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Inertial Oscillations

Imagine shooting a hockey puck across an ice-covered (i.e., frictionless) surface.  As the
hockey moves at speed u in a given direction for a time long enough that the Earth rotates
a significant amount, the Coriolis force (magnitude = fu) will begin to deflect it to the
right (N Hem).  Since the Coriolis force acts at right angles to the motion, it does not
change the speed of the hockey puck, but does change its direction.  In the new direction
of travel, the Coriolis force continues to deflect it to the right.  Eventually, the hockey
puck makes a circle.

This is similar to the circular motion of a ball on a string.
In the case of the ball, your arm exerts the inward force
(the centripetal force) that causes the ball to continuously
change direction and move in a circle.  For our hockey
puck, the Coriolis force is providing this inward normal
“force”.

From the point of view of its own rotating reference frame,
the ball feels a centrifugal force (a fictional force equal
and opposite to the centripetal force) outwards that is
balanced by the string tension pulling inwards.

Thought experiment:

We talk about the Coriolis force as a “fictitious force”, yet inertial oscillations seem to
exist because of it.  In this experiment, we will try to
reconcile these two notions.

1) Consider a bucket of water.  If the bucket is at rest, then
the surface will be flat.  Now freeze the water in the
bucket.  Push a hockey puck from the edge of the bucket
P towards the middle.

2) If you look at the same motion from a rotating reference
frame, what would the motion look like?
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Fcentrifugal
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3) Now consider the same bucket of water, but this time give it a
uniform rotation.  What will the surface look like?  The
“centrifugal force”, actually the tendency for the fluid to move in
a straight line (inertia) will create a curved surface, higher near
the outside edge.

4) Now freeze the water in the rotating bucket, and stop the rotation.
Release a hockey puck from the edge of the bucket.  What will
the motion be?  Oscillations along the curved surface.

5) Finally, look at the motion from a rotating reference
frame (from the top).  We see oscillations moving up
and down the curved surface, at the same time being
deflected into circular motions.

This is the simplest type of time dependent motion caused
by the Earth’s rotation and is called an inertial oscillation.

In our thought experiment we saw that surface curvature plus rotation give us inertial
oscillations in our frozen bucket, but why do they exist on earth?  To understand this, we
must recognize that the earth is not a sphere.  Instead, because it is rotating, it bulges at
the equator and is ellipsoidal.

The gravity vector g points
toward the center of the Earth C.
Because of the ellipticity there is
a component of gravity parallel to
the Earth’s surface, as well as a
component perpendicular to the
surface. The component parallel
to the surface is the restoring
force for the inertial oscillations.
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The equations of motion for the inertial oscillation are given by:
u

t
fv = 0

v

t
+ fu = 0

This is a set of coupled equations, which means that a change in the x-direction
velocity, u, will cause a change in the y-direction velocity v, and vice-versa.  To
see how this works let’s try an initial condition that u = (u,v) = (0,U) at t = 0
(give the hockey puck a push towards the north).

To see how these coupled equations interact, let’s look also at time t= t

u( t) = u(0) + f v(0) t = f U t

v( t) = v(0) f u(0) t =U

and the next time step, t=2 t

u(2 t) = u( t) + f v( t) t = 2 f U t

v(2 t) = v( t) f u( t) t =U 1 f 2 t 2( )

and you can see how the circular motion proceeds.

The solution of these equations for u and v (check and see!) is a
circular oscillation with period T = 2 /f.    = f is called the inertial
frequency.

u = U sin( ft)

v = U cos( ft)

The velocity vector rotates to the right with time in the northern
hemisphere and to the left in the southern hemisphere.

The intertial period is given by

T =
2

f
We can calculate the period, which is different at different latitudes.  At 10N, it is 69
hours, at 30N it is 24 hours, and at 45N it is 16.9 hours.

How large is the radius of the circle for these oscillations?  From the balance between
centrifugal and Coriolis forces,

 t=0

  t= t

t=2 t

t = 0

t = T/4

t=T/2
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U2/r = fU
 r = U/f.

You can show that for a velocity of 5 cm/s, and f = 1 10 4 s 1 , the radius of an intertial
circle would be 500 m.
Inertial oscillations do not exist in a pure form like this.  However, for both surface and
internal gravity waves, in the limit as the frequency approaches f, are motions that have
the character of inertial oscillations.  Gravity waves cannot exist at frequencies lower
than the inertial frequency.  A spectrum anywhere in the ocean usually yields a strong
peak at the inertial frequency.

Rotation effects on surface gravity waves.

