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Conservation

To understand how the ocean moves, we will examine some conservation properties,
starting with the conservation of mass. In Elementary Physics, quantities like mass,
velocity and temperature were associated with a discrete body; however, in a fluid they
are specified at each location and vary continuously from one place to the next. We will
derive mathematical equations for conservation appropriate for the continuum as follows.

Consider a box at a fixed location in the fluid with the dimensions x, y, and z. What
is the time rate of change of mass M in the box?

Rate of change of mass
= mass flux into the box
minus mass flux out of the box
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Dividing through by the volume V of the box gives
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Taking the limit as x 0 and t 0, gives
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where the derivatives are partial derivatives.  Recall that a partial derivative of a function
is just the derivative with respect to a single variable, holding the others constant. For
example, if

f(x,y,z,t) = ax + by + czt, then 
f

x
= a,

f

t
= cz.

The above equation is for the conservation of mass (actually density) in one dimension
(x). Expanding and rearranging terms gives another version

t
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x
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x

where the LHS (left hand side) is the change in density following a water parcel around.
If we allow density and velocity to vary in three dimensions we obtain the full mass
conservation equation
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Now the LHS is the variation in density in three dimensions following the water parcel
and the RHS is the divergence of the velocity field. Divergence is a measure of the
expansion of the fluid.

Simplifications and special cases:

A) An incompressible fluid.   The amount of water in the
cube does not change.  This is also a statement of mass
conservation in this case and is the one that we will use most
often in this class.

u

x
+

v

y
+

w

z

 

 
 

 

 
 = 0      (2.3)

The flow field is non-divergent. In example A, the field is non-divergent.

B) Horizonally non-divergent with no vertical motion
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C) Coastal upwelling. Near-surface offshore flow at the
coast is compensated by vertical flow from below the
surface layer (and onshore flow farther down in the water
column).
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Advection

We can apply the same balance argument to derive an equation that describes how the
concentration of a constituent of set water, such as salt and nutrients, changes.  If we
consider a cube of fluid as shown below, the change in the concentration of a tracer (say,
salt) within the cube will be given by the sum of the fluxes across each face of the cube.

The total amount of the tracer in the volume will be given by the concentration times the
volume of the cube C dx dy dz.  The change in the amount of tracer will be given by the
flux of tracer across the faces of the cube

dxdydz
C
t

= (w6C6 w5C5)dxdy + (u1C1 u2C2)dzdy + (v3C3 v4C4 )dxdz

Now we divide by the volume of the fluid to get the conservation equation

C
t

= (w6C6 w5C5) /dz + (u1C1 u2C2) /dx + (v3C3 v4C4 )dy

Now as the volume gets very small, we can turn this into
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  (2.4)

This conservation statement will hold for temperature and density as well.
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For the dynamics that we are interested in, we can assume that the ocean is
incompressible.  We know that this is not strictly true, that is, sea water is compressible
and is denser at depth.   By assuming incompressibility, we are in effect ignoring sound
propagation in the ocean, which is fine for the purposes of the dynamics that we will be
discussing.

When we make the incompressible assumption, we what are saying is that the amount of
fluid within the cube remains the same.  This gives us the statement that the fluid is non-
divergent

u
x

+
v
y

+
w
z

= 0

To see what this means, consider a flow in the x-
direction that is changing in the x-direction.  If we
want to conserve mass, then there must be either a
vertical velocity or a velocity in the y direction to
feed the changes in flow (just as in the coastal
upwelling circulation example).

In two-dimensions, given this velocity field, we
can define a stream function (this is very much like
the dynamic height fields or sea level that we
looked at earlier in the quarter).  The stream
function is defined by

u =
y

v =
x

With w = 0, the stream function exactly
satisfies

u
x

+
v
y

= 0

For the flow field that we looked at above,
we have a stream function that looks like
the figure to the right.

If we release a particle in this flow field, it
will move along one of the streamlines.  Its
speed will depend on the gradient of the stream function, that is, where the lines are
closer together, the flow is stronger.

