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Fio.13.1  Tide curvesjor May 1980 (data from Admiralty Tide Tables) showing four types in
terms of the “form ratio” F = (K, +0,)/(M;+35;) of major diurnal to semi-diurnal
constiuents.
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FIG. 138 Global M, tide calculated from tidal potential including effects of self-attraction and
of tidal loading, 2° grid. Full lines = cophase lines (Greenwich hours), dashed lines = corange
lines (cm). (From Accad and Pekeris, 1978.)




Fig. 10.5. Co-tidal lines (solid) with time in lunar hours, and co-range lines (dotted with values in met
the English Channel. [From Proudman (1953, p. 262); after Doodson and Corkan (1931)]
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Fig- 0.1, {a} Co-tidal lines for the northemn Adriatic. [After Polli (1960): from Hendershott and Speranza (1971,
Fig. 7.1 o) Co-tidal lines for a simple model with depth increasing quadratically with distance from the end. The
phase difference between the solid lines is 30° The phase on the beoken lines differs by 10° from that on the axis.
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Figure 3. Empirical cophase lines of the M tide in the Straits of Juan de Fuca-Georgia based on a
deuse net of coastal statiens. ﬁashed lines indicate uncertainty in position. The numbe rs
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Figure 4.

48°
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Empirical co-amplitude lines of the M, tide in the Straits of Juan de Fuca-Georgia based on

a dense net of coastal stations. Dnsﬁ:d lines indicate uncertainty in position. The

numbers are amplitudes in meters. Hodified from Parker (1977a).
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Figure 5. Empirical cophase lines of the K  tide in the Straits of Juan de Fuca-Georgia based on a
dense net of coastal stations. l!lashed lines indicate uncertainty in pesition. The numbers
are phase lags in degrees since Greenwich transit. Hodified from Parker {(1977a).
126°W 125° 124° 1232 122°
50°N ~50°N
S

49°— ~49°

48° I : : '.fl-." f 480
126°W 125° 124° 123° i22®

Figure 6. Empirical co-amplitude lines of the K, tide in the Straits of Juan de Fuca-Georgia based on
4 dense net of coastal stations. Dasl!ned lines indicate uncertainty in position. The
numbers are amplitudes in meters. Modified from Parker (1977a).
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Figure 8. Distridution is Puget Sound of ny amplitude in meters. Sources
same as Figare 7.
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fgure 7. Dietributicn in Paget Scund of M, phasc lag in degrees relative to
Greeowich trapsit. From harmonil apalysee by the United States.
Coast and Geoderic Survey aod tbe Natfons! Bucvey {obtained from
warious sources).
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Figure 9. Distribution in Puget Sound of K, phase lag in degrees relative to
Greenwich transit. Sources same as Figure 7.
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Figure 10. Distribution ia Puget Seund of K‘ amplitude in seters.
Sources same as Figure 7.
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Flgure 13. Kesr-turface |¢2 tidel curramt allipses sbeecved {o Puget Sound.
Deseripticee of sysbols samc ap Fig., 12, The cllipscs were
sbtained from meveral sources:
ebkarvations by Cezasa st al. (1973}, cllipses supplied by Parker
{privete commumication) obtained from » recent shrervatiom pragees
by the Satfopsl Dessn Survey, elifpses f2om Parker {1977a) avd
et (ashed 1inas) fram the Katiosel Deean Survey Tide
Table (19773,
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Near-surface M, tidal current ellipses observed in the Strait of Juan de Fuca and the southern
Strait of Georgia. The H, current velocity is a vector extending from the center of a given
ellipse to the ellipse it3elf. The position at Greenwich transit of the velocity vector is
indicated by the zero. As time progresses the tip of the vector travels around the ellipse in
the direction shown by the arrow. The ellipses were obtained by harmonic analyses of 15- or
29-day series of observations. After Parker (1977a).
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