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Tide Dynamics

Dynamic Theory of Tides.

In the equilibrium theory of tides, we assumed that the shape of the sea surface was
always in equilibrium with the forcing, even though the forcing moves relative to the
Earth as the Earth rotates underneath it.  From this Earth-centric reference frame, in order
for the sea surface to “keep up” with
the forcing, the sea level bulges need
to move laterally through the ocean.
The signal propagates as a surface
gravity wave (influenced by rotation)
and the speed of that propagation is
limited by the shallow water wave

speed, C = gH , which at the

equator is only about half the speed
at which the forcing moves.  In other
words, if the system were in
equilibrium at a time t = 0, then by
the time the Earth had rotated
through an angle , the bulge would
lag the equilibrium position by an
angle /2.

Laplace first rearranged the rotating shallow water equations into the system that
underlies the tides, now known as the Laplace tidal equations.  The horizontal forces are:

acceleration + Coriolis force = pressure gradient force + tractive force.

As we discussed, the tide producing forces are a tiny fraction of the total magnitude of
gravity, and so the vertical balance (for the long wavelength appropriate to tidal forcing)
remains hydrostatic.  Therefore, the relevant force, the tractive force, is the projection of
the tide producing force onto the local horizontal direction.  The equations are the same
as those that govern rotating surface gravity waves and Kelvin waves. The tide is forced
by the sum of the pressure gradient force (due to the bulging sea surface) and the tractive
force, and propagates like a Kelvin wave.

Tides can be predicted using a numerical ocean tidal model that incorporates these
equations.  Observational data in the form of sea level at the coast and altimeter data in
the open ocean are often assimilated into the numerical model.  The model results, such
as the one at Oregon State University that you will look at in your problem set, are
presented in the form of maps of phase and amplitude for each tidal component.  Tidal
components are added together to form the total tidal sea level variation.

moon
t = 0
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Tidal parameters

For each tidal constituent (or component), several quantities are defined:

• Co-range lines link places having the same tidal range (amplitude).
• Co-tidal lines link all points having the same phase.  Numbers are hours of lag of

high tide after the moon’s transit over the Greenwich meridian (0°) or phase of the
tide relative to Greenwich (e.g., a phase of 0° has high tide at the same time as the
moon is passing over Greenwich, 180° has low tide at this time)

• Amphidromic points are points where the tidal range is zero.  Wave crests move
around the amphidrome once per tidal cycle.   Near the coast, progression around
amphidromes tends to be cyclonic (i.e., in the sense of a Kelvin wave) keeping the
coast on the right (N Hem).

Shown below are the co-range and co-tidal lines for the M2 tide. Note: “cophase” here is
the same as “co-tidal” above.  Note the amphidrome in the center of the North Atlantic
and several amphidromes in the Pacific.  Note the southward propagation along the west
coast of South America and the northward propagation along the west coast of North
America and also Africa.

Tides in bays and channels

The tides in the open ocean and along boundaries tend to take the form of a progressive
Poincaré or Kelvin wave.  For example, within the English Channel, we see propagation
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from the North Atlantic eastward into the channel, as indicated by the co-tidal lines
(solid).  The time of the high tide increases going eastward into the Channel.  The tidal
range (indicated by the dashed lines) is generally higher on the right hand side of the
channel owing to the Kelvin wave character of the tide.

The response of a bay or inlet depends on its width L, compared with the wavelength of
the tidal response.

Wide bays. Tides will propagate around the boundaries of a wide bay.
How wide does the bay need to be to have
tidal propagation around it?  Kelvin waves
have an offshore scale given by the
barotropic Rossby radius,

fgHLR = .

The bay must be wide enough (L > 2 LR),
relative to its depth H, so that the incoming
and outgoing waves do not significantly overlap and interfere.

Narrow Bays.  If the bay is narrow the wave entering from the open ocean will be
reflected to set up a standing wave.  At this extreme, when the width of the bay is small
with respect to Rossby radius of deformation,
rotation is unimportant to the dynamics.  As the
tide passes the opening of the inlet, it uniformly
raises and lowers sea level there (because the length
scale of the open ocean tide is much greater than
the width of the opening.
As the wave propagates into the inlet, it encounters
reflections off the landward end from previous

L
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wave cycles, and interference occurs, leading to the possibility of standing waves.

Narrow inlets (or fjords) and narrow channels allow the possibility of standing waves.
Each fjord or harbor has a set of natural frequencies.  (The physics of this problem were
originally studied in Lake Geneva, a closed basin, where the natural frequency of the
basin is called the seiche mode.)  To understand these dynamics we first examine the
structure of tidal currents.

Tidal currents.  Propagating tides have
maximum current speeds (in opposite directions)
at high and low tide, i.e., at the crest and trough
of the Kelvin wave that is carrying the signal.
Vertical velocity is always small (shallow water
waves).

When the propagating tide meets a reflection there is the possibility of a standing wave.
Standing waves are composed of two waves of the same amplitude and wavelength
travelling with the same speed in opposite directions.