Rotation effects will only be important for long waves with low frequencies – so we can
assume outright that these are shallow water waves, even in the open ocean.  Rotating
surface gravity waves are called Poincare waves or inertia-gravity waves.  Away from
land boundaries, the tide propagates as an inertia-gravity wave.

Dynamical balance
These waves have the same dynamics as shallow-water surface gravity waves, with the
addition of the Coriolis force:

u

t
fv = g

x
v

t
+ fu = g

y

Solution form

We will take x to be in the direction of propagation of the wave (which is not changed by
rotation) and y in the horizontal direction perpendicular to the direction of propagation.
The sea surface elevation has the same cosine function as for non-rotating waves, but
water parcel motions are modified by rotation.

Again, we are working on very large horizontal scales (in order for rotation to be
important), so vertical velocity is negligible.  Water parcel motions are nearly horizontal.
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In the xy-plane, water parcels make
anticyclonic elliptical motions.
The ratio of the length of major axis
(x) of the ellipse to the minor axis
(y) is /f.  For high frequency
motions, the ellipse elongates along
the direction of propagation and we recover the non-rotating solution.  For  = f, the
orbits become circular, like inertial oscillations.

Dispersion relation

The dispersion relation is similar to that for shallow water waves, except with the
addition of f

= f 2 + gHk2

The minimum frequency for these waves (k  0, large wavelength) is f, the inertial
frequency.

Group velocity is given by

22 gHkf

gHk

k
Cg

+

==  (18.1)

Unlike non-rotating shallow-water waves, these waves are dispersive.  Unlike deep water
waves, short(er) waves outrun long(er) waves.

Examining two limits shows how these rotationally modified gravity waves relate to
waves we have already studied:

(i) for the shortest waves (large k, large /f) Cg = gH  and we approach non-
rotating shallow water surface gravity waves.  This is the maximum group
speed for inertia-gravity waves.  This is also the limit for f = 0.

(ii) for the longest waves (small k), Cg = 0.  These motions are non-propagating
inertial oscillations.

We can estimate how long the wave needs to be for rotation to be important.  The first
term under the square root in (18.1) is as large as the second term when

f 2 gHk2

x

y
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Take the length scale of the wave to be L ~ 1/k (it’s a scaling argument so we don’t worry
about the 2 .)  Then solving for L gives

LR =
gH

f

This length scale is given the name Rossby radius of deformation (for barotropic or
external motions, in this case).  This is an important length scale for ocean dynamics of
all kinds (not just these waves), as it is a measure of the importance of rotation for a
given phenomenon.  For length scales much smaller than the Rossby radius of
deformation, rotation is unimportant.  How big is this scale?  In the open ocean at

midlatitudes  LR =
(9.8)(4000)
5 10 5 4000km .

For internal motions we can also define the internal or baroclinic Rossby radius

LR =
g H1

f
= NH/f

In this case, H is the vertical scale of motion, not the ocean depth.  Since g’ << g and the
scale of the motion is less than the full ocean depth, the baroclinic Rossby radius is much
smaller, of order 10km - 100 km.  For g ' = 0.02m / s2 , H1 = 500m and the same value of
f as above, LR = 32km .   and Rotation becomes important for much shorter internal
gravity waves than for surface gravity waves.

 Rotation effects on internal gravity waves

Dispersion relation

The dispersion relation for internal waves is modified to become
2

= f 2 sin2 + N 2 cos2

[Note: Knauss gives the equivalent dispersion relation

tan2 =

2 f 2

N 2 2

where now the angle  is the angle that the group velocity makes with the horizontal.  ]

This more complete dispersion relation makes it clear that the minimum frequency for
internal waves is the inertial frequency, f.  For this limit, the angle that the wavenumber
vector makes with the horizontal is 90°.  Energy propagation and water parcel oscillations
are nearly horizontal.  This “wave” (which is not really a wave since phase speed goes to
zero in this limit) looks like a set of vertically stacked inertial oscillations.
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Water parcel motion

In a similar way to surface gravity waves, the effect of rotation on internal waves is to
cause anticyclonic elliptical motions of water parcels, with motion perpendicular to the
plane of wave propagation at crests and troughs.

The fluid parcels thus have elliptical
motions in the plane perpendicular to
the phase propagation and parallel to
wave crests.  These waves thus have
motions that are similar to internal
waves and inertial oscillations.   In the
high frequency limit, the particle
motions are up and down, like
buoyancy oscillations.  In the low
frequency limit, the particle motions are
horizontal and the particle motions are
nearly circles in the horizontal plane.
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