Ocean 420 Physical Processes in the Ocean
 Project 6: Waves
 Answers

3. Capillary waves

The phase speed for capillary waves is given by

$$
C^{2}=\frac{g}{k}+\frac{k}{\rho_{0}} \varsigma
$$

Here ς is the surface tension and is $0.074 \mathrm{~kg} / \mathrm{s}^{2}$.
a) Derive a formula for the group velocity as a function of wave number for capillary waves.

$$
C_{g}=\frac{\partial \omega}{\partial k}, C=\frac{\omega}{k}
$$

Plugging the second equation into the phase speed equation above, we get a relationship between ω and k.

$$
C^{2}=\frac{\omega^{2}}{k^{2}}=\frac{g}{k}+\frac{k}{\rho_{0}} \varsigma
$$

Solving for ω,

$$
\begin{aligned}
& \omega^{2}=g k+\frac{k^{3} \varsigma}{\rho_{0}} \\
& \omega=\sqrt{\left(g k+\frac{k^{3} \varsigma}{\rho_{0}}\right)}
\end{aligned}
$$

Take the derivative using the chain rule,

$$
\begin{aligned}
& \frac{\partial \omega}{\partial k}=\frac{1}{2}\left(g k+\frac{k^{3} \varsigma}{\rho_{0}}\right)^{-\frac{1}{2}} \cdot\left(g+\frac{3 k^{2} \varsigma}{\rho_{0}}\right) \\
& C_{g}=\frac{g+\frac{3 k^{2} \varsigma}{\rho_{0}}}{2 \sqrt{g k+\frac{k^{3} \varsigma}{\rho_{0}}}}
\end{aligned}
$$

b) Now calculate the phase and group velocities for waves with wavelength 25 cm and 1 mm .

First, $\Lambda=0.25 m$.

$$
\begin{aligned}
& k_{.25}=\frac{2 \pi}{\Lambda}=25.1 \mathrm{~m}^{-1} \\
& C_{g, 25}=\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}+\frac{3 \cdot\left(25.1 \mathrm{~m}^{-1}\right)^{2} \cdot 0.074 \mathrm{~kg} / \mathrm{s}^{2}}{1025 \mathrm{~kg} / \mathrm{m}^{3}}}{2 \cdot \sqrt{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 25.1 \mathrm{~m}^{-1}+\frac{\left(25.1 \mathrm{~m}^{-1}\right)^{3} \cdot 0.074 \mathrm{~kg} / \mathrm{s}^{2}}{1025 \mathrm{~kg} / \mathrm{m}^{3}}}}=0.316 \mathrm{~m} / \mathrm{s} \\
& C_{.25}=\sqrt{\frac{9.8 m / \mathrm{s}^{2}}{25.1 \mathrm{~m}^{-1}}+\frac{25.1 \mathrm{~m}^{-1} \cdot 0.074 \mathrm{~kg} / \mathrm{s}^{2}}{1025 \mathrm{~kg} / \mathrm{m}^{3}}}=0.626 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Next, } \Lambda=0.001 \mathrm{~m} \\
& k_{.001}=\frac{2 \pi}{\Lambda}=6283 \mathrm{~m}^{-1} \\
& C_{g, 001}=\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}+\frac{3 \cdot\left(6283 \mathrm{~m}^{-1}\right)^{2} \cdot 0.074 \mathrm{~kg} / \mathrm{s}^{2}}{1025 \mathrm{~kg} / \mathrm{m}^{3}}}{2 \cdot \sqrt{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 6283 \mathrm{~m}^{-1}+\frac{\left(6283 \mathrm{~m}^{-1}\right)^{3} \cdot 0.074 \mathrm{~kg} / \mathrm{s}^{2}}{1025 \mathrm{~kg} / \mathrm{m}^{3}}}}=1.01 \mathrm{~m} / \mathrm{s} \\
& C_{.001}=\sqrt{\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{6283 m^{-1}}+\frac{6283 \mathrm{~m}^{-1} \cdot 0.074 \mathrm{~kg} / \mathrm{s}^{2}}{1025 \mathrm{~kg} / \mathrm{m}^{3}}}=0.675 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) What is the ratio of the group velocity to the phase velocity for the two wavelengths in (b)?

For $\Lambda=0.25 \mathrm{~m}, \frac{C_{g}}{C}=\frac{0.316 \mathrm{~m} / \mathrm{s}}{0.626 \mathrm{~m} / \mathrm{s}}=0.5$
For $\Lambda=0.001 \mathrm{~m}, \frac{C_{g}}{C}=\frac{1.01 \mathrm{~m} / \mathrm{s}}{0.675 \mathrm{~m} / \mathrm{s}}=1.5$
4. You are observing the sea level at two stakes by a pier. Answer the following questions about the wave that is seen in the observations. The data is in an excel file. Time is the first column, the measurements at stake 1 in the $2^{\text {nd }}$, and stake 2 in the $3^{\text {rd }}$. The stakes are 2 meters apart.
a) What is the period of the wave?

Looking at one stake, this is the distance between two crests, 3.6 s .
b) What is the phase speed of the wave?

Speed is distance over time. We know the two stakes are 2 m apart, giving a distance. We can figure out the time by seeing how long it takes a crest to get from one stake to the next. This gives us all the required information to find its speed.

$$
C=\frac{\Delta x}{\Delta t}=\frac{2 m}{0.7 \mathrm{~s}}=2.85 \mathrm{~m} / \mathrm{s}
$$

c) What is the wavelength of the wave?

We use the period and the phase speed to find the wavelength.

$$
\Lambda=C T=2.85 m / s \cdot 3.6 s=10.26 m
$$

d) What is the amplitude of the wave?

This can be read straight from the graph, 0.2 m .
e) Does the wave satisfy the deep water wave dispersion relation?

$$
\begin{aligned}
& \omega^{2}=g k \\
& \omega^{2}=\left(\frac{2 \pi}{T}\right)^{2}=\left(\frac{2 \pi}{3.6 s}\right)^{2}=3.04 \\
& g k=\frac{2 \pi g}{\Lambda}=\frac{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 2 \pi}{10.26 m}=6.00
\end{aligned}
$$

No, this wave does not satisfy the deep water dispersion relation.
f) If the wave is a shallow water wave, what must the depth of the water be by the pier?

To be a shallow water wave, it needs to satisfy $\Lambda>20 H$.
Solving for H , we have $H<\frac{\Lambda}{20}$.

$$
H<\frac{10.26 m}{20}=0.51 \mathrm{~m}
$$

Alternately, plug the given information into the shallow water dispersion relation and solve for H .

$$
\begin{aligned}
& \omega=\sqrt{g H} \cdot k \\
& H=\frac{\omega^{2}}{g k^{2}}=\frac{(2 \pi / T)^{2}}{g(2 \pi / \Lambda)^{2}}=\frac{\Lambda^{2}}{g T^{2}}=\frac{(10.26 m)^{2}}{9.8 m / s^{2} \cdot(3.6 s)^{2}}=0.829 \mathrm{~m}
\end{aligned}
$$

