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Equations of Motion Revisited

We have been discussing some of the important terms in the equations of motion for a
fluid parcel. So far, we have discussed changes in acceleration, the Coriolis force, and the
pressure gradient
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Note that the zonal equation contains the meridional velocity with the Coriolis parameter
and vice-versa for the meridional equation.  The acceleration terms are frequently small
– setting acceleration to zero gives the geostrophic balance in the horizontal and the
hydrostatic balance in the vertical.

Friction

Now that we understand how the pressure gradient and the Coriolis force can act to give
the geostrophic balance, let’s think about another force and that is friction.  The simplest
way to represent friction in the ocean is to assume that the faster a parcel is moving, the
greater the friction. We can write this as

friction (x direction) =-Ju
friction (y direction) = -Jv
friction (z direction) = -Jw

where u, v, w are the velocities in the zonal (east-west), meridional (north-south) and
vertical directions respectively.  We will see how this form of friction can act to “spin
down” the flow later.

Let’s add friction to our equations above.  For a particle moving in the x direction we
have
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that is, acceleration is balanced by the Coriolis force, pressure gradient, and friction.
Let’s consider a couple of different balances
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1) fv =
1 p

x
This is the geostrophic balance and occurs under steady conditions with no friction

2) 
u
t

fv = 0

This is the balance for inertial oscillations (we will explore this further later in the
quarter).

3) 
u
t

=
1 p

x
In the absence of Coriolis force and friction, the flow will go down the pressure gradient
(from high to low pressure)

4) 
u
t

= Ju

With no pressure gradient or Coriolis force, the flow will just slow down (note that the
friction is larger with larger flow).

5) 0 =
1 p

x
Ju

In this case, if there is an existing pressure gradient, the flow will once again go down the
pressure gradient, but be slowed by friction.

6) fv = Ju
This is a balance between Coriolis force and friction and is analogous to the Ekman
balance that we will review next week.

Part of the trick of being a physical oceanographer is figuring out what terms are
important in the equations of motion.  The rules of thumb are
1) If the motion is larger than about 50km or so, then the Coriolis force must be

included.  We will quantify this later.
2) If we are only interested in the mean motion, not the evolution of the fluid, then we

can assume steady state (i.e. that the acceleration term is small).
3) Friction can be ignored in the interior of ocean basins, but near the boundaries (either

side, top or bottom, it cannot be ignored.

Let’s consider how friction would work in the real ocean.

Assume we have flow in the interior of the ocean caused by a pressure gradient and in
geostrophic balance (we neglect friction in the interior). At the bottom of the ocean, the
fluid velocity slows to zero.  The top of the ocean is forced by the wind stress.  These
statements are the “boundary conditions.”  The transition from the interior flow to these
boundary conditions happens in a “boundary layer” where friction is important. The fluid
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velocity and stress must match smoothly between the boundary layers and the interior
flow.  Typically, we think of friction as being responsible for making this match between
the interior (geostrophic) flow and the boundary conditions.

For the purposes of this discussion we assume that quantities vary only with z.  The x-
direction is taken to be the direction of the flow outside the boundary layer.

Stress

Let’s examine how stress in a fluid works.  Consider a laminar (non-turbulent) fluid flow,
with three layers of fluid moving at different speeds.

When a molecule moves from one layer to another, it carries with it its momentum (here,
density X velocity). For example, a molecule from
layer 1 moving to layer 2 will have a larger
momentum and will impart that momentum to
other molecules in layer 2 during collisions.
Conversely, a molecule from layer 3 that moves
into layer 2 will have less momentum and
collisions with layer 2 molecules will increase its
momentum, The result of all this interaction on a
molecular scale adds up to a force on the large
scale that we observe. It is called the shear stress,
a tangential force on the interface between the two
layers moving at different speeds (we use the
symbol  for stress, which has the same units as
pressure).  The faster layer will slow down and the
slower layer will speed up, with the stress being
proportional to the difference between the speeds in the layers.

stress = force per unit area,  tangential to that area

By analogy with the diffusion of properties like heat or salt, we have Newton’s law of
viscosity: “stress is proportional to the velocity gradient.”  The constant of
proportionality is defined to be the molecular viscosity, µ.
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The force on a parcel of fluid is given by the vertical gradient in the stress

Ffriction =
xz

z
analogous to the pressure gradient force.
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To understand the relationship between velocity shear, stress, and the force on a parcel of
fluid, look at the figure below.  Assume that initially there is no velocity in the water
column, and then we impose a constant stress (from the wind) at the surface (z = 0).

After a short time, the surface stress accelerates the flow (solid line) and the shear begins
to penetrate into the water column.  The force is largest at the surface where the vertical
derivative of stress is largest.  Some time later, water deeper in the column has been
accelerated (dash-dot line), stress has penetrated deeper, and the force and acceleration of
the water column have decreased.  Later, the water column has been accelerated so that
the vertical shear is nearly constant (dashed line), stress is nearly constant, and the force
on the parcel has been decreased to nearly zero.  The water column stops accelerating and
the flow is in a steady state with the wind stress. Note that there is still a (constant) stress,
the velocity profile increases from near-zero to a large surface value, and that momentum
may continue to be transferred between layers, but the column is no longer accelerating.

Turbulent flows.

The ocean is a turbulent fluid, in contrast to the previous example. This
means that we cannot specify or measure the velocity field (or other
fluid properties) precisely – there is always a random component.   We
distinguish more organized aspects of the fields and the random or
turbulent components as, for example,

u = u + u'
where the overbar represents a time average, and u’ is the random or eddy component.
We try to quantify the statistics of the random components and relate those statistics to
the mean field. In the diagram to the right, the mean flow is positive and the eddy

u
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components of u have some organization: when w’> 0, then u’> 0 and when w’< 0, then
u’< 0.  So there is a correlation between u’ and w’, that is,  u  w > 0 .

In physical oceanography, we do not usually work on the molecular level. However, we
use an analogy between the motion of fluid parcels and molecular motion to define eddy
processes.  For a turbulent flow, we parameterize the stress, which is actually defined by
the correlation, in terms of the shear of the mean flow, as

=  u  w Av

du 

dz
    (6.1)

where  is the turbulent shear stress and AV is the vertical eddy
viscosity.  (We will drop the overbar for the rest of these notes,
i.e., u will represent the time-mean flow.)  This statement
describes mathematically the tendency of the eddy motions to
reduce the velocity shear; we call this a down-gradient diffusion
of momentum and it is the usual case in the ocean.

To appreciate the difference between molecular and eddy diffusion, let’s compare some
of the numbers. The value for dynamic molecular viscosity is µ = 1 10 3 kg /ms . We can
also divide this by the density of water to get the kinematic viscosity = 1 10 6m2 / s

In contrast, the eddy viscosities are much larger with the horizontal value being much
larger than the vertical value
Ah =102 104m2 / s

Av = 10 4 10 2m 2 / s
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