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Equation of Motion

Consider a cube of fluid of density  and let the pressure
increase from left to right.  A pressure force is a pressure
times the cross-sectional area with the force vector normal to
the  cross-section.  The force on two sides of the cube would
be as shown.

Then, according to Newton’s first law

F = m a

where the mass of the fluid element is the density times the volume

m = x y z

The acceleration and force on the fluid element will be given by
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This is the simplest form of the momentum equation for one dimension.

An analogous equation can be obtained for the other horizontal dimension.
Conventionally this is written as
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Finally, we can derive a force balance equation in the vertical. In this case however, in
addition to the pressure gradient force, the force of gravity will act on the cube. This
force will be mass times gravitational acceleration mg = x y zg, and is downward.
Since conventionally we measure things to be positive upward, this force is negative.

Adding this force to the force balance equation gives us that, for vertical velocity w,
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and, in the limit of the volume going to zero,
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Note that, in the absence of flow, we have a balance of vertical forces between pressure
gradient and gravity. This balance is called the hydrostatic balance, and can be expressed
mathematically as

p
z

= g ,

an expression called the hydrostatic relation.

Pressure in a fluid column (hydrostatic relation)

Newton’s law applies to a column of fluid, as

F = M a

where the acceleration here is gravity, g, and it is directed toward the
center of the earth (“downward”).  This holds for each element of
fluid, dM, in the water column

dM = A dz

So the force contributed by each fluid parcel, dF, is

dF = A dz g

and the force exerted by the entire column is the sum of the forces
from each parcel

F = g A i

i

dzi

or, for a continuously stratified fluid

F(z) = g A (z)dz

In the ocean we generally consider the force per unit area, or the pressure p, in place of
force. Dividing through by the area A of the column gives
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p(z) = g (z) dz
z

o

or, the differential form of the hydrostatic equation

p

z
= g

where we remember that pressure is force per unit area.

In a homogeneous (constant density) ocean, the pressure at depth H is

p( H) = g o dz
H

o
= g oH

For a layered ocean where each layer has different density and thickness h.

p( H) = g (i) h(i)
i

= g( (1)h(1) + (2)h(2) + ...)

The hydrostatic relation gives that the vertical gradient of pressure is proportional to the
density of water. So, this can be integrated from the sea surface (where pressure is
atmospheric pressure) down to get the pressure at depth, if we know the density
distribution over the intervening depths. Namely, at depth –H,

p( H) = patmos. g (z)dz
H

= patmos. + g (z)dz
H

where  is sea surface elevation. This expression states that, at any depth, the pressure
will simply be given by the atmospheric pressure plus the weight of the water above the
point where we are measuring it.

Let’s examine the pressure gradient in some simple examples

Case I.  constant density fluid with density 0

The hydrostatic pressure will be given by p = g 0z .  Remember
that z is positive upward so that the pressure in this case is simply
proportional to the depth.

Where the sea surface height is sloped, then there will be an
additional contribution to the hydrostatic pressure given by

p = g o h + g o

where  is the sea surface height departure from some nominal or mean height h.  If we
designate the slope of the sea surface as
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then the pressure gradient will be given by

1

a

p
x

= gix

Case II.  two layer fluid with densities 1 and 2

In this case, we have a sea surface height slope, as well as a
sloping interface between the two layers.  The interface deviation
is given by 1.

In this case, the hydrostatic pressure in layer 2 at depth z will be
given by

p = g 1 + g 1(h1 1) + g 2 1 g 2 (z + h1)

= g 1 + g 1( 2 1) + g 1h1 g 2 (z + h1)

Note that it is the horizontal gradient in pressure that we are
usually interested in, given by
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where the reduced gravity term is defined as

g'= g

Archimedes’s Principle and Buoyancy

Consider the following imaginary situation. We have a motionless sea where pressure is
in a hydrostatic balance. We take a small cube of water, like we had at the beginning of
this note, and somehow (don’t ask me how!) replace it with water of different density,
say new. How would this affect the balance of force?

We assume at first the pressure distribution is unaffected, so that there will be no
horizontal density gradient and no horizontal flow. In the vertical, again the pressure
forces does not change but the gravitational force does, since the density and thus the
mass of water in the cube is different now. Newton’s equation for the cube in the vertical
becomes

x y z
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But, since the water column was originally in a hydrostatic balance,
(pbottom ptop ) x y = original x y zg. So the force balance can be written as

x y z
w

t
= original x y zg new x y zg = g( new original ) x y z

The cube experiences net force, which is equal to the weight of the water (g new x y z)

it displaced (g original x y z). This is the celebrated Archimedes’s Principle, which states
that the weight of an object placed in a fluid is reduced by the weight of the fluid it
displaces. This reduction in weight is called buoyancy. We see that this net reduction of
weight is due to pressure force applied from the surrounding fluid, which is in hydrostatic
balance.

Moreover, the sign of this net force depends on the difference between the original and
the new densities. If the former is greater than the latter, the resultant force is upward,
and results in an upward flow – lighter fluids tend to rise. If the former is less than the
latter, the force is downward – heavier fluids tend to sink.

