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Two-dimensional wave propagation

So far we have talked about wave propagation in one-dimension. For two or three spatial
dimensions, we vectorize our ideas of wavelength, wavenumber and propagation
velocities. The basic waveform for surface displacement becomes:

n(x,y,z,t) = acos(kx + Ly + mz — or)

The three-dimensional wavelength, is a vector drawn from crest to crest with components
of distance between the wave crests in each of three dimensions, A = (A, A, A)).

k = wavenumber in x-direction = 27t/ A,
[ = wavenumber in y-direction = 27t/ A
m = wavenumber in z-direction = 27t/ A,
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k = (k,l,m) wavenumber vector

We define a wavenumber vector oriented perpendicular to the wave crests, pointing in the
direction of wave phase propagation. For surface waves, there is no vertical propagation,
and we are only concerned with the two horizontal dimensions, as sketched above.

Phase and group velocity vectors are defined as,
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Notice that the phase velocity does not satisfy ordinary vector composition rules. The
phase speed in the direction of the advance of each crest is given by

)
C =
(k2 +17 + mz)l/2
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As an example, consider a shallow water wave that is propagating towards a wall. What
happens? The wave vector is given by (k,1). The wave will reflect from the wall with
wave vector as shown below

Notice that the wave number in the y-direction (1) outgoing wave
does not change, while the wave number in the x-direction (k)
changes sign. We can write the incoming waveform as

N = acos(kx + Ly —wr)

while the outgoing wave is written as 1
N =acos(—kx +ly— wr)
Note that the phase speed and group velocity have not
changed in magnitude -- they have just changed directions.
Also, the total wavelength has stayed the same.
1

k
Incoming wave

In the open ocean all wind-generated waves are deep-water

waves. As the waves approach the shore, refraction of waves

tends to align the direction of propagation normal to the bathymetric contours (in-class
exercise). Thus, crests are pretty much parallel to the shore when they break, regardless
of the direction the deep water swell was traveling.

For a coastline of variable bathymetry, the effect will be to warp the incoming wave field
along lines that are perpendicular everywhere to the bathymetry (Knauss, Fig. 9.18). For
convex coastlines (headlands), wave rays are focused inwards, and we expect wave
height there to become more intense as energy is concentrated into a smaller area. For
concave coastlines (canyons), wave rays are focused outwards. The ray paths depend on
the wavelength (or period) of a wave as well, longer wavelength and period waves will
begin to be refracted in deeper water — energy from these waves may wrap around
promontories. Sheltering of the coastline from wave energy can develop for shorter
waves, which begin refraction relatively close to shore and have ray paths that are not
bent around promontories (Knauss, Fig. 9.19).

We quantify the idea of wave refraction and its effect on wave height, by writing down
equations for the conservation of energy flux.

First, what is energy?

We define the wave energy (density) as E = 1/2 pga’. The units are J/m*, which is the
energy density per unit horizontal area of sea surface. A wave has potential energy, from
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moving parcels up and down in the gravity field, which is proportional to the amplitude
squared. A wave also has kinetic energy, associated with the water parcel velocities and
kinetic energy is also proportional to amplitude squared. In surface gravity waves, the
contributions from potential and kinetic energies are equal, and we could derive the
above expression for energy by averaging our expressions for sea surface amplitude
(related to potential energy changes) and water parcel velocity over one wavelength.
For instance, consider a wave with 1m amplitude, the energy of that wave will be

1
E= 2 pga’ =.5%1025*%9.8 %1% 1Jm™> = 5022Jm™>

The energy is the total energy in a water column of a given area, where the area
in the sketch below is s*dx and s is the perpendicular distance between two wave rays
(wavenumber vectors). The energy flux is the rate of energy flow through the area

Energy flux (in Watts) = E * dx/dt * s
=energy * group velocity * s =E C, s

For instance, for a shallow water wave traveling in 4000 m of water with amplitude of 1
m, we have

C,=+gH =198m/s

Thus, the energy flux 994000W/m, and for a m meter section of wave (measured along
the wave crest, this gives about 1 MegaWatt.

1g_ 1%938
20 2%2*m
Thus, the energy flux would be about 40,000W/m, quit a bit smaller than for the deep
water wave.

For a Deep water wave, we have C, = m/s=T78m/ls

Energy flux is conserved along a ray-path.
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For shallow water waves approaching a straight coastline head-on, there is no refraction.
s 1s constant. However, wave speed decreases because H is decreasing
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Energy tends to increase as the waves move onshore — waves steepen (and break!)
For instance, if a shallow water wave with amplitude of 1m moved from 4000m of water
to 10 m of water, what would happen to the amplitude of the wave?

2
% = a—i = 4000 , thus, the amplitude of the wave would increase to 4.5 m
4

Example 2

For a more complicated example as in Knauss, Fig. 9.18, waves are refracted, changing
cross-sectional area, and wave speed slows approaching shore. Let’s consider a headland:

ECs =E,C,s,
E, Cs _s [H
E  Cys, s,\H,

Wave refraction by the headland induces another tendency for wave amplitude to
increase moving onshore in this area, because s, > s,.

Finally, the rule of thumb is that when the ratio of the wave height to water depth (a/H)
increases to between 0.7 and 0.8, the wave becomes unstable and breaks.
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