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Abstract

An analytical study of reinforced concrete beam-column joint behavior under
seismic loading

Nilanjan Mitra

Chair of the Supervisory Committee:
Assistant Professor Laura N. Lowes

Department of Civil & Environmental Engineering

Recently, researchers have sought to develop performance-based design methods that enable

the design of a structure to achieve specific performance objectives, typically in excess of ‘life-

safety’, under a given level of earthquake loading. Accomplishing performance-based design

requires accurate prediction of component load and deformation demands, and typically

nonlinear analysis is employed to determine these demands. The research presented here

focuses on developing a series of analysis and design tools to support the performance-based

design of one particular structural component: reinforced-concrete beam-column joints.

This particular component is chosen for investigation because, despite the fact that

laboratory and post-earthquake reconnaissance suggest that joint stiffness and strength

loss can have a significant impact on structural response, the inelastic response of these

components is rarely considered in analysis or design.

Data from previous experimental investigations of joints, spanning a wide range of ge-

ometric, material and design parameters, were assembled. Using these data, a series of

models were developed and applied to advance understanding of the seismic behavior, sim-

ulation and design of reinforced concrete beam-column joints. These include a 1) discrete

choice probabilistic failure initiation model, 2) continuum model for joints, 3) strut-and-tie

models for joint and 4) a component-based super-element model for the joint region.
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Chapter 1

INTRODUCTION

1.1 Motivation for the study

Current building codes for the design of structures under earthquake loading are intended

to prevent structural collapse and ensure the life-safety of the occupants. However, in recent

years, new design philosophies have been introduced: namely Performance-Based Seismic

Design (PBSD). The primary objective of PBSD is to enable the design of structures to

achieve specific performance objectives, including those beyond ‘life-safety’. Accomplish-

ing Performance-Based Seismic Design requires 1) the ability to accurately predict the

demands, which may be defined by loads, or deformations or both on various components

that develop under various levels of earthquake loading and 2) to design components to

achieve specific performance objectives under these earthquake induced demands.

Previous research indicates that PBSD of joints requires consideration of the inelastic

response of the beam-column joints in determining demands on the frame components. For

example, post-earthquake reconnaissance suggests that joint failure may result in structural

failure (EERI 1994). Additionally, experimental investigation indicates that strength and

stiffness loss in a structure in seismic loading can be attributed to the loss of strength

and stiffness of the joint region, with detailing typical of modern as well as pre-1970’s

construction. However, to date, relatively few studies have addressed the development of

tools to support PBSD of joints. Thus, detailed investigation of the joint response is essential

to develop tools which would enable the design and analysis of joints subjected to seismic

loading.
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1.2 Scope of work

The objective of this research is to use the results of previous experimental investigations of

joints to improve the understanding of the joint behavior, develop response models for use in

PBSD of reinforced-concrete frames and develop tools to support PBSD of individual joints.

To meet the research objective, data from a series of previous experimental investigations

of joints were assembled. These experimental investigations span a wide range of design,

material and geometric parameters. The experimental data set provides the basis for the

development, calibration and validation of design and analytical models for reinforced con-

crete beam-column joints, that are presented in this thesis. In assembling the data set, only

tests of two-dimensional building joint sub-assemblages without slabs, beam eccentricity or

out-of-plane beams for which response is determined by beam flexural yielding and/or joint

failure were considered. Additionally, only joints with a “typical” test setup, subjected to

pseudo-static cyclic loading were included in the data set. Finally, if sufficient information

about joint geometry, material properties and response were not provided in the literature

data for the test, the experimental test was not included in the data set. The data set

includes data for joints with design parameters typical of modern (post 1967) as well as

older construction.

Using these data, a series of models were developed for reinforced concrete beam-

column joints. These include a 1) statistical model, 2) continuum finite element model,

3) component-based super-element model, and 4) strut-and-tie model. A brief description

of the models along with the contribution of these modeling efforts in advancing PBSD of

joints is described in the following subsections.

1.2.1 Statistical model

The primary objective for many experimental investigations is to identify the parameters

that determine failure in the connection region. In this study, to determine the relative

influence of various design parameters in determining if a joint will fail and also to provide

a method for determining the probability of a particular joint failing, a discrete choice

probabilistic model is developed. The assembled set of experimental data was used to
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calibrate the model.

1.2.2 Continuum finite element model

Given a set of parameters that determine if a joint will exhibit strength deterioration or

ductile response, continuum finite element modeling was explored as a means of establish-

ing the mechanism by which these parameters affect response. A commercial finite element

analysis code, DIANA 9.1, was used to accomplish the analysis. To evaluate the software

and determine the impact of concrete, steel and bond zone constitutive model parameters

in analytical results, a series of benchmark tests were performed. Following this a set of

analysis was performed for reinforced-concrete beam-column joints to explore continuum

finite element method as a means of improving understanding of joint behavior and thereby

providing a basis for development of simplified response and design models for PBSD. How-

ever, the results of analysis of joint sub-assemblage indicated that continuum finite element

analysis using DIANA 9.1 could not provide additional insight into joint behavior.

1.2.3 Component-based model

PBSD requires accurate prediction of component load and deformation demands under

earthquake loading. Since beam-column joints may exhibit significant stiffness and strength

loss under earthquake loading, models are required to simulate the inelastic response to

enable accurate simulation of frame response. In this thesis, a two-dimensional component-

based joint super-element was developed using data from the experimental data set. The

model represents an extension and generalization of the model developed previously by

Lowes and Altoontash (2003). Unlike the previous model, this model developed here is 1)

appropriate for use with joints with a wide range of design parameters and 2) results in a

robust numerical formulation.

1.2.4 Strut-and-Tie models

Strut-and-tie models are used widely by engineers for dimensioning of members and detailing

of reinforcement steel, in particular for members with distributed stress field. ACI 318-05
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Appendix A, AASHTO, EuroCode-2, National Building Code of Canada 2005 and the New

Zealand Building Code provides recommendations for use of the strut-and-tie methodology

to design structural components. However, these building codes are not intended for seismic

design. Additionally, these requirements are prescriptive in nature and do not provide clear

links between design requirements and response mechanisms, as such; they are not easily

extended to support performance-based design. ACI Committee 445 has currently initiated

an investigation of the application of strut-and-tie methods to design structural components

for seismic loading. Thereby, in this thesis, investigation was carried out for strut-and-tie

modeling of reinforced concrete beam-column joints subjected to seismic loading. Experi-

mental data from the assembled data set were used as a basis for this study.

Simple and higher resolution strut-and-tie models were developed for most of the joints

in the data set. Some correlations were observed between strut-and-tie design parameters

(e.g. strut stress) and joint performance measures (e.g. brittle failure vs. ductile response).

Conservative recommendations for design of joints using strut-and-tie models were proposed

since the recommendations as provided by ACI 318-05 were found to be inadequate.

1.2.5 Contribution of modeling efforts in advancing PBSD of joints

Amongst the four methodologies of varying refinement and complexity that were used to

better understand the inelastic behavioral mechanism within the joint region, each had

its own place in design/assessment process. The probabilistic model is simple to use and

provides a first-hand estimate of failure initiation within the joint region. Even though,

these provide very accurate results but these do not give us a better knowledge as regards

to the inelastic behavioral mechanism within the joint region. The complex continuum

analysis of joints provides us with a detailed description of the inelastic behavioral mech-

anisms governing joint behavior but cannot be used in PBSD due to huge computational

overhead required as regards to analysis time and numerical convergence problems. But

these models provides us with the basis for various assumptions in the simplified design

models such as the strut-and-tie method as well as the analytical component-based mod-

els. The simplified models (strut-and-tie models) require the introduction of assumptions,
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as such they tend to be less accurate and over-conservative, but can be used to provide

guidelines for making the assumptions that are based on design. Even though these sim-

plified models provide a first hand rough estimate about design, but these cannot be used

to generate load-deformation response envelopes, which is essential within the context of

PBSD. For load-deformation response analysis we can rely on the use of component-based

super-element model of joints, which has been found to give results within reasonable ac-

curacy. Component-based super-element models provides us with a computationally robust

analytical methodology for modeling of joints and can also be utilized in frame analysis of

structures. This methodology is able to distinguish between the different failure mechanisms

and is thereby recommended as the analytical method for PBSD of joints. This modeling

methodology provides the right balance in between complexity, computational time and the

inelastic behavioral details along with load-deformation response analysis of joints.

1.3 Outline of chapters

The research outlined above is presented in the next five chapters (Chapters 2 to 6).

Chapter 2 provides a background of the behavior of joints subjected to earthquake

loading and presents the experimental data set. The impact of various design parameters

on joint performance is investigated qualitatively and also through the development of a

discrete choice probabilistic model.

Chapter 3 describes the nonlinear continuum finite element modeling that was done using

DIANA 9.1. Benchmark analyses were done to evaluate the constitutive models available in

DIANA 9.1 and the simulation results were discussed. Finally, analyses of two reinforced-

concrete beam-column joints from the experimental data set are presented and the results

of these analyses are discussed.

Chapter 4 presents a component-based joint element developed for use in modeling of

two-dimensional frames subjected to earthquake loading. The super-element formulation

and hysteretic models for the components that make up the super-element are presented.

Finally, the model is validated through comparison of simulated and observed response

parameters.

Chapter 5 presents the results of an investigation to extend the strut-and-tie modeling
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methods for design of reinforced concrete beam-column joints subjected to seismic action.

Recommendations were proposed for strut, node and bond capacities for conservative design

of joints in seismic region. No clear distinctive correlation could be obtained in between

the different demand and performance measures with respect to different type of failure

mechanism in the joint region.

Chapter 6 summarizes the research effort and presents conclusion along with future

research directions.
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Chapter 2

EXPERIMENTAL DATA SET AND STATISTICAL MODEL FOR

JOINTS

2.1 Introduction

The chapter is intended to provide an understanding of the seismic behavior of joints and

serve as a basis for the model development efforts presented in subsequent chapters. First,

the behavior of joints subjected to seismic loading as understood and observed in previous

studies are presented. Second, a data set is assembled from previous experimental investiga-

tions of reinforced concrete beam-column joint sub-assemblages subjected to reversed cyclic

loading. These experimental tests include joints with a wide range of material, geometric,

and design parameters. Third, the impact of various design parameters on joint response are

investigated qualitatively and finally a statistical model is developed that predicts whether

a joint with a specific set of design parameters will exhibit brittle or ductile response. A

model application of this proposed probabilistic model is also shown in this chapter.