Stable and Unstable Stratification

As we discussed at the beginning, the ocean is stratified – there is a variation of sea water
density in the vertical, which results from variation of temperature and salinity in the
vertical. This stratification is almost always bottom-heavy, that is, density increases with
depth. This is intuitively understandable, since we expect lighter water to rise and heavier
water to sink. But we can make this understanding rigorous by considering the force
balance, as we just did.

Consider a typical, bottom-heavy ocean and think of moving a parcel of water a little
upwards. Since density increases with depth, this parcel of water is heavier than the
parcel it replaced. So the force on it is downward and the resultant acceleration tends to
send the water back down. Similarly, displacing a water parcel downward will result in
its being lighter than the surrounding water, and the parcel will accelerate upward. In this
way, buoyancy will tend to “push back” water parcels to the depths from which they
came from, and consequently we don’t expect large vertical motion that would rearrange
densities in the water column. In this way, a bottom-heavy stratification is said to be
stable.

In contrast, if the water column was top-heavy, then a parcel displaced upward would be
lighter than the surrounding, and would experience upward acceleration, away from the
original depth. Further, as it travels upward it would become ever lighter than the
surrounding, so the acceleration would continue indefinitely. Similarly, downward
displacement would result in indefinite downward acceleration. The net result will be
generation of vigorous vertical motion that transports light water upwards and heavy
water downwards. We expect that a slightest provocation would result in large vertical
motions in a top-heavy water column, and such stratification is said to be unstable. When
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we see top-heavy density gradient in the ocean, it is always associated with vigorous
vertical motion, such as convection and breaking internal waves.

There is one important subtlety to consider. When a parcel of water is displaced, not only
is it of different density than the surrounding water; it is also under different pressure
than it was at the original location. Since the sea water expands and contracts with
decreasing and increasing pressure, we must take this effect into account when making a
buoyancy argument. The water column is stably stratified only if displacement of a water
parcel would not result in acceleration away from the origin with the density change of
the parcel taken into account.

Sea water is compressible, that is, when pressure is exerted on it, it can compress, and
have a smaller volume. As a thought experiment, consider a fluid parcel at the surface of
say 1 cm3 volume.  We move this parcel with temperature 0.58 degrees.  If we then move
this parcel down to 5000 m, without letting it exchange heat with the surrounding water
in the process, the parcel becomes compressed and its temperature rises. What happens is
that the fluid parcel increases its temperature to 1 degree C.  The in situ temperature is
now 1 degree C.  The potential temperature of this water parcel is defined as 0.58 degree.
The potential temperature  is defined as the temperature that a fluid parcel would have
if it is brought adiabatically (without exchange of heat) to the surface or the reference
level.  We can also define potential density in a similar way  and is given by .

The effect of compressibility is taken into account by considering potential temperature
and potential density; however, determining water column stability over a large depth
range from potential density based on a single reference pressure can give erroneous
results, since compressibility of water is sufficiently variable over large pressure ranges.
For example, when sea surface pressure is used as a reference (sigma theta), the Antarctic
Bottom Water in South Atlantic appears to come out lighter than the overlying North
Atlantic Deep Water. This inversion disappears when a deep reference pressure (such as
4000 decibars, sigma-4) is used.

The ocean is stably stratified, that is, lighter fluid overlies heavier (denser) fluid.
Generally, if a fluid parcel becomes denser than the parcel below it, the denser fluid will
sink and mix with the fluid below until the column is again stably
stratified (convection).  Examples of processes that increase density
are cooling at the ocean’s surface, or evaporation, which increases
salinity.

But what happens initially if a parcel of fluid is displaced a small
amount vertically, so that its density no longer matches that of the
surrounding fluid?

Thought experiment:

z
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z2
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Imagine moving a water parcel from depth z1 to depth z2 in a water column with density
(z).  The parcel initially had density (z1), but the surrounding fluid has density (z2) .

Does the parcel try to return to its original position?

It depends on the compressibility of the fluid.  Recall that the density depends on the
pressure, which according to the hydrostatic relationship, depends on the depth, z.

Case I. Incompressible fluid (no change in density with depth, k 0). Parcel retains its
original density, so is less dense that the ambient fluid  upward buoyant force.

Case II. Very compressible fluid (large change in density with depth, k ). Parcel’s
density increases with depth faster than the ambient density (z), and parcel continues to
sink.

Case III. Slightly compressible fluid. Parcel’s density increases with depth more slowly
than the ambient density (z), so parcel is less dense than the surrounding fluid 
upward buoyant force.

The ocean usually belongs to case III (although there are some interesting case II
exceptions).  In attempting to return to their original depth z1 parcels will usually
overshoot, so that they are then lighter than the ambient fluid. In this case they experience
a downward buoyant force and continue to oscillate for some time. The frequency of the
vertical oscillations N is given by

N 2
=

g potential

z
 and N  is known as the Brunt-Vaisala buoyancy frequency. Note that

we use potential density to take into account the compressibility of sea water.
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