti
) since the feasible set of

the maximization problem is precisely BRi

⋂

V (zagti
) and

it was previously shown that zagti
∈ BRi

⋂

V (zagti
).

In the case where z⋆
i = zhi

, the properties of zhi
guarantee

that zhi
∈ BRi

⋂

V (zagti
) (end of Section III-A).
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If the same assumptions are satisfied, several guarantees

about algorithm performance can be made. However, unlike

previous results [9] where guarantees are shown for all agents

in the team, most of the guarantees for the case of explicit

cooperation can be shown only for the case of i = I .

Theorem 3.2: Under assumptions A.3, A.4, A.5, and the

previously described search strategy with explicit coopera-

tion, if agent I is not currently at the point zHI
the agent

must move to a point other than zagtI
once the quantity

αxw(k, zagtI
) decreases below the value δ.

Proof: Assuming that z⋆′

i = zagtI
, if the quantity

αxw(k, zagtI
) decreases below the value δ, then Eq. 17 will

assign z⋆
i = zhi

. The properties of zhi
can be applied to

show that z⋆
i is strictly closer to zHi

than zagtI
(end of

Section III-A). Since the agent is not at the point zHI
, the

agent must move to a point other than zagtI
.

Theorem 3.3: Under the previously described search strat-

egy, agent I must choose either a cell center which has non-

zero score, zhI
, or both as the point z⋆

I .

Proof: The point z⋆
i is assigned according to Eq. 17. If

the point z⋆′

i has a score of zero, then αx̂w(k + d, z⋆′

i ) = 0
which is less than the value of δ for any δ ∈ (0, 1] so Eq. 17

will assign z⋆
i = zhi

.

Alternatively, if αx̂w(k + d, z⋆′

i ) ≥ δ, then Eq. 17 will

assign z⋆
i = z⋆′

i . Since δ, α ∈ (0, 1], αx̂w(k + d, z⋆′

i ) ≥
δ ⇐⇒ x̂w(k + d, z⋆′

i ) > 0 which shows that the point

associated with z⋆
I has a non-zero score.

Theorem 3.4: Under assumption A.4, A.5 and the previ-

ously described search strategy, if agent I chooses zhI
as z⋆

I

and zhI
6= zHI

, then at the next time step the point zHI
will

remain unchanged and some agent i ∈ In will move closer

to the point zHI
.

Proof: The properties of zhi
(end of Section III-A)

showed that ||zhI
− zHI

|| < ||zagtI
− zHI

|| so if the agent

chooses z⋆
I = zhI

, at the next time step, it will be closer to

the point zHI
than it was before. If zhI

6= zHI
, then the agent

cannot search that cell so the score will not decrease and at

the next step, zHI
will still be in the set B̃max. Another

agent cannot search this same location due to fact that z⋆
i ∈

V (zagti
) and therefore, zHI

∈ V (zagtI
).

Furthermore, since the distance between the agent and the

same point zHI
is decreased, this same point will be chosen

by Eq. 4 as the point zHi
. Note that the index is i, not I in

the last sentence. This is because it is possible that the index

of the agent that is closest to the set B̃max may change at the

next time step. However, it will change only if another agent

moves closer to the set B̃max than the current agent located

at zagtI
. This does not affect the proof in the sense that the

point zHI
does not change, simply the index of whichever

agent happens to be closest to zHI
at the next step.

Using these results, we can show that the control law with

explicit cooperation yields an exhaustive map search.

Theorem 3.5: Under the previously described assumptions

and search strategy with explicit cooperation, xw(k, z) →
0 ∀z ∈ B (the scores of all cells in the map will approach

0).

Proof: Theorem 3.2 guarantees that agent I cannot

remain in a single cell indefinitely and Theorem 3.3 ensures

that it must choose either a cell of non-zero score, zhI
, or

both as the point z⋆
I at any given time step. If agent I chooses

a cell of non-zero score, previous work [9] showed that under

the negative update rule of Eq. 3, the score of that cell is

monotonically decreased towards 0.

If the agent does not choose a cell of non-zero score, the

only alternative scenario allowed by Theorem 3.3 is that the

agent chooses zhI
and xw(k, zhI

) = 0. By definition of

zHI
, if xw(k, zHI

) = 0, then the map has been completely

covered since all scores are at most 0. Therefore, assuming

that the map has not yet been entirely searched, xw(k, zhI
) =

0 ⇒ zhI
6= zHI

.

Theorem 3.4 ensures that if if zhI
6= zHI

, choosing zhI

as the point z⋆
I does not change the value of zHI

at the next

time step.