Now back to the conservation equation for salinity or equivalent conservative tracer.  The
conservation equation (2.4) can be expanded to give
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assuming the fluid is non-divergent.  Now, how do we understand these equations?  What
this last equation says is that as we follow a fluid parcel in the flow field, the tracer is
conserved and this is often written as
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= 0  (2.5)

which is known as the Lagrangian or material or advective derivative.  This says that in
the absence of diffusion, as you follow a fluid parcel in a moving fluid, the concentration
will remain constant and it is conserved.  In the Eulerian framework, we look at the

changes in tracer at a fixed location, denoted by the term
C

t
.

You may also be familiar with biologically important tracers such as oxygen.  Then, we
expect that below the surface layer, the oxygen will be respired and decrease over time.
This can be written as

DO
Dt

= ˆ O 

where the right hand side represents the respiration (or depletion of oxygen) following a
fluid parcel.  This is a non-conservative tracer.

 As an example, consider a uniform
zonal flow field.  In that case, we
have

C
t

+ u
C
x

= 0

If we place a lump of fluid with
high concentration C at a certain
location, what will happen to the
concentration over time at a fixed location, say A? It will look like the following graph:
as the tracer arrives, the concentration measured at A will gradually increase, until the
rear end of the lump arrives, at which point the concentration drops abruptly to zero.
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Consider what the concentration will be at
point A.   This is the Eulerian frame of
reference.

What, however, will the concentration
be at B if we are moving with the
velocity U (in the Lagrangian frame
of reference)?

Since B is moving with the flow, it will
always see the same concentration. Thus,
over time, C at B is constant.

We will look at other examples (2-dimensional etc) in lab.

Diffusion

Another process that can change the concentration of a property of the fluid is diffusion.
First consider a thought problem in which we have a barrel with salty water on the
bottom and a fresh cap of water on the top.  We know that, although there is no motion in
the barrel, the salty water will diffuse upward into the fresh water and the fresh water will
diffuse downward into the salty water until the salt is uniform.  This occurs through the
molecular process of diffusion.

The next thing to consider is how diffusion acts
to change the concentration of a tracer in the
ocean. We once again look at our cube of fluid
and ask how diffusive fluxes can change the
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concentration within the cube.   For simplicity consider this in one dimension only.

Now the molecular fluxes are going to be proportional to the gradients in the
concentration.  Now if C3 < C2

F2 =
C3 C2

x

That is, the flux will be from the higher values of tracer to the lower values. We can write
this in differential form as

F =
C
x

Now consider the conservation statement for the box.  We have

C
t

= F1 F2 =
C1 C2

x
C3 C2

x

=

2C

x 2

so that the concentration will change when there is a divergence (or change) in the flux
across the box.  Thus, if the concentration changes linearly with x,

C = ax + b, then
2C

x 2
= 0  and there will be no diffusion of the tracer.

For salinity and temperature we have for molecular diffusion

s =1.5 10 9m2 / s

T =1.5 10 7m2 / s
The molecular diffusion of heat and salt is very small, much smaller than the observed
diffusion in the ocean.

One way to quicken the molecular transfer is to stir the water.  If we stir the water in the
barrel, we will cause the salinity to become uniform more rapidly.  How does this
happen?  Stirring increases by many times the surface areas of the interface between the
salty and fresh water.  Mixing still takes place on the molecular level, but the interfaces
sharpen the concentration gradients and causes molecular diffusion to happen more
quickly.  In the ocean turbulence does this stirring.  We describe this turbulent process
using eddy diffusion just as we did for momentum earlier.  As with momentum, the
coefficients for eddy diffusion are much larger than for molecular diffusion and the
coefficients are different for vertical and horizontal processes.
Ah =102 104m2 / s

Av = 10 4 10 2m 2 / s
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Generally, this rate of stirring is not the same in all directions. For reasons we will come
to shortly, much more work is required to move water parcels in the vertical (strictly
speaking, across gradients in density) than in the horizontal, and vertical turbulence is
supressed relative to horizontal turbulence.  In three dimensions then we have
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Both advection and diffusion can take place at the same time.  In this case, the equation
will be modified as
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