)cos()cos(2)cos()cos(),( tkxatkxatkxatx =++=

Within the standing wave, there are two extreme
conditions:

1:  An antinode is the location where the
standing wave has maximum amplitude
(constructive interference of the incoming and
reflected waves).

2:  A node is the location where the standing
wave has zero amplitude (destructive
interference).

Tidal currents are different for standing waves
compared with progressive waves.   Maximum
vertical velocities occur at the antinodes, while
velocities at the nodes are horizontal.

The location of nodes and antinodes is determined by the
geometry of the basin.  In a closed harbor (or your bathtub!)
there are solid sidewalls where the velocity can only be
vertical.  So there are antinodes at the solid walls and a node
in the center – this is the basic structure of the bathtub
seiche.  It is also the structure of the standing wave in a
channel (viewed in cross-section)

node
antinode

node
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Harbor seiches.  An open harbor or inlet, on
the other hand, has one end open to the ocean,
rather than two solid walls.  An easy way to
picture the boundary conditions on the open
harbor is to think of it as half a bathtub.  Like
the closed basin, there is an antinode at the
inner (land) end of the inlet and a node where
the harbor meets the open ocean (like the
middle of the bathtub.  The largest vertical
velocity (the largest amplitude of the seiche) is
at the land or closed end.  At the open end, the
sea level needs to match the open ocean and its
tidal modulation.

Maximum horizontal velocities are found at the nodes, here the opening of the inlet.
Temporally, maximum tidal currents are found in-between the extremes of sea level, as
water rushes in and out of the fjord to fill or empty the tidal prism.  The average tidal
prism is defined as the volume difference between mean high water and mean low water.
The period when sea level is rising (filling the tidal prism) is the flood tide and the period
when sea level is falling is the ebb tide.

Resonance.

Examining the geometry of the closed harbor, one can see that the simplest standing
wave structure that can have antinodes at each wall is exactly one-half wavelength long,
that is, L = /2, where L is the distance between the walls.  Similarly, one can see that the
simplest wave to fit the open harbor is one-quarter wavelength long, L = /4, where L is
the length of the harbor.

Combining these special spatial scales with the phase speed of the shallow water wave,

C = gH = /T, one can determine the period for this wave, T =
2L

gH
Actually, there can be more than one node in the harbor, so the natural periods for n
nodes are

T =
2L

n gH
, n=1,3,5,…, for a closed harbor

For the open harbor with n nodes

T =
4L

n gH
  n=1,3,5,…,  for an open harbor

Resonance (extremely large amplitudes) occurs when the harbor is forced at these special
periods.
In-class exercise

node

open ocean
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Consider a harbor  40m deep and  220 km long .  The natural period of oscillation for the
bay will be given by

T =
4L

gH
=
4 *220000m

9.8 * 40
= 44400s == 12.35hr

The natural period of oscillation is very close to the period of the M2 tide.  This suggests
that the bay will be very near resonance, and the tide will be quite high at the head of the
bay.

Mixed geometries

Real bays and inlets will have something of the character of both of these idealized
extremes, the open and the closed harbors. Imagine the situation for a tide propagating
into a wide bay, wide enough so that the tide propagates around the edges as a Kelvin
wave (don’t worry about the corners too much!).  Let’s sketch the co-tidal and co-range
lines.  (northern hemisphere)

The co-tidal lines show the progression of the Kelvin wave around the bay keeping the
coastline on the right (N Hem).  The co-range lines show the exponential offshore decay

L

Co-tidal
Co-range

Increasing time since
moon transit

zero
amplitude
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of the Kelvin wave over the Rossby radius,LR =
gH

f
.  To determine if the bay will

show rotational effects and the decay of the tide away from the coast, we calculate the
deformation radius relative to the wide of the bay.  For instance, if the bay were 40 m and
we are at 45N, then the deformation radius would be about 400 km.  Thus, the bay would
have to be wider than that to see the full effects of rotation.

Now imagine that the bay is very narrow and that the M2 tide sets up a resonant standing
wave for which rotation is unimportant.  There is a node at x = /4.   Let’s sketch the co-
tidal and co-range lines.

Everything to the left of x = /4 experiences high tide at the same time.  Everything to
the right experiences high tide 6.125 hours (6 lunar hours) later.  So there is one co-tidal
line at the node to separate these two regions.  The maximum range is seen at the
landward end of the channel (at x=0) and halfway between the nodes at x = /2.
Minimum range is near the nodes.

If the inlet width is intermediate, the tide will have the character of both cases.  On the
boundaries, the tide will most strongly resemble the Kelvin wave case.  The incoming
wave from the ocean will tend to be amplified towards the coastline on the right (N
Hem), and the outgoing wave will also be amplified on the right (the opposite coastline).
The center axis of the channel will most strongly resemble the standing wave case, with
low amplitude tide at the node and high amplitude tide on either side with an out of phase
relationship.  The nodal line, which stretches across the channel when rotation is not
important will turn into a nodal point in the center of the channel around which the tide
progresses (renamed an amphidrome).

co-tidal
co-range

x=0           x= /4                x = L = 3 /4

   H            L             H               L
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Tides in the Adriatic show an example of this effect.
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