At this next time step, the agent once again must choose a

cell with non-zero score, zhI
, or both. If the agent continues

to choose zhI
, eventually zHI

∈ B̃RI
and at this point,

choosing a cell with non-zero score, zhI
, or both guarantees

that a cell of non-zero score is chosen. Therefore, the score

of some cell will be ensured to decrease and given sufficient

time, xw(k, z) → 0 ∀z ∈ B.

IV. RESULTS

Since the algorithm is proven to exhaustively search the

map using collision free flight paths, it can be tested in both

simulation and flight tests.

A. Boeing Hardware Environment

The algorithms were tested in the Vehicle Swarm Technol-

ogy Laboratory (VSTL) developed by the Boeing Research

and Technology group [15, 16]. This facility provides a large,

indoor flight test arena where heterogenous teams may con-

duct various types of missions. The autonomous algorithms

for each vehicle are executed on dedicated computers and

the position information of all vehicles are captured with

a system of cameras and coordinated pulses of light. The

overall laboratory is shown in Figure 4. Data acquisition at

100Hz with sub 40ms latency is possible with this system

for a large number of vehicles. The number of controlled

vehicles is limited to 14 due to software and hardware

architectures.

The flight test vehicles are heavily-modified, commercially

available quad-rotor helicopters as shown in Figure 5.

Algorithms are developed in C and C++ using the Mi-

crosoft Visual Studio environment. The algorithms can then

be tested using a high fidelity numerical simulation environ-

ment developed in Matlab and Simulink. Once the algorithms

are verified in simulation, they can be seamlessly integrated

onto the actual hardware for real time operations. This

facility has been used previously to validate other strategic,

autonomous algorithms using this work flow [17].

B. Performance Metrics

In order to gauge performance, several metrics are used.

Perhaps the most intuitive is to sum the scores of all the
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Fig. 4. Vehicle Swarm Technology Laboratory (VSTL) developed by the
Boeing Research and Technology group.

Fig. 5. Quadrotor vehicle equipped with reference markers.

cells. This is directly proportional to the mean of the cell

scores. The cumulative map score for a run i at time step k
is denoted

S(i, k) =
∑

z∈B̃

xw(k, z) (18)

The average values across n runs are simply

Save(k) =
1

n

∑

i∈In

S(i, k) (19)

In terms of map coverage, the best and worse case

scenarios can be given by

Smax(k) = max
i∈In

S(i, k) (20)

Smin(k) = min
i∈In

S(i, k) (21)

Additional performance metrics and measures are de-

scribed in [10].

C. Simulation Results

The proposed search strategy is tested in the previously

described simulation environment provided by Boeing. The

progression of the occupancy map and the trajectories of the

agents are shown in Figure 6.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4  
Time = 0

x

 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) xw at t = 0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4  
Time = 41

x

 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) xw at t = 41

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4  
Time = 91

x

 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) xw at t = 91

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4  
Time = 144

x

 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) xw at t = 144

Fig. 6. Full algorithm with Voronoi partitioning trajectories for 4 agents
in Boeing simulation environment.

In this figure, the agents are denoted by colored crosses.

Initially only a single agent is involved in the search (Fig-

ure 6(a)). Later, more agents join the search using the

same policy (Figure 6(b)-6(d)). As expected, the agent’s

trajectories are collision free since they constantly remain

in their own Voronoi polygon. Furthermore, it can be seen

that the map is exhaustively searched.

In order to judge the general behavior of the algorithms,

a series of Monte Carlo simulations are used. In these

simulations, the performance of each algorithm is gauged

over a series of 20 runs and then averaged using Eq. 19. The

best and worst case scenarios for the series of runs (in terms

of map coverage) are also computed using Eq. 21 and Eq. 20,

respectively. The algorithms are run on 3 different search

scenarios which are denoted S1, S2, and S3. The results for

scenario 3 are presented in Figure 7 (the traces for the other

scenarios display similar trends).

Although a Monte Carlo simulation with only 20 runs

may seem statistically insignificant, these runs are used to

simply verify the previous analysis and are not meant to be

exhaustive or used as a statistical proof of coverage. Map

coverage has been mathematically guaranteed..

In Figure 7, the solid line represents Save(k) and the

dashed line represents Smax(k) for the corresponding search

strategy.

The lawn mower algorithm is a fairly simplistic, heuristic

search which emulates how one might mow a lawn. The

gradient climb algorithm has the agent’s moving to the

surrounding cell with highest score. The strategy labeled

as “Algorithm” refers to previous related work without the

Voronoi partitioning [9]. The randomized Voronoi strategy

is similar to work by Frazzoli [6]. The strategy described

in this paper is referred to as the “Algorithm w/ Voronoi”.

And finally, the raster scan policy is a standard policy where

the agents move up and down rows while moving across the
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Fig. 7. Save(k) and Smax(k) for scenario 3.

map.