2.2 Behavior of joints subjected to seismic loading

In a 2D building frame subjected to earthquake loading, beams and columns experience

flexure and shear loading. Figure 2.1(a) shows the forces that could be expected to develop

in a 2D frame subjected to earthquake and gravity loading. In modern frames subjected

to moderate and severe earthquake loading, it is expected that the beams will develop

flexural strength at the joint while columns will develop moments that approach the yield

moment. In older frames, shear failure of beams and columns or flexural yielding of columns

may preclude beams achieving yielding flexural strength. Figure 2.1(b) shows the expected

loads and resultants at the perimeter of the joint region.

The load distribution, shown in Figure 2.1, can result in severe loading of the joint. The

moment reversal in the beams and columns results in large shear forces within the joint.
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Figure 2.1: Seismic loading in a building frame beam-column joint region

Additionally, the stress reversals in the beam, and to some extent column, longitudinal steel

may require high bond stresses within the joint. Figure 2.2 shows the two mechanisms for

load transfer within the joint, as were proposed in the seminal paper by Paulay et al. (1978).

In the first mechanism, referred to as the strut mechanism (shown in Figure 2.2(a)) joint

shear is transferred via a single concrete compression strut. The transverse steel in the joint

is assumed to increase the deformation capacity of the strut. The second mechanism, the

truss mechanism (shown in Figure 2.2(b)), assumes a uniform bond stress distribution along

beam and column reinforcements. In this mechanism, the shear stress within the joint is

transferred via a series of concrete compressive struts and steel tension ties.

In evaluating the tension and compression resultants at the perimeter of the joint (as

shown in Figure 2.1(b)), it is assumed that the forces are obtained by dividing the moments

with the tension-compression lever arm. For sake of simplicity, this lever arm distance is

assumed to be constant and thereby we obtain joint shear stress to be proportional to the

story shear at all times. Shiohara (2001) strongly criticized this above concept of constant

lever arm distance and showed that along with the change in bond stress of the beam

longitudinal reinforcing bars, this lever arm distance changes and has significant implication
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Figure 2.2: Internal forces within the joint

on the joint shear stress. Moreover, the widely accepted assumption of joint shear stress

being proportional to the story shear is not a valid assumption. Even though the model of

load-transfer within the joint by Shiohara (2001) shows more promise and represents the

actual behavior with more accuracy, the numerical modeling of this phenomenon would be

computationally intensive and also challenging. An approximate attempt has been made to

include this phenomenon in the numerical model in chapter 4.

Even though researchers are yet to come to a consensus as how to evaluate the tension

and compression forces at the joint perimeter, but it is widely accepted that there are

two primary inelastic mechanisms which are responsible for failure of the joint. These

two inelastic mechanisms are: 1) anchorage of beam longitudinal bars in the joint thereby

resulting in bar-slip and 2) joint shear failure. It is also assumed that bond stress does not

decrease prior to yielding of the bars. The coupling action between these two mechanisms

is still an open area of research and was pointed out Shiohara in his research.

Thereby, joint failure can occur prior to as well as after the yielding of the beam-

longitudinal bars. If the failure occurs prior to the beam reinforcement steel yielding, then

it is referred to as brittle mechanism, else if the joint failure occurs after yielding of beam

reinforcement steel, then it is referred to as a ductile mechanism of failure.
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2.3 Experimental data set

The results of previous experimental tests of joints were reviewed to assemble a data set for

use in investigating the seismic behavior of joints and developing, evaluating and validating

joint models. An experimental data set including 110 building sub-assemblage tests from

20 investigations conducted around the world during the last 40 years was assembled. The

data set is restricted to include only two-dimensional interior building joint sub-assemblages

without slabs, beam eccentricity or out-of-plane beams for which response is determined by

beam flexural yielding and/or joint failure. Thus, joints in which response is determined by

column yielding, column splice failure, and beam shear failure have not been included in the

data set. All of the joints in the data set have deformed longitudinal reinforcing steel in the

beams and columns. Only joint tests for which sufficient geometry, material, and response

data were provided in the literature were included in the data set. Geometric, material and

design parameter data for all of the specimen in the data set are provided in Appendix A

in tables A.1, A.2, A.3 and A.5. All joint sub-assemblages had approximately the same

configuration and all were tested using a similar joint test set up. The data set includes

joints with design parameters typical of modern (post-1967) as well as older construction.

Seismic design provisions for joints were introduced in the Uniform Building Code in 1967

and in the American Concrete Institute (ACI) building code in 1971; thus a distinction has

been made in between pre-and post-1967 specimen. Mosier (2000) also concluded that most

buildings designed prior to 1967 and some designed between 1967 and 1979 had detailing

that could be expected to result in non-ductile response under earthquake loading.

2.3.1 Test programs included in the data set

Experimental investigations by research groups were reviewed for this study. Of these, 110

tests by 20 different research groups were found to meet the criteria listed above for inclusion

in the data set. All of the 20 test programs are discussed below; studies and individual tests

that were not included in the data set are identified.
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Durrani and Wight (1982)

The experimental test program (DW in table 2.1) consisted of six full-size interior beam-

column sub-assemblages. Three specimen were not considered in the data set since these

specimen had slabs or transverse beams. The experimental test program concluded that

lower joint shear stress demand and greater hoop steel in the joint prevents the joint failure

due to a shear mechanism in the joint core.

Otani, Kobayashi and Aoyama (1984)

The experimental test program (OKA in table 2.1) consisted of twelve half-scale interior

beam-column sub-assemblages. Six of the specimens were not included in the data set since

these specimen had transverse beams. The researchers concluded that number of column

middle reinforcement does not play a significant role in determination of joint response.

Moreover, the shear failure behavior of the joint could be improved by increasing the amount

of joint hoop steel and reducing the joint shear stress demand.

Meinheit and Jirsa (1977)

The experimental test program (MJ in table 2.1) consisted of fourteen full-scale sub-assemblage

specimen. Seven specimen were not included in the data set because these specimen either

had eccentric lateral beams or lateral load was applied to excite the weak axis bending of the

columns. The experimental study concluded 1) that interior column bars provide minimal

lateral confinement of the joint and increase in the joint shear strength, 2) column axial

load influences the magnitude of shear cracking stress and also the inclination of the shear

cracks in the beam-column joint; but not the shear strength of the joint, 3) shear strength

is not a linear function of the volume of joint hoop reinforcement.

Walker, Alire, Lehman and Stanton (2001-2003)

The experimental test program (PEER in table 2.1) consisted of twelve half-scale sub-

assemblages with no transverse joint reinforcement. These specimen were considered to be

representative of joints constructed before 1967. This study evaluated the impact of shear
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stress and load history on joint performance. Five of the twelve specimens tested were

included in the data set. Specimens with non-standard reversed cyclic loading were not

included in the data set because no other joints with non-standard loading were found in

the literature and it was thought that modeling these might skew the results of the study.

The research concluded that joints maintain strength and adequate stiffness when drift

demand is less than 1.5% and shear stress is less than 10
√

fc psi where fc represents the

compressive strength of concrete.

Park and Ruitong (1988)

The experimental test program (PR in table 2.1) consisted of four interior beam-column sub-

assemblages. All the four specimen were included in the data set. The researchers concluded

that for low axial load ratio, column interior bars are required to transmit the shear force

through the joint. Researchers also recommended a limit on the diameter of longitudinal

bars passing through the joint for interior beam-column joints of ductile frames when plastic

hinges form in the beams adjacent to the column faces. This limit was intended to reduce

the bond stress demand in the joint.

Noguchi and Kashiwazaki (1992)

The experimental test program (NK in table 2.1) consisted of six interior beam-column

sub-assemblages. Only five specimen were included in the data set. One specimen was

excluded because it was subjected to monotonic, rather than cyclic loading. The researchers

concluded 1) that maximum joint shear strength did not increase significantly with an

increase in concrete compressive strength, 2) the effect of confinement provided by joint

lateral reinforcement became significant only at large deformation levels, specifically drift

angles in excess of 1/50 rad.

Oka and Shiohara (1992)

The experimental test program (OS in table 2.1) consisted of eleven one-quarter scale interior

beam-column sub-assemblages. Two specimens were not considered in the data set because
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of the presence of slabs. The researchers concluded that 1) joint shear capacity increased

with an increase in concrete compressive strength but that the relationship was not linear,

and 2) joint shear capacity increased with an increase in the percentage of longitudinal

reinforcement in the beams.

Kitayama, Otani and Aoyama (1987)

The experimental test program (KOA in table 2.1) consisted of six interior beam-column

sub-assemblages. Two of these specimen were not used in the current study because the ma-

terial properties and response data were not provided for these specimens. The researchers

recommended restrictions on beam bar diameter through the joint, joint shear stress de-

mand, minimum lateral reinforcement in the joint region. The experimental test program

also concluded that column axial load ratio smaller than 0.3 does not exhibit beneficial

effect on the bond resistance along the beam reinforcement within the joint region and that

smaller than 0.5 does not influence the joint shear strength.

Park and Milburn (1983)

The experimental test program (PM in table 2.1) consisted of two interior beam-column

sub-assemblages. All the specimen were included in the data set. The researchers concluded

that relocating the beam plastic hinges away from the face of the joint resulted in better

joint behavior.

Endoh, Kamura, Otani and Aoyama (1991)

The experimental test program (EKOA in table 2.1) consisted of four interior beam-column

sub-assemblages. All the four specimen were included in the data set. The researchers

concluded that 1) the strength loss in the post peak regime of the load-deformation response

was more significant for light-weight concrete than normal strength concrete and 2) joint

shear strengths of light weight concrete were smaller than normal strength concrete due to

reduced compressive strength of light weight concrete.
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Higashi and Ohwada (1969)

The experimental test program (HO in table 2.1) consisted of 17 one-third scale interior

beam-column sub-assemblages. Four specimen were excluded from the data set because they

included transverse beams; six additional specimen were excluded because they exhibited

column yielding prior to beam yielding. The results of the study included identification of

joint shear demand as an important parameter in determining if a joint will exhibit brittle

failure under earthquake loading.

Beckingsale (1980)

The experimental test program (B in table 2.1) consisted of two interior beam-column sub-

assemblages. Both the specimen were included in the data set. The researcher observed

that the specimen with low column axial load exhibited failure due to bar-slip while the

specimen with a higher column axial load did not. The researcher also concluded that the

experimental data showed that the two joint load-transfer mechanisms proposed by Paulay

et al. (1978) did indeed develop.

Attaalla and Agbabian (2004)

The experimental test program (AA in table 2.1) consisted of four interior beam-column

sub-assemblages. Three out of the four specimen were included in the data set; one specimen

was excluded because steel fibers were used instead of steel bars to confine the joint core.

The researchers concluded that joint shear strength, expressed as a function of the square

root of the concrete compressive strength is an inappropriate measure of shear demand for

joints with high strength concrete.

Birss, Park and Paulay (1978)

The experimental test program (BPP in table 2.1) consisted of two interior beam-column

sub-assemblages subjected to cyclic loading. Both the specimen were included in the data

set. The researchers concluded that the mechanism of joint load transfer proposed by Paulay

et al. (1978) are satisfactory for design. The results of the study also indicate relocating
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beam hinges away from the column face result in the beam-column joint region to remain

within the elastic regime.

Teraoka, Kanoh, Hayashi and Sasaki (1997)

The experimental test program (TKHS in table 2.1) consisted of 14 half-scale interior beam-

column sub-assemblages. All of fourteen specimen were included in the data set. The results

of this study included a method for predicting the ductility, performance, and hysteretic

behavior of joints.

Hayashi, Teraoka, Mollick and Kanoh (1994)

The experimental test program (HTMK in table 2.1) consisted of 11 half-scale interior beam-

column sub-assemblages. All eleven specimen were included in the data set. The result of

this study included a model relating bond strength with bar slip for beam longitudinal

reinforcing steel. The results of this study also show that both beam bar bond and joint

shear stress demand plays a role in joint failure under earthquake loading.

Teraoka, Kanoh, Tanaka and Hayashi (1994)

The experimental test program (TKTH in table 2.1) consisted of seven half-scale interior

beam-column sub-assemblages. Six of seven specimen were included in the data set; one

specimen was excluded as steel plates were used to provide confining reinforcement within

the joint region. The researchers concluded in being able to predict the ultimate shear

strength of the joint panel as well as the shear panel envelope using a proposed empirical

equation.

Zaid (2001)

The experimental test program (Z in table 2.1) consists of four half-scale interior beam-

column sub-assemblages. Three out of four specimen were considered in the data set. One

specimen was excluded because of an a-typical joint reinforcing detail (in which the beam

longitudinal bars were bent in the joint region along the joint diagonal) developed on basis of
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Shiohara (2001) model. Experimental results confirmed the conclusions of Shiohara (2001)

in that the lever arm distance between the tension and compression forces at the perimeter

of the joint does indeed change along with loading of the joint and thereby joint shear stress

cannot be assumed to be proportional to the story shear.

Joh, Goto and Shibata (1992)

The experimental test program (JGS in table 2.1) consisted of 13 half-scale interior beam-

column sub-assemblages. Only six were included in the data set; three tests were excluded

because they were designed so that beam yielding would occur away from the beam-column

interface; four tests were excluded because they were eccentric beam-column joint connec-

tions. The researchers concluded that 1) a large volume of transverse joint reinforcement

may reduce the slip of beam bars in the joint and enhance joint stiffness after cracking, 2)

similar volume of stirrup reinforcement in the beam end does not significantly reduce the

stiffness degradation resulting from beam bar bond deterioration within the joint; 3) bond

deterioration of beam bars within the joint may be prevented by relocating the beam plastic

hinge, but sliding shear deformation may occur at the plastic hinge.

Fujii and Morita (1992)

The experimental test program (FM in table 2.1) consisted of four interior beam-column

sub-assemblages. All four specimen were included in the data set. The researchers concluded

1) column axial load ratio had no impact on the shear strength of joints, 2) an increase in

the joint transverse reinforcement ratio increased the joint shear capacity, 3) once joint

shear strain reaches 0.5%, degradation of shear rigidity was accelerated under subsequent

load reversals.

Other experimental investigation not included in the data set

There were also several sets of internal reinforced concrete beam-column experimental test

programs which were were not included in the data set since they did not meet one of the

criteria as described in the beginning of this section. Those include Hanson and Connor
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(1967), Leon (1990), Hakuto et al. (2000), Blakeley et al. (1975), Soleimani et al. (1979),

Pessiki et al. (1990).

Table 2.1: Parameter variation in the experimental test programs

Specimen fc Beam long. reinf. Column int. Jnt. hoop steel p

b dia b no b yld bars (c int) j dia j no j yld

DW
√ √ √ √

OKA
√ √ √ √ √ √

MJ
√ √ √ √ √ √

PEER
√ √ √ √ √

PR
√ √ √ √ √ √ √

NK
√ √ √

OS
√ √ √ √ √ √ √

KOA
√ √ √ √ √ √ √

PM
√ √ √ √ √

EKOA
√ √ √ √ √ √ √ √

HO
√ √ √

B
√ √

AA
√ √ √

BPP
√ √ √ √

TKHS
√ √ √ √ √ √

HTMK
√ √ √ √ √ √ √

TKTH
√ √ √ √

Z
√ √ √

JGS
√ √ √ √ √ √ √

FM
√ √ √

Parameters which control joint response

From these experimental investigations, several parameters were identified by researchers

which control joint response. These parameters have been identified as:

• concrete compressive strength (fc)

• beam longitudinal reinforcement bar diameter (b dia), number (b no) and yield strength

(b yld)

• number of column interior longitudinal reinforcement bars (c int)

• joint hoop reinforcement diameter (j dia), number (j no), and yield strength (j yld)



18

• column axial load normalized with column sectional area and concrete compressive

strength (p)

The variation of above parameters that were considered in each of these set of experimental

tests are shown in table 2.1.

2.3.2 Joint design parameters

The results of these previous experimental studies as well as previous analytical studies

suggest a number of joint design parameters that could be expected to determine joint

performance under earthquake loading. These parameters are described in the following

paragraph and table A.5 lists detailed values of these parameters for each joint in the data

set. Table 2.2 provides summary statistics for the parameters in the data set.

The joint design parameters are:

1. Measured concrete compressive strength, fc.

2. Observed maximum joint shear strength as per recommendations of ACI-ASCE Com-

mittee 352 (2002):

τmax ACI =
1

hcbj
(TbL + CbR − Vc) =

1

hcbj

(

ML + MR

jhb
− Vc

)

(2.1)

where hc is the height of the column section, bj is the maximum out-of-plane dimension

of the beam or column, TbL and CbR are, respectively the tension and compression

resultants at the beam-joint interface on the left and right of the joint at the maximum

column load, ML and MR are, respectively, the moments at the beam-joint interface

on the left and right side of the joint when maximum column lateral load Vc is applied

at the column free end, and jhb is the distance between the tension and compression

resultants in the beam at the beam-joint interface where hb is the height of the beam

and the ratio j is taken as 0.85 per ACI-ASCE Committee 352.

3. Observed maximum joint shear strength defined per our study:

τmax =
1

hcbj

(

ML + MR

hb
− Vc

)

(2.2)
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where hc, bj , ML, MR, hb and Vc are as defined above. This definition of joint stress

uses the entire joint volume with the result that horizontal and vertical stresses are

equal. This definition was the development for the current study for use with the joint

component model presented in chapter 4 as it results in consistent definition of joint

stress-strain within the element formulation. Additionally this definition of maximum

joint shear strength was considered since the previous definition is dependent upon

jhb and it has been observed that j, ratio of the beam height which determines the

distance in between the tension and compression resultants, varies with the lateral

load applied to the system.

4. Nominal joint shear stress, τnom, defined per Eq. 2.2 with moments and shear force cor-

responding to beams carrying nominal flexural strength (ACI 318-05) at the perimeter

of the joint. This parameter normalized by the square root of the concrete compressive

strength is used to develop the statistical joint response model (Section 2.5).

5. Maximum beam bar anchorage length, ξ, expressed in terms of beam bar-diameter

(db). Here it is assumed that the width of the anchorage length is equal to the joint

width. Thus, this parameter is typically the width of the joint divided by the minimum

beam longitudinal reinforcing bar diameter.

6. Bond index, µ, equal to the normalized maximum beam-bar bond stress in the joint,

assuming the reinforcing bar yields, in tension and compression, on opposite sides of

the joint:

µ =
fydb

2hc
√

fc
(2.3)

where fy is the actual yield strength of the beam reinforcement (nominal values were

used where data were not provided), db is the beam bar diameter, and hc, fc are as

defined previously.

7. Joint transverse steel ratio, ρj, equal to the ratio of the area of the transverse steel in

one hoop layer within the joint region (At) to the product of the vertical spacing of

the hoop steel in the joint region (st), and maximum out of plane dimension of the

beam or column (bj).

ρj =
At

stbj
(2.4)
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8. The ratio of total joint transverse steel capacity to joint shear force demand, φ :

φ =
Astfyt

τmaxhcbj
(2.5)

where Ast is the total area of joint transverse reinforcement passing through a plane

normal to the beam axis, fyt is the yield strength of the joint hoop steel (nominal

values were used where data were not provided), and τmax, hc and bj are as defined

previously.

9. The ratio of total joint transverse steel capacity to the joint shear force at nominal

strength, φnom, which is defined identical to Eq. 2.5 with τmax replaced by τnom.

10. The ratio of total internal column longitudinal steel capacity to joint shear force at

nominal strength:

ϕc =
nint cAs colfy c

τnomhbbj
(2.6)

where nint c is the total number of interior bars in the column section, which is assumed

to play a role in resisting shear in the joint core, As col refers to the cross-sectional area

of a single column reinforcing steel, fy c refers to the yield stress of column longitudinal

bar, and τnom, hb, bj are as defined previously.

11. Column axial load ratio, p:

p =
P

Agfc
(2.7)

where P is the column axial load, Ag is the the gross cross-sectional area of the column,

and fc is as defined previously.

12. Joint aspect ratio, ι, defined as the ratio of the height of the beam section, hb, to the

height of the column section, hc.

ι =
hb

hc
(2.8)

13. The ratio of yield strength of top longitudinal bars to that of the bottom longitudinal

bars, ̟, defined as

̟ =
(n · fy · As)bt
(n · fy · As)bb

(2.9)

where the subscript (.)bt refers to the top longitudinal beam bars and subscript (.)bb
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Table 2.2: Summary statistics for the experimental data set of 110 specimens

parameter minimum maximum mean C.O.V.

fc (MPa) 21 118 51 0.49

τmax ACI (MPa) 2.03 18.29 7.09 0.53

τmax (MPa) 1.60 14.87 5.78 0.53

τnom (MPa) 1.52 18.57 6.13 0.58

τmax ACI/
√

fc (
√

MPa) 0.26 1.51 0.78 0.36

τmax/
√

fc (
√

MPa) 0.19 2.29 0.80 0.52

τnom/
√

fc (
√

MPa) 0.23 2.32 0.86 0.49

ξ db 15.71db 31.48db 21.83db 0.15

µ (
√

MPa) 0.92 4.28 1.92 0.40

ρj 0.000 3.801 0.700 0.811

φ 0.00 2.70 0.62 0.90

φnom 0.00 2.76 0.63 1.04

ϕc 0.00 3.00 0.79 0.57

p 0.02 0.48 0.14 0.62

ι 1.00 1.50 1.08 0.13

̟ 0.99 2.50 1.25 0.32

refers to the bottom longitudinal beam bars, n refers to the number of longitudinal

beam bars, fy refers to the yield stress of the bars, As refers to the cross-sectional

area of the longitudinal bars.

2.3.3 Factors that determine joint response

Data obtained from experimental testing typically include the load and deformation re-

sponse history, a description of damage progression, which may or may not be supported

by measurements such as crack width or extent of spalling. In order to compare the experi-

mentally observed with the simulated response in a quantifiable manner, a number of joint

response parameters were computed. These included

1. Maximum strength: the maximum lateral load resisted by the sub-assemblage.

2. Drift at maximum lateral load : the ratio of lateral displacement of the top of the

column to the total height of the sub-assemblage, at the point of maximum load.

3. Drift at last cycle: the ratio of the lateral displacement of the top of the column to

the total height of the sub-assemblage, at the last load cycle.
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4. Drift capacity : the ratio of the lateral displacement of the top of the column to the

total height of the sub-assemblage, at failure. Failure is assumed to occur if there is

decrease in strength of more than 20% from the maximum strength during cycles to

displacement demands in excess of that associated with maximum strength.

5. Strength loss at last cycle: the loss of strength from the maximum during last load

cycle.

6. Strength loss at drift capacity : the loss of strength from the maximum at the load

cycle corresponding to the drift capacity.

7. Initial stiffness: the stiffness of the load-deformation response of the specimen in

linear elastic range.

8. Post-yield stiffness: the tangent stiffness to the load-displacement history of the spec-

imen after computed yield to the maximum strength. Here, yield is defined as first

yield of the reinforcing steel based on loading in excess of that required to develop the

computed yield moment. Stiffness were not computed for joints that exhibit softening

prior to yield. Many factors such as the behavior within the joint core and flexural

stiffness of beams and columns contribute to this parameter.

9. Unloading stiffness at maximum strength: stiffness at unloading from the maximum

strength load cycle. This is a measure of stiffness deterioration of the specimen as-

sociated with inelastic response within the joint core when the global system reaches

maximum strength.

10. Pinching ratio: the ratio of the strength at zero drift to the strength at maximum

strength.

11. Joint failure mechanism: Each joint in the experimental data set is assumed to exhibit

one of the three response mechanisms: joint failure prior to beam yielding (JF), beam

flexural yielding followed by joint failure (BYJF), beam yielding with no joint failure

(BY). A failure is assumed to occur if the sub-assemblage strength developed during

the first cycle to a displacement demand exceeding the historic maximum displace-

ment demand is less than 80% of the maximum strength. Beam yielding occurs if

the sub-assemblage strength is greater than that required to yield beam longitudinal
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reinforcement, on one side of the joint.

12. Joint failure initiation mechanism: Each joint was assumed to exhibit either a “brit-

tle” failure mechanism in which the joint core failed in shear prior to flexural yielding

of the beams, or a “ductile” failure mechanism in which the flexural yield strength of

the beams were developed prior to failure.

These joint response parameters are discussed in greater detail in chapters 4 and 5.

2.4 Relationship between joint design and response parameters

To provide a basis for development of response models and design methodologies, the rela-

tionships between various design and response parameters were investigated.

Durrani and Wight (1982), Joh et al. (1991), Oka and Shiohara (1992) suggests that

with an increase in shear stress demand, τnom, there would be an increase in trend for

joint failure prior to beam yielding. Similarly, Durrani and Wight (1982), Fujii and Morita

(1991), Oka and Shiohara (1992) suggests that with an increase in amount of transverse

steel within the joint, φnom, one would expect a decreasing trend for joint failure prior to

beam yielding since transverse steel resists the shear mechanism within a structure. Even

though these trends were observed in clusters from plots in Figure 2.3 but no definitive

direct and clear trend could be observed between a single demand parameter and the type

of joint failure mechanism or the drift capacity of the joint. It should be noted in here that

only 79 out of 110 specimens in the data set are being shown in plots Figures 2.3(a), 2.3(b)

and 2.3(c) since complete load deformation response plots could be obtained for only 79

specimens out of 110 specimen in the literature so as to distinguish between BYJF and BY

specimen. Figure 2.4 represents the effect of joint demand parameters on the a joint response

parameter: the drift capacity. Only around 40 specimen are shown in Figures 2.4(a), 2.4(b)

and 2.4(c) since drift capacity could only be obtained for specimen which exhibited more

than 20% reduction in strength from maximum at the last drift cycle, which was typically

more than 4% drift.
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Figure 2.3: Effect of joint demand parameters on failure mechanism in joints
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2.5 Probabilistic failure initiation model for interior building joints

The above study of joint design and response parameters indicates that a number of design

parameters are required to determine a response parameter. To quantify the impact of

individual design parameters on the failure initiation mechanism (joint failure prior or after

beam yielding) a statistical model was developed.

In developing the statistical model, it should be noted that the failure initiation mecha-

nisms are qualitative in nature whereas the parameters that are assumed to determine this

qualitative response are quantitative in nature. A review of the literature indicates that

previous research have not addressed the development of a probabilistic model which relates

the qualitative nature of failure with quantitative design parameters. The closest study was

by Zhu et al. (2006) in which a statistical model was developed to determine the failure

mode for reinforced concrete columns. However, in this study, while discrete numbers were

assigned to each of the column failure modes, a linear regression model was used to predict

failure modes as a function of design parameters; thus, the ordered qualitative nature of

the discrete dependent variables was ignored and were treated as continuous quantitative

variables. As a result, the discrete qualitative nature of the failure modes could not be

properly captured in such a modeling framework. Thereby, in order to associate the qual-

itative nature of failure modes with different quantitative variable, a discrete choice model

should be utilized (Ben-Akiva and Lerman 1985, Greene 2000, Hayashi 2000, Wooldridge

2002, Washington et al. 2003).

Discrete choice models are used commonly in situations where the dependent variable

represents several discrete choices or states. The application areas of discrete choice models

are primarily transportation engineering, economics, and social and health sciences. For

example, a discrete-choice modeling approach can be used in transportation engineering

to model the decision an individual makes regarding his/her transportation mode from

work to home. The individual can choose any one of the transportation modes which are

auto, public transport or walking. These three different choices are assigned with different

numbers such as 1, 2 or 3 which are just three discrete values and do not have any meaning

attached to these values. Moreover, it should be noted that these numbers are purely
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discrete, and intermediate values, for example a value 2.5, does not mean anything (Ben-

Akiva and Lerman 1985). In such models, the choice of a travel mode 1, 2 or 3 is generally

considered to be correlated with individuals’ socio-economic and personal attributes. Given

an individuals’ set of socio-economic factors and personal attributes, an individual tries to

maximize his/her utility from these different discrete choices. This concept originates from

utility theory and is the basic building block of discrete-choice modeling (Anderson et al.

1992). Thus, a discrete choice model is used to calculate the probability of occurrence of

each of the available choices, given the assumption that the individual seeks to maximize

utility.

If there are two possible choices, the discrete choice model simplifies to a binary discrete-

choice model. A statistical model of two choices in which the distribution of the error term

(difference between an observed and a predicted value) follows Gumbel distribution is re-

ferred to as the binary logit model. A detailed description of this model can be found in

Ben-Akiva and Lerman (1985), Greene (2000), Hayashi (2000), Wooldridge (2002), Wash-

ington et al. (2003).

2.5.1 Proposed binomial logit model for the study

The dependent variable y is dichotomous and consists of two possible choices/states: beam

yielding prior to joint failure represented as choice 0 and joint failure prior to beam yielding

represented as choice 1. A binomial logit model is used to determine the probability of

occurrence of each of these choices. The binomial logit model is described in brief in the

following paragraph. For a better and more elaborate description of the model is the reader

is referred to Ben-Akiva and Lerman (1985), Greene (2000), Hayashi (2000), Wooldridge

(2002), Washington et al. (2003).

Consider the occurrence of two events, y = 0, 1, such that the summation of the proba-

bilities of their occurrence, Py=0, Py=1, is unity:

Py=1 + Py=0 = 1 (2.10)

According to Ben-Akiva and Lerman (1985) and other references listed above, the logistic
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regression of the above equation can be expressed as:

log[
Py=1

Py=0
] =

K
∑

k=0

βkxk (2.11)

where β represents the vector of coefficients for the vector of covariates x. For the current

study, the covariates x are the joint design parameters; while, the coefficients β represents

the influence of these design parameters to determine the probability of failure initiation

mechanism within the joint. The number of entities in the vector is represented by k =

0 · · ·K. From Eqs. 2.10 and 2.11 and according to Ben-Akiva and Lerman (1985) and other

references listed above, it follows that

Py=1 =

exp[
K
∑

k=0

βkxk]

1 + exp[
K
∑

k=0

βkxk]

(2.12)

Py=0 =
1

1 + exp[
K
∑

k=0

βkxk]

(2.13)

This modeling framework wad adopted to develop a probabilistic failure initiation model

for reinforced concrete beam-column joints.

2.5.2 Model input and output

The assembled set of 110 experimental data (table A.5) was used to calibrate the binomial

logit model and the software package, LIMDEP 8.0, was used for the statistical analysis.

Initially, a combination of all relevant non-correlated design parameters, listed in table A.5,

were used to calibrate the model. The coefficients for the parameters were readily estimated

using standard maximum likelihood method. The parameters in which there was a coeffi-

cient of correlation of more than 0.6 were eliminated to finally obtain the variable list used in

the final development of the probabilistic model. Re-running the analysis a number of times

and reviewing the results indicated that the variables which had maximum impact in the

response mechanism were τnom/
√

fc, µ, φ, p, ̟. The meaning of each of these symbols have
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Table 2.3: Binomial logit model estimation results

variable β t-statistic p-value

constant -0.66

τnom/
√

fc/0.86 1.63 1.86 0.062

µ/1.92 3.91 3.44 0.006

φnom/0.63 -1.40 -1.88 0.060

p/0.14 -1.64 -2.59 0.0095

̟/1.25 -3.04 -2.24 0.025

been described in section 2.3.2. The relationship of these covariates or independent variables

with the dependent variable of failure initiation in joint being either due to beam yielding or

joint shear is shown in Figure 2.5. These independent variables were divided by their mean

values so as to obtain a comparable range between the independent variables. Table 2.3

lists the coefficients or β values, t-statistic and p-values for each of these independent vari-

ables divided by their respective mean values. The β values represent the coefficients of the

independent variables or covariates divided by their respective mean values. The t-statistic

determines the statistical significance of each of the β values and is determined by whether

we can reject the null hypothesis Ho : β = 0 for each β value. The p-values gives a measure

of confidence interval of a particular covariate. The p-value represents the smallest level of

significance α that leads to the rejection of the null hypothesis. If the p-value is more than

or equal to α, then the null hypothesis is rejected. In this investigation the value of α is

assumed to be 0.10. The p-value and t-statistic are interrelated, the smaller the value of p,

the larger is the value of t-statistic and larger is the rejection of the null hypothesis. For

a detailed description of these terms the reader is advised to refer Ben-Akiva and Lerman

(1985), Hayashi (2000), Wooldridge (2002), Washington et al. (2003).

The t-statistic and p-value of each of the statistical model coefficients are listed in

table 2.3 followed by a detailed description of the parameters and their relative influence

on determination of the joint failure initiation mechanism. The constant term represent the

value of the intercept of the expression in Eq. 2.11.
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Figure 2.5: Effect of different parameters on failure initiation mechanism within the con-
nection region
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Influence of nominal joint shear strength

The data in table 2.3 show that an increase in nominal joint shear strength normalized

by the square root of concrete compressive strength of concrete, τnom/
√

fc, (or joint shear

stress demand at beam yielding) results in an increase in the probability of joint shear

failure prior to beam yielding. This could be expected, since if the section is modified such

that the shear demand at beam yielding is increased, then the propensity of the specimen

failure initiation by joint shear prior to beam yielding is also increased. Previous research

(Durrani and Wight 1982, Joh et al. 1991, Oka and Shiohara 1992) also supports this result

that a higher joint shear stress demand results in an increased probability of brittle failure.

This independent variable was also observed to be very significant with a p-value of 0.062

indicating that the value of the coefficient obtained for the variable is 94% accurate.

Influence of bond index

A higher value of µ is associated with a higher bond stress demand, at yielding of reinforcing

steel, which could be expected to result in increased damage and increased likelihood of joint

failure prior to beam yielding. Previous research (Oka and Shiohara 1992, Pantazopoulou

and Bonacci 1994) also supports the above result as obtained from the statistical model.

This independent variable was also observed to be very significant with a p-value of 0.006

indicating that the value of the coefficient obtained for the variable is more than 99%

accurate.

Influence of transverse steel capacity to joint shear force demand

The independent variable φnom exhibits a negative correlation with the probability of joint

shear failure prior to beam yielding, as expected (Durrani and Wight 1982, Fujii and Morita

1991, Oka and Shiohara 1992). This implies that increasing φnom (i.e. increasing the area

or the yield strength of joint hoops) decreases the likelihood of a joint failure prior to

beam yielding. It should also be noted in here that an upper limit to the amount of joint

reinforcement was identified by Kurose (1987), beyond which the overall resistance of the

beam-column joint assemblies is not improved. This independent variable was observed to
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be significant with a p-value of 0.06 indicating that the value of the coefficient obtained for

the variable is 94% accurate.

Influence of axial load ratio

There is no consensus within the research community as to the impact of axial load on the

seismic response of joints. It has been argued that axial load improves the shear resistance of

the beam-column joints by confining the joint core (Kitayama et al. 1987) or by equilibrating

part of an inclined compressive strut that forms in the joint as a result of joint shear action

(Paulay et al. 1978, Paulay 1989). However, it has also been concluded that column axial

load affects the deformation but not the joint strength (Meinheit and Jirsa 1977, Kurose

1987, Fujii and Morita 1991, Bonacci and Pantazopoulou 1993). The statistical model indi-

cates that an increase in column axial load ratio, p, decreases the likelihood of joint failure

prior to beam yielding decreases. This can probably be justified by principles of mechanics

in which if a specimen is subjected to higher column axial load, which means a higher value

of p, the probability of shear failure decreases since the axial load will increase friction and

thereby would tend to reduce the shearing action. The p-value for this independent variable

was observed as 0.0095, suggesting that the coefficient is 99% accurate.

Influence of the ratio of the capacity of top to bottom longitudinal reinforcing bars

The independent variable ̟ defines the ratio of beam top to bottom reinforcement yield

strength. If ̟ is unity, the beam has the same reinforcement top and bottom and both

top and bottom reinforcement yield simultaneously if the sub-assemblage is subjected to

reversed-cyclic load. If ̟ 6= 1 then reinforcement at top and bottom will yield at different

times. Thereby the specimen cannot fully trace back to elastic state in a reversed cyclic

loading. This unequal force thereby results in an increased probability of beam yielding

prior to joint failure (Ichinose 1987) and hence the negative coefficient of this variable can

be explained. Results show a higher value of ̟ decreases the probability of the initiation

mechanism of joint failure prior to beam yielding. The p-value for this independent variable

was observed as 0.025, suggesting that the coefficient is 97% accurate.
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Model evaluation

Eq. 2.12 with the β values as shown in table 2.3 were used to calculate the probability for

choice y = 1 or the failure initiation mode of joint shear prior to beam yielding. Figure 2.6

represents the results obtained from statistical analysis for choice y = 1. The specimen which

exhibited beam yielding prior to joint failure, represented by choice y = 0, are plotted as

circles whereas the specimen which exhibited joint failure prior to beam yielding, represented

by choice y = 1, are plotted as squares. Each square or circle represents a single specimen

test. Ideally for the event y = 0, the circular symbols should be near to zero whereas for

event y = 1, the square symbols should be near to unity in Figure 2.6, which is also what

is being observed from the plot. To assess the accuracy of the model, if a threshold value

for predicting event y = 1 is taken as 0.5, then 65 out of 72 specimen could be predicted

correctly with our approach for event marked by y = 0 and 25 out of 38 specimen could be

predicted correctly for event marked by y = 1. Overall probability of prediction was also

considerably good with a pseudo R-squared value of 0.45. Pseudo R-squared is a measure

of goodness of fit for binary discrete choice models. McFadden (1974) suggests the measure

(1 − Lur)/Lo, where Lur is the log-likelihood function for the estimated model and Lo is

the log-likelihood function for the model with only one intercept. Conceptually, pseudo

R-squared values used in logistic regression are similar to R-squared values used in linear

regression, the difference being that R-squared values are estimated using ordinary least-

square estimate whereas pseudo R-squared values are estimated using maximum likelihood

estimate. For detailed discussion of pseudo R-squared values the reader is referenced to

Wooldridge (2002).

The statistical model developed here defines the probability that a joint with specific

values of τnom/
√

fc, µ, φnom, p, ̟ will exhibit either joint failure prior to or after beam

yielding. The above independent variables were identified as the most important variables

determining failure initiation within joints.
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2.6 Model application

In order to test the model with a sample outside the data set in chapter 2, sample data for

a specimen from Proposed Benchmark Problem for Blind Analysis: Tests for Validation of

Mathematical Models on R/C Beam-column Joints by Shiohara and Kusuhara (2006) was

taken. The data set along with the results of the modeling efforts would be published in

ACI special publication report following ACI convention in Atlanta in April 2007. In the

following paragraphs, the geometric and material properties of sample A1 in the report are

described which is followed by the results of the statistical analysis to determine the type

of failure initiation of the model.

The geometric properties of sample A1 consists of the length of the columns from the

base to the free end as 1470 mm, distance between the beam supports as 2700 mm. The

cross sectional dimensions of the column is 300 by 300 mm and the beam is 300 by 300 mm.

8 bars of diameter 12.7 mm were used both in the top and bottom of the beam. 3 sets

of transverse steel of diameter 6 mm and of square orientation (number of hoop legs = 2)

were used for reinforcement in the joint region. The concrete compressive strength of the

sample is 28.3 MPa. The yield strength of the reinforcing bars is 456.4 MPa. The yield

strength of the transverse steel in the joint is 325.6 MPa. The axial load applied to the

specimen is 216 kN . From experimental observations it was observed that the maximum
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lateral load of the specimen is 126.6 kN . The lateral load corresponding to the point when

the beam steel yields was obtained from the moment curvature analysis of the beam section

as 147.35 kN . Since this load is larger than the experimental maximum load, the specimen

exhibits a shear type of failure prior to beam yielding. Similar observations were made from

the experimental study which concluded that the specimen exhibited a joint shear type

of failure. Thereby, using the empirical equation for determination of probability of the

specimen exhibiting joint shear failure prior to beam yielding, as expressed in Eq. 2.11 with

coefficient values listed in table 2.3, the objective would be to determine the probability of

occurrence of the event.

The demand parameters, or independent parameters for the statistical model, for the

sample are evaluated. The value of τnom/
√

fc is obtained as 1.15; µ as 1.82; φnom as 0.11;

p as 0.08 and ̟ as 1. The ratio of these independent parameters or covariates with their

respective mean values are considered and along with the coefficients from table 2.3 were

used in Eq. 2.11 to obtain a probability value of joint shear failure initiation prior to beam

yielding as 0.91.

2.7 Conclusions

An experimental data set for interior building beam-column joint tests was assembled. This

data set includes 110 joints from 20 different experimental investigations with a wide range

of design parameters that exhibit a wide range of performance in the laboratory.

These data were used to investigate the impact of various design parameters on joint

response parameters. Plots of response variables versus design parameters indicate a spe-

cific trend could not be observed just by varying a single design parameter, but instead

a combination of several design parameters influenced the behavior of a single response

parameter.

The experimental data-set was then finally used to develop a probabilistic failure initi-

ation model based on logistic regression. The model determines the probability of a joint

with specific value of design parameters τnom/
√

fc, µ, φnom, p, ̟ to exhibit a joint failure

prior to beam yielding. This model also identifies the upward or downward trend of the

probability of joint failure prior to beam yielding with the variation of design parameters
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that influence failure initiation within joints.

The model requires less computational overhead and can be utilized as a first hand

estimate of the type of joint failure initiation mechanism (ductile/brittle) within the struc-

ture. This study would help an engineer in new or retrofit construction since it identifies

the trends for the parameters which are of importance in determining the failure initiation

mechanism for a joint specimen. A model application of using this proposed model is shown

in section 2.6. Even though this study would provide a basic estimate of failure initiation

within a specimen but it does not provide an engineer with a detailed load-deformation

response analysis of the joint region subjected to seismic loading. Thereby, analytical meth-

ods are investigated in the following chapters to determine the load-deformation response

of the specimen subjected to seismic loading.
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Chapter 3

CONTINUUM MODELING OF JOINTS

3.1 Introduction

Research presented in chapter 2 identified the design parameters that determine seismic

performance of joints, but it fails to provide an insight into why these design parameters

affect joint response. To improve understanding of the joint response mechanisms that

determine behavior and finally to develop a mechanistic model, a nonlinear continuum

modeling strategy was investigated.

This chapter first presents a review of previous research that applied nonlinear continuum

finite element modeling to investigate the behavior of beam-column joints. Second, the

scope of the current modeling effort, which was determined in part by the results of previous

studies, is presented. Third, the concrete, steel and bond-zone constitutive models employed

in the continuum model are presented. Fourth, the results of a series of a validation analysis

are presented, which include comparison of simulated and observed response histories for a

series of plain and reinforced concrete specimens. Fifth, the results of a series of analysis

of two joint specimen from the experimental data set are presented and evaluated to yield

conclusions about the viability of continuum modeling for investigating joint behavior.

3.2 Review of research efforts to simulate the response of interior RCBC joints

The response of joints under seismic loading is determined by multiple, complex material

phenomena including cracking of concrete, crushing of confined and unconfined concrete,

closing of concrete cracks under load-reversal, shearing across concrete crack surfaces, yield-

ing of reinforcing steel and damage to bond-zone concrete. Accurate simulation of joint

response requires accurate simulation of all these phenomena. Given the complexity of the

simulation effort, relatively few research studies have applied continuum modeling to inte-

rior building beam-column joints; these studies include Will et al. (1972), Noguchi (1981),
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Pantazopoulou and Bonacci (1994).

One of the first studies was by Will et al. (1972) in which 2D continuum finite element

analysis was performed to understand the pre-peak response mechanism of an external beam

column joint subjected to monotonic loading. Four-node plane stress elements were used

for both concrete and steel bars. Concrete was modeled as a linearly elastic material both

in tension and compression. Cracks were initiated normal to the maximum principal stress

direction and upon cracking the modulus of elasticity, normal to the crack direction, was set

to zero, implying brittle fracture. Bond slip was simulated using link elements with a linear

bond stress-slip relation The reinforcing steel was simulated using 2 node truss elements

with elastic stress-strain relationships.

Noguchi (1981) analyzed the nonlinear behavior of planar joints using 3 node (linear

strain) triangular elements both to model concrete and longitudinal steel. The represen-

tation of longitudinal steel using 3 node triangular elements enabled simulation of dowel

action. Stirrups and ties were modeled using truss elements. Uniaxial response of concrete

was modeled using the constitutive model by Darwin and Pecknold (1977). Cracking of

concrete was modeled by in the context of discrete crack approach using crack-link springs.

These springs were placed along the potential cracking directions predetermined from ex-

perimental test results. Upon crack initiation along a particular grid line, the initial large

stiffness of these springs were set to zero. Bond slip between steel and concrete was modeled

using bond-link springs whose stiffness were determined from bond stress-slip relations by

Darwin and Pecknold (1977). The influence of bond characteristics of the beam bars on

the tie-strain within the joint was judged as insignificant. However, the bond deterioration

caused the local compression failure of concrete near the joint. Post-peak compressive stress

softening behavior of concrete was suggested to be incorporated in the analytical model to

avoid over-estimation of beam yield strengths.

Pantazopoulou and Bonacci (1994) performed 2d continuum analysis of joint sub-assemblages

to investigate the influence of different design parameters on joint behavior. Plain concrete

was modeled using four-node plane stress elements; two-node nonlinear truss elements were

used to model the reinforcing steel in beams, columns and joint. Inelastic concrete behavior

was defined based on modified compressive field test for concrete (Vecchio and Collins 1986)
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under two dimensional state of stress. A trilinear hardening material model was considered

to represent the reinforcement bars. Bond between concrete and reinforcement was modeled

using a contact element (Atrach 1992). The researchers concluded that 1) the joint trans-

verse steel serves to confine the joint core concrete and contributes to the shear resisting

mechanism, 2) participation of the joint core concrete to the mechanism of shear resistance

decreases with the increase in the volume of joint transverse steel, and 3) joint performance

deteriorates rapidly after yielding of joint hoops.

3.3 Scope of the modeling effort

For the current study, the objective of the continuum modeling effort is to improve the

understanding of nonlinear response mechanisms that determine the seismic behavior of

RC joints. However, the need for accurate simulation of response must be balanced against

the computational effort of the analysis. The following paragraphs discuss the chosen scope

of the continuum modeling effort so as to achieve a balance between accurate simulation of

response mechanisms and computational effort.

3.3.1 Two-dimensional simulation

Observations of experimental tests and the results of post-earthquake reconnaissance show

that the beam-column joints accumulate damage, exhibit stiffness loss and potentially ex-

hibit strength loss that may result in structural failure. Even though a 3D frame is the

most typical structural system, two-dimensional representation and simulation of joints in

a building structure is being considered in the research since 2D joints represents the worst-

case scenario. The out-of-plane members, if present, improve system response by providing

increased confinement in the joint region. Previous research by van Mier (1984) concludes

that a relatively small confining pressure (5 to 10 percent of one of the in-plane stresses)

results in a significant increase in strength of concrete in the plane of primary loading.

It is known from previous research that a moderate earthquake excitation in a building

structure is predominantly resisted by frame members, whereas severe excitation may result

in activation of inelastic response mechanisms in the joint region. Since the loading in the

beam-column joint is primarily from frame action, which for typical structural analysis is
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considered to be two-dimensional, it is reasonable to consider a 2D representation of the joint

region. It is assumed that under severe loading conditions, dilation or expansion of concrete

which is controlled by transverse hoops is negligible in comparison to the longitudinal and

in-plane applied loading, thereby a plane stress generalization of the problem is reasonable.

3.3.2 Pseudo-static loading

Experimental observations show that strain rate affects the tensile strength, compressive

strength, fracture energy of concrete (Hughes and Gregory 1972; 1978, Ross et al. 1995;

1996, Yon et al. 1992). However, in relatively low strain rates developed under earthquake

loading, the effect of strain rates on the material properties of concrete are insignificant

(Lowes 1999). Moreover in seismic loading, the period of time during which strain rates

approach the peak values may be so limited that it is unnecessary to consider the effect of

load rate in the constitutive model for concrete.

3.3.3 Software used

A commercial nonlinear finite element software package, DIANA 9.1, was used for the

finite-element modeling and simulation effort. DIANA 9.1 has all the necessary element

formulations and nonlinear constitutive models required for continuum modeling of joints.

A plane stress quadrilateral element was used to represent concrete, a truss element to

represent longitudinal steel reinforcement, and an interface element to represent the bond

action in between steel and concrete. The constitutive models used for each of these elements

and their response to different type of loading has been provided in subsequent sections in

this chapter.

3.4 Constitutive models for simulation of reinforced concrete structures

The response of a reinforced concrete structure is characterized by the response of it’s con-

stituent materials: concrete, steel and bond elements. Since, loading in a beam-column con-

nection results primarily from the flexural action in the beams and columns, the constitutive

model selected to represent concrete should represent well the behavior of concrete under
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uniaxial and biaxial tension and compression. The reinforcements are subjected to uniaxial

forces and the effect of dowel action has been neglected in the analysis of beam-column joints

subjected to seismic loading. Thereby, the constitutive model for reinforcements should be

able to capture the uniaxial response of tension and compression. The tangential response

of the bond elements connecting the reinforcement bar with the concrete should also be

modeled when selecting a constitutive model for the bond element. The radial response of

the bond element need not be considered in our analysis, since radial bond response usually

results in splitting failure and this type of failure mechanism is not typically observed in

case of a beam-column joint. The behavior and constitutive models used for concrete, steel

and bond elements are discussed in the following sections.

3.4.1 Compressive response of plain concrete

Plain concrete is a composite comprising mortar, which may include voids, microcracks and

aggregates. The response of plain concrete under compressive loading is determined by the

nucleation and propagation of microcracks which occurs primarily in the mortar and the

interface between mortar and aggregate (van Mier 1984, Vonk 1992, Mehta and Monteiro

1993, Kotsovos and Pavlovic 1995).

Despite the fact that concrete is a composite, for modeling of RC structures, concrete is

typically modeled as a homogenous material to facilitate the analysis process by reducing

the computational demand of the analysis. Moreover, very few data exist for simulation

of the response of mortar, and aggregate-mortar interface zones. At uniaxial compression

stress levels less than approximately 30% of the concrete compressive strength, concrete

behaves as a linear elastic material as the pre-existing microcracks are stable and do not

propagate. As the stress level increases up to the maximum strength, these microcracks

starts to grow and the formation of combined mortar and interface-zone cracks can be

observed. This phenomenon is observed in laboratory compression tests of concrete cylinders

and also nonlinearly in the gross load-deformation response history. After the maximum

compressive strength is reached, the microcracks localize in narrow bands and coalesce to

form macro-cracks that result in the strength loss.
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Theory of plasticity which includes the definition of a yield surface, flow rule, and hard-

ening/softening rule was used to represent the behavior of concrete in compression.

Plasticity based models for modeling compressive response in concrete

Plasticity theory has been used by many researchers to represent the response of concrete in

compression with good results (Resende and Martin 1984, Simo and Ju 1987, Frantziskonis

and Desai 1987, Mazars and Pijaudier-Cabot 1989, Pramono and Willam 1989, Lubliner

et al. 1989, Yazdani and Schreyer 1990, Cervera and Oliver 1995, de Vree et al. 1995, Lee

and Fenves 1998, Lowes 1999). Typically, plasticity model is defined by a yield surface, flow

rule, and hardening/softening rule. The yield/failure surface is the surface that bounds

the elastic domain. The hardening/softening rule defines the evolution of the yield/failure

surface. The flow rules define the evolution of a set of internal variables that uniquely define

the material state.

Assuming a homogenous, isotropic material, the general form of the yield surface for

concrete can be represented as (Chen and Han 1988)

f(I1, J2, J3) = 0 (3.1)

where I1 is the first invariant of the stress tensor and J2 and J3 are respectively the second

and third invariant of the deviatoric stress tensor. These invariant of the stress tensor are

expressed in principle plane (with σ1, σ2 and σ3 as principal stresses) as follows

I1 = σ1 + σ2 + σ3

J2 =
1

6

[

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2
]

J3 =
1

27

[

(σ1 − σ2)
2 (σ1 − 2σ3 + σ2) + (σ2 − σ3)

2 (σ2 − 2σ1 + σ3) + (σ3 − σ1)
2 (σ1 − 2σ2 + σ3)

]

A variety of yield/failure surface have been proposed for concrete. Chen (1982) provides

a detailed discussion and classifies these, by the number of material constants appearing in

the expression, as one-parameter through five-parameter models. A brief review of these

follows:
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• One-parameter model: These models include the von Mises and Tresca failure criteri-

ons. These are pressure independent surfaces and are typically not used for modeling

concrete compressive response. However, these are sometimes used to define the tensile

behavior of concrete.

• Two-parameter model: Drucker-Prager and Mohr-Coulomb are the simplest pressure-

dependent failure surfaces and are widely used to model concrete compressive response.

In these models, the octahedral shear stress τoct depends linearly on the octahedral

normal stress σoct. Moreover the Drucker-Prager surface suffers from another short-

coming: independence of the angle of similarity, or lode angle, θ. Thereby these models

cannot be applied for describing failure of concrete in high triaxial compression range

(Chen and Han 1988). However these models do reasonably well in a two-dimensional

range.

• Three-parameter model: Bresler and Pister (1958) proposed a generalized Drucker-

Prager surface that assumes a parabolic dependence of τoct on σoct.

• Four-parameter model: Ottosen (1977) proposed a four-parameter model. Simplifying

the relationship proposed by Ottosen, Hsieh et al. (1982) proposed another four-

parameter model. Both the models exhibit a parabolic τoct − σoct relationship and

lode angle or θ-dependence and are valid for a wide range of stress combinations.

• Five-parameter model: Willam and Warnke (1975) proposed a highly refined and

smooth five parameter model which can be utilized for a wide range of stress combi-

nations. This model also exhibit a parabolic τoct − σoct relationship and lode angle or

θ-dependence.

For the current study, the Drucker-Prager model is used. The improvement of the

higher parameter models over the Drucker-Prager model is primarily to include a parabolic

dependence of τoct on σoct. The parabolic dependence is important for simulation of response

under loading to large hydrostatic pressure levels. For the current application, in which

concrete is subjected to only moderate hydrostatic pressure loading, the Drucker-Prager

model is adequate for defining the yield surface of concrete.

Beyond definition of the yield surface, definition of a plasticity-based constitutive model
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requires also specification of the plastic flow rule. The flow rule defines the orientation of

the plastic strain. Two options exist: associative flow in which the orientation of the plastic

strain is normal to the yield surface and non-associative flow in which the orientation of the

plastic strain is not normal to the yield surface. Typically, to obtain improved numerical

stability and due to lack of precise data for model calibration, associative flow is assumed

(Lubliner et al. 1989). The primary drawback of this approach is overestimation of plastic

dilation (Chen and Han 1988) at compressive loading, which can be a significant problem

for cases of high hydrostatic pressure. For the present problem, this could be expected to

result in over-estimation of the confining effect of transverse steel on concrete strength.

Evolution of the plastic yield surface i.e., the hardening/softening rule, is the final compo-

nent of a plasticity-based model. For the current study, a hardening function is calibrated

such that the concrete response under uniaxial compression matches the empirical curve

proposed by Popovics (1973).

The Drucker-Prager yield surface, associative flow rule, strain-hardening rules, that are

used for modeling of concrete behavior, are provided in details in the DIANA 9.1 manual

on material modeling. The nonlinear relationship between the internal state variable, κ,

and cohesion, c, in the Drucker-Prager expression was calibrated based on the following

approach:

• Concrete is assumed to be linear elastic until the compressive stress equals 30% of the

maximum compressive strength.

• Strain hardening assumption is being used, thereby the internal state variable, κ, is

defined as a function of the rate of plastic strain ε̇p.

• Popovics (1973) relation was utilized to determine the uniaxial stress-strain response

of the material.

• For any strain value above that associated with 30% of the maximum compressive

strength of concrete, the plastic strain is obtained by subtracting out the elastic strain

from the total strain. In an uniaxial case, the elastic strain is represented as εe = σ/Ec

where Ec is the modulus of elasticity of concrete.
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Figure 3.1: Simulation of unconfined uniaxial compression test by Karsan and Jirsa (1969)

• The cohesion parameter, c, corresponding to the previously calculated κ, is computed

using the equation for the yield surface for uniaxial case.

For normal strength concrete, the ratio between the uniaxial compressive strength and

the equal biaxial compressive strength is approximately 1.16 (Kupfer and Gerstle 1973)

which results in a friction angle φ ≈ 10◦ (DIANA 9.1 manual on materials). Utilizing the

above process, we obtain a good correlation between simulated and observed compressive

stress strain response for a 25.4 mm square concrete specimen block with unconfined com-

pressive strength of 27.6 MPa, and initial stiffness of 31.7 GPa. (Karsan and Jirsa 1969).

Figure 3.1 shows the comparison in between the observed and the simulated stress-strain

response.

3.4.2 Modeling concrete crack response

Tensile loading of concrete results in the development of discrete cracks. When a concrete

specimen is loaded in tension, up to approximately 90% of it’s maximum tensile strength, it

behaves as a linearly elastic material. At loads beyond 90% of the tensile strength, micro-

cracks form and rapidly coalesce to form macro-cracks perpendicular to the principal stress

direction. These micro-cracks widen resulting in strength and stiffness deterioration. The

energy released per unit area of the crack surface is referred to as the fracture energy density,
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or simply the fracture energy, which is considered to be a material parameter.

It should be realized that a crack (a macro-crack) represents a displacement discontinuity.

Cracks have been modeled discretely by researchers (Ngo and Scordelis 1967), but this

process requires a-priori knowledge of the orientation and the location of the crack. Thereby,

within the context of continuum finite elements, it is a standard practice to model this

displacement discontinuity in a smeared manner over a certain region with reduced strength

and stiffness (Rashid 1968). Thus cracking is simulated using a fictitious constitutive model

that avoids the need for change in geometry and remeshing. Within this smeared concept,

in which fictitious constitutive models are used to represent crack, there are four different

ways to model cracks: 1) using empirical formulaes obtained from shear panel tests of

reinforced concrete panels (Vecchio and Collins 1986), 2) phenomenological approach of

using fixed, rotating and multiple rotating cracks (de Borst and Nauta 1986), 3) use of

damage plasticity relationships (Lubliner et al. 1989), and 4) microplane models (Bažant

1984). A comprehensive review of the behavior of all these different smeared crack models

(with the exception of the first one) is provided in Rots and Blaauwendraad (1989), de Borst

(2002). Apart from introducing cracks through fictitious changes in the constitutive models,

cracks can also be introduced by local enrichment of stress and/or displacement and/or

strain relationships of the element formulation in finite element analysis. These methods

include the 1) Cosserat continua (de Borst 1991), 2) Higher order gradient (Voyiadjis and

Dorgan 2001) and 3) Embedded discontinuity methods (Jirásek 2000). A comprehensive

review of the Cosserat and the Higher order gradient methods are provided in de Borst

(2002), whereas a review of different methods under the embedded discontinuity methods

are provided in Jirásek (2000). A more detailed and complete literature review of all these

different methods of modeling cracks are presented in Appendix C. For our application,

discontinuous strain multi-directional fixed crack (de Borst and Nauta 1986) was considered

because of its’ availability in the commercial software program DIANA 9.1.

Within the context of smeared formulation of cracks in concrete, once the concrete

reaches it’s tensile strength it does not behave in a brittle manner but exhibits a tensile

softening response. The post-peak tensile stress-strain relationship has been approximated
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Figure 3.2: Simulation of uniaxial tensile test by Gopalratnam and Shah (1985)

by different functions ranging from linear, exponential curve by Reinhardt (1984),

σcr =







ft

(

1 − εcr
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)0.31
if 0 < εcr < εult

cr

0 otherwise
(3.2)

cubic exponential curve by Hordijk (1991).
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if 0 < εcr < εult
cr

0 otherwise

(3.3)

where σcr refers to cracked concrete stress, εcr refers to cracked concrete strain, ft as the

tensile strength in concrete, εult
cr as the ultimate concrete cracked strain after which there is

zero stress. Figure 3.2 shows that the cubic exponential curve by Hordijk (1991) performs

better in simulating the experimentally observed response of Gopalratnam and Shah (1985)

tension block loaded uniaxially. The experimental concrete tension block has dimensions of

305 by 76 by 19 mm with an initial stiffness of 33.5 GPa, tensile strength of 3.62 MPa and

fracture energy of 56 N/m.

The modeling of crack initiation and propagation is one of the most important aspects

for failure analysis of concrete structures. Even though the primary source of formation
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of cracks in concrete is tensile loading, since concrete as a material is weak in tension,

but in a two-dimensional force field both tension and compression contributes to formation

of cracks. The mechanism of crack formation and propagation in concrete structures is

significantly different from cracking exhibited by other materials, such as metal or glass, in

that it is not a sudden onset of new free surfaces, but a continuous forming and connecting

of microcracks (Mehta and Monteiro 1993). There exists a huge literature on modeling of

cracks in quasi-brittle materials such as concrete. As discussed in the previous paragraph,

that even though comprehensive reviews have been proposed by several researchers (Rots

and Blaauwendraad 1989, Jirásek 2000, de Borst 2002) of one or more categories of crack

formulation, a full complete comprehensive review of all different modeling strategies of

cracks is yet to be done. A complete comprehensive review of different methods of modeling

of cracks have been presented in Appendix C.

In this thesis, a smeared methodology using a decomposed-strain multi-directional fixed

crack model (de Borst and Nauta 1986) was used to represent cracks in concrete because

of it’s simplicity and it’s ability to be used with plasticity models. The model is based on

decomposition of the total strain increment at a gauss-quadrature point into a concrete and

a crack-strain increment. This decomposition permits the combination of the phenomenon

of crack formation with other non-linear phenomena such as plasticity to represent the

behavior of concrete in compression. As the name suggests, multiple cracks are allowed to

form at a gauss quadrature point. A crack is said to originate once the cracking criterion

is satisfied (i.e. user specified threshold angle is exceeded and also the maximum tensile

strength is exceeded). The threshold angle refers to the angle from the plane of the first

crack to a plane where the next crack can originate. Thereby, if the threshold angle is

provided as 180◦ then this model reduces down to a single fixed crack model, whereas

theoretically if the threshold angle is made equal to 0◦ and the effect of other open cracks

at the gauss-quadrature points are erased then it represents a rotating-crack model (refer

Gupta and Akbar (1984), Crisfield and Wills (1989)). Details about this model can be found

in de Borst and Nauta (1986) and also in the DIANA 9.1 manual on material modeling.
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3.4.3 Modeling of reinforcements

For the current study, reinforcing steel is assumed to act as a truss element and carry load

only along its axis. Plasticity-based models are used to model reinforcing steel. In this thesis,

von Mises plasticity is used to characterize the constitutive behavior of reinforcing steel. For

simplicity reasons, the material is considered to be perfectly plastic and Bauschinger effect

is not considered.

3.4.4 Modeling of bond between reinforcement and concrete

Bond refers to the transfer of stress between reinforcing steel and concrete; bond develops

through the combined action of chemical adhesion, friction, and mechanical interaction

response between the lugs of the reinforcing steel and bond-zone concrete. Bond is necessary

for composite action in RC structures and is critical to the behavior of RC structures (Paulay

et al. 1978). The results of a number of studies indicate that 1) chemical adhesion is lost

early and is negligible for deformed reinforcement, 2) friction controls response for well

confined bond-zones near failure when large slip between concrete and steel has resulted in

crushing of all the concrete between the lugs and reinforcing steel, 3) friction and mechanical

interaction determine response for most bond-zones at intermediate slip levels (Lutz and

Gergeley 1967), 4) mechanical interaction results in radial and splitting type of failure. The

mechanics of bond can be found in classic papers of Rehm (1957), Lutz and Gergeley (1967).

Bond is manifested by two different mechanisms: flexural bending in which multiple cracks

form perpendicular to the bars; anchorage in which cracks form parallel and perpendicular

to the bar axis eventually developing into conical surfaces and bar stress varies from a

maximum at one “free end” to zero stress at the other end.

Experimental bond tests typically result in data characterizing average bond stress versus

slip, where slip is the displacement of the reinforcing bar relative to the surrounding concrete

in the direction of the bar axis. Bond material models are typically fit to these data

(Viwathanatepa et al. 1979, Eligehausen et al. 1983, Morita and Kaku 1984, Shima et al.

1987, Gambarova et al. 1989a, Malvar 1991). Apart from these, there also exists more

fundamental bond models that represent the behavioral mechanism of bond. Even then
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experimental results are required for calibration of these models. An extensive review of

experiments and analytical investigations on bond can be found in Cox (1994). From a

theoretical perspective, bond can be modeled at several scales: 1) Rib/Lug scale models

(Hungspreug 1981, Reinhardt et al. 1984, Ožbolt and Eligehausen 1992, Yao 1992, Wang

1993), 2) Bar scale models and 3) Member scale models (Feenstra 1993, Vecchio and Collins

1986, Hsu 1988). In this thesis one dimensional “bar-scale models” have been considered

since these models are most commonly used.

In a bar-scale model, reinforcing bar and concrete is treated as a continuum, and the

mechanical interaction of the ribs are homogenized and modeled as interface phenomena.

Most of the existing models on bond are at this level since this level characterizes the local

bond behavior within a global framework of finite element methods. Springs, interface

elements or contact elements can be utilized in this modeling strategy to represent the bond

action in between steel and concrete. This modeling strategy can be subdivided into two

different types:

• One dimensional models in which only the normal stress slip relation in between the

concrete and bar was modeled. Experimental studies are an essential basis of these

models and these have also been extended to cyclic bond behaviors. Examples in this

category include Morita and Kaku (1973), Dörr (1978), Viwathanatepa et al. (1979),

Tassios (1979), Shipman and Gerstle (1979), Eligehausen et al. (1983), Filippou (1986),

Yankelevsky et al. (1992), and many others.

• Two dimensional models incorporates both the normal stress and radial dilation into

the formulation. Prominent contributions in this category are by de Groot et al.

(1981), Morita and Fujii (1985), Mehlhorn and Keuser (1985), Mainz et al. (1992),

Cox (1994).

In this thesis, the reinforcements are connected to the concrete region through interface

elements whose material relationship has been calibrated to match the uniaxial bond-slip

model proposed by Eligehausen et al. (1983).
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3.5 Benchmark simulation studies

To improve understanding of the finite element simulation of the response of concrete struc-

tures, a number of simulation of experimental tests were conducted using DIANA 9.1. These

include the simulation of concrete, fracture-energy tests, bond pull-out tests, a bond flexu-

ral crack formation test and flexural tests of reinforced concrete beams. For each of these

simulation studies, a prototype model was developed and then modified to evaluate the

impact of different constitutive models and parameters on predicted response. Details of

the comparison between simulation and experimental data are presented below.

3.5.1 Simulation of concrete tensile response - three-point bend test

Simulation of the behavior of concrete in tension is critical to modeling the behavior of

joint sub-assemblages. To obtain a better understanding of the application of DIANA

9.1 for simulation of concrete response to tensile loading, simulated and observed load-

displacement histories, and crack patterns for a series of “three-point test” of plain concrete

beams were compared. Specifically, results were used to identify the way in which various

model parameters affect predicted response, and ultimately identify a preferred approach

to model concrete subjected to tensile loading.

Typically, experimental three-point bend tests on a notched beam (Hillerborg et al. 1976,

Hillerborg 1985, Malvar and Warren 1988, Malvar and Fourney 1990, Kozul and Darwin

1997, Martin et al. 2006) are carried out to determine the fracture energy of a specimen1.

The fracture energy is a measure of the toughness of a material, and is defined as the

energy absorbed in creating a unit area of the fracture surface. Fracture energy of concrete

is a property which is inherent with tensile loading of a specimen. Since the compressive

strength of concrete is 5 to 10 times the tensile strength, energy absorption due to plastic

compressive response is not expected to occur in these tests and all energy dissipation is

assumed to occur through concrete fracture (Hillerborg 1985).

Simulation of the experimental test specimen by Malvar and Warren (1988), Martin

1Apart from three-point bend tests there are also other methods to determine fracture-energy and thereby
behavior of concrete in tension, namely Jenq and Shah (1985), Bažant and Pfeiffer (1987).
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Figure 3.3: Simulation of concrete tensile response: 3 point bend test

et al. (2006) were used for the benchmark study on tensile behavior of concrete. Figure 3.3

shows a prototype specimen. Tables 3.1 and 3.3 provide the specimen geometry details and

tables 3.2 and 3.4 provide the specimen material specifications.

The prototype model, shown in Figure 3.3, has length between the supports represented

by L, height of the specimen as h, out of plane depth of the specimen b, notch width t, height

of the notch from the beam base at the middle length of the beam hn. A monotonically

increasing load P is applied at the top of a simply supported specimen. The material

properties required for simulation are concrete tensile strength ft, fracture energy Gf , shear

retention value β, poison’s ratio ν, modulus of elasticity for concrete Ec. The prototype

model had the following characteristics:

• Concrete model with phenomenological multi-directional smeared cracks (de Borst

and Nauta 1986) and Hordijk model (Hordijk 1991) for tension softening.

• A crack is induced if the normal stress in a plane exceeds the value of tensile strength

of concrete, ft. Origination of other crack planes are based on results if the both the

tensile strength and the threshold angle is exceeded.

• A threshold angle of 60◦ was chosen since a large number of cracks would defeat the

purpose of a robust solution and would generate unnecessary convergence problems.

• The crack band width was taken as the element dimension perpendicular to the di-

rection of loading, under the assumption that only one major crack in the specimen

contributes to failure by cracking.

• Eight-node quadrilateral elements with 2 by 2 gauss quadrature integration scheme
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Table 3.1: Malver-Warren geometry

L h b t hn

394 mm 102 mm 102 mm 10 mm 51 mm

Table 3.2: Malver-Warren material
ft Ec ν Gf β

3.1 MPa 21.7 GPa 0.18 73 N/m 0.01

Table 3.3: UW specimen geometry

L h b t hn

18 in 6 in 3 in 0.25 in 3 in

were used to represent the concrete region.

• According to RILEM specifications controlled loading is to be applied on the top

surface of the specimen to produce a specific rate of crack width opening. Since such

load-control is not possible for typical finite element solution algorithms, loading in

the finite element is introduced by monotonically increasing vertical displacement (in

the negative direction) at the point of load application.

The modeling parameters that were varied in the prototype model were the fineness of

the mesh, threshold angle for subsequent crack formation θ, shear retention value β, type

of post-peak softening curve, fracture energy parameter Gf , tensile strength of concrete ft,

modulus of elasticity of concrete E, crack models, element types and gauss quadrature rules

for different elements.

Malvar and Warren (1988) test

The dimension and material properties of the prototype specimen are provided in tables 3.1

and 3.2. Good correlation could be observed between the observed and simulated load-

deformation response of the specimen (Figure 3.4).

Martin et al. (2006) test

The model material and geometric parameters are shown in tables 3.3 and 3.4.
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Figure 3.4: Simulation of 3 point beam-bending fracture energy test by Malvar and Warren
(1988)

Table 3.4: UW specimen material

ft Ec ν Gf β

526.5 psi 5530 ksi 0.2 0.8 lb/in 0.001

Figure 3.5(a) shows a good correlation between the simulated and experimental load-

deformation fracture energy response. It is to be noted that there is significant difference

between the three experimental strength predictions. The reason for this is primarily due to

errors in testing procedure and measurement of beam deflection that are discussed in detail

in Martin et al. (2006). Figure 3.5(b) shows the crack patterns at different displacement

steps as observed in the simulation study which closely matches the crack patterns observed

in the laboratory. For purpose of clarity, the figure only shows the zoomed region above the

notch where the crack forms.

Impact of mesh refinement

The mesh size was varied in the specimen test by Martin et al. (2006) and since the fine and

the superfine meshes provide essentially the same response in Figure 3.6, it confirms that

the solution is not exhibiting mesh-sensitivity but is converging towards an exact solution

as the deformation field is more accurately represented by more elements. The size of the

mesh in the coarse mesh specimen was 0.125 by 0.25 mm, in the fine mesh specimen was
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Figure 3.5: Simulation of fracture energy test at University of Washington

0.125 by 0.1875 mm and in super-fine mesh specimen was 0.125 by 0.125 mm. A total of

847 eight-node quadrilateral elements were used for the concrete region in simulation of the

specimen for coarse mesh size, 1129 for fine mesh size and 1693 for super-fine mesh size. The

figure also confirms a good correlation between the elastic simulated and observed initial

stiffness of the specimen.

Impact of concrete post-peak softening curve

The behavior of concrete in tension is not purely brittle but instead, characterized by

moderately rapid strength loss (de Borst and Nauta 1986, Feenstra and de Borst 1995). A

number of different post-peak curve for concrete in tension have been proposed by different

researchers such as an exponential decay curve (Cornelissen et al. 1986) expressed in Eq. 3.2,

cubic exponential decay curve Hordijk (1991) expressed in Eq. 3.3. These different post-

peak softening curves were used in the simulation of the sample. Figure 3.7 identifies that

the Hordijk curve, which has been used in the prototype model, gives a better correlation

with experimental data.
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Figure 3.6: Simulation for mesh-sensitivity
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Figure 3.7: Simulation with different tension softening curves
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Impact of concrete cracking model

A smeared crack model was used in this study because of its simplicity. However, the

smeared crack model can be implemented in a number of different ways. The prototype

model in the thesis uses a decomposed strain multi-directional fixed crack model developed

by de Borst and Nauta (1986) (refereed to as the prototype DSMFC model). The prototype

model was compared with other smeared crack models namely total strain smeared fixed

crack developed by Rots and Blaauwendraad (1989) (referred to as TSSFC ) and total strain

smeared coaxