STEADY-STATE FORCE BALANCES

(1) Pressure gradient and Coriolis forces

Geostrophic Flow	Thermal Wind Equation
$u = 1 \partial p$	ди _ g др
$u = -\frac{1}{f\rho_0}\frac{\partial y}{\partial y}$	$\frac{\partial z}{\partial z} - \frac{\partial p_0}{\partial y}$

(2) Coriolis force and wind stress

Ekman transport
$$M_{xE} = \frac{1}{f} \tau_{Wind}^{y}$$

(3) Geostrophy (1) + continuity *Potential vorticity conservation*

$$Lagrangian \qquad Eulerian \\ \frac{(f+\zeta)}{H} = \text{const} \qquad \beta v = f \frac{\partial w}{\partial z}$$

(4) Ekman transport (2) + continuity

Ekman pumping
$$w_E = \frac{1}{\rho_0 f} \left(\frac{\partial \tau_W^y}{\partial x} - \frac{\partial \tau_W^x}{\partial y} \right) + \frac{\beta}{\rho_0 f^2} \tau_W^x$$

(5) Ekman pumping (4) + potential vorticity conservation (3) + continuity
Wind-driven circulation

$$M_{yG} + M_{yE} = \frac{1}{\beta} \left(\frac{\partial \tau_{W}^{y}}{\partial x} - \frac{\partial \tau_{W}^{x}}{\partial y} \right)$$

(6) Potential vorticity conservation (3) + continuity

Dynamics of deep circulation (even if we don't have a model yet!)

PERIODIC TIME-DEPENDENT BALANCES (WAVES)

Restoring Force

GRAVITY

(1) Acceleration + pressure gradient force (+ Coriolis force) *Wind waves*

Shallow Water	Deep Water
$C = \sqrt{gH} = C_g$	$C = \sqrt{\frac{g}{\kappa}} = 2C_g$

Internal waves

2-layer

$$C = \sqrt{g'H} = C_g$$
Continuously stratified
 $\tan^2 \theta = \frac{k^2}{m^2} = \frac{\omega^2 - f^2}{N^2 - \omega^2}$

When does rotation matter? Horizontal scale $L_R = \frac{\sqrt{gH}}{f}$ or $L_R = \frac{\sqrt{g'H}}{f}$; Wave period ~ a day

TIDES
$$\begin{cases} Poincare waves, Inertia-gravity waves \\ \omega = \sqrt{f^2 + gHk^2} \\ Kelvin waves (boundary waves; veloc \perp coast = 0)
 $C = \sqrt{gH}$ or $C = \sqrt{g'H}$$$

(2) Acceleration + Coriolis force

NO FORCES

Inertial oscillations

Limit of internal waves as $\omega \rightarrow f$

(3) Acceleration + pressure gradient force + Coriolis force	POTENTIAL
Rossby waves	VORTICITY