The performance of the various search strategies using

Save(k) and Smax(k) as metrics is summarized in Table I.

In this table, 1 corresponds to the best performance and 6

corresponds to the worst performance.

TABLE I

RANKINGS OF SEARCH STRATEGIES USING Save(k) AND Smax(k) AS

METRICS (1 = BEST).

Save(k) Smax(k)
Strategy S1 S2 S3 S1 S2 S3

Lawn Mower 6 6 6 6 6 5

Randomized Voronoi 5 5 5 4 4 4

Raster Scan 4 4 4 5 5 3

Gradient Climb 3 1 3 3 2 6

Full Algorithm 2 3 2 2 3 2

Full Algorithm w/ Voronoi 1 2 1 1 1 1

Looking at average performance measured by Save(k),
it can be seen that in scenarios 1 and 3, the performance

of the algorithms from worst to best appears to be: lawn

mower, randomized Voronoi, raster scan, gradient climb, full

algorithm, then full algorithm with Voronoi partitioning. This

is the expected result and shows that the best performance

and guarantee of map coverage is achieved with the full

algorithm. Furthermore, it shows that the performance is

further increased (and the coverage guarantee is preserved)

when augmenting the full algorithm with explicit cooperation

between agents through the Voronoi partitioning. It should

be noted that if the simulation were run for a longer

amount of time, it is expected that the raster scan algorithm

will eventually outperform the gradient climb when using

Save(k) as the metric for map coverage. Map coverage is

guaranteed with the raster scan algorithm, but it is obvious

that the performance is suboptimal. Note that in scenario 2, it

appears that the gradient climb algorithm performs the best.

This occurs because the areas to be searched in scenario

2 are connected and the environment is fairly simple. If

the environment was comprised of long, narrow corridors,

the gradient climb algorithm would perform poorly due to

the fact that it would not cross over areas of low score

whereas the full algorithm and full algorithm with Voronoi

partitioning would.

The guarantees of map coverage are more evident when

looking at the worst case scenario for map coverage. Recall

that Smax(k) is a measure of the worst case scenario possible

over all test cases. In this case, it is obvious that the algorithm

described in this paper (Algorithm w/ Voronoi) is the best

policy to use. Although the gradient climb strategy may

work well for some situations, there are situations where it

performs the worst out of all the possible strategies (Smax(k)
for scenario 3).

D. Experimental Results

The trajectories for actual hardware flight tests are similar

to those shown in Figure 6. The cumulative map score and

the map score variance vs. time for a flight test with three

agents is shown in Figure 8.
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Fig. 8. S(i, k) and V (i, k) vs. time during flight test of two agents with
user interaction.

The scenario which generated this figure involved three

agents who maintained separate beliefs of the world state

(thereby creating three unique S(i, k) and V (i, k) traces).

The agents were sequentially added to the search mission.

In this case, agent 2 started searching at t = 0 seconds. After

approximately 30 seconds had elapsed, agent 1 was added to

the team. Finally, at t ≈ 35 seconds, agent 3 was added to

the team. This shows the modular nature of the algorithm and

how agents can be dynamically added and removed from the

team. In all cases, the map scores and variances are driven to

zero given sufficient time as the agents exhaustively search

the map.

V. CONCLUSIONS

This paper presents a searching algorithm that can be

used to coordinate a large number of heterogeneous agents

involved in a searching mission. The centralized occupancy

based map represents the system’s belief of the state of the

world at a given time. Each agent decides which coordinate

is the most desirable to search in the next d steps. The

team can be comprised of different types of agents with

different capabilities. The formulation allows each agent to
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determine what is desirable for its individual capabilities.

The Voronoi partitioning of the agents allows the agents

to remain collision free since they only choose flight paths

which remain within their own Voronoi polygon. This feature

also allows the agents to remain spread out and cover the

search area more effectively.

In earlier versions of the algorithms, there was no explicit

cooperation between agents in the team. Instead, the agents

are implicitly coupled through the centralized occupancy

map. The algorithm remains scalable because each agent

does not need to explicitly know about the existence of

other agents. Each agent executes the searching algorithm

and the resulting emergent behavior is that the team performs

a coordinated search. Explicit cooperation between agents is

incorporated using the Voronoi partitioning which simulta-

neously increases performance and computational costs.

These algorithms are verified using an advanced numerical

simulator from the VSTL. They are then transitioned to the

hardware test bed and validated using multiple vehicles in

real time flight tests. Future research directions involve using

the versatile Boeing test bed to investigate human/automaton

interactions using the VSTL interface. Currently user inter-

action with the autonomous systems are somewhat onesided

where users dictate the behavior. Current research at the

University of Washington are directed towards two way

communication and information flow between human oper-

ators and autonomous systems with the goal of improving

performance and mission success rates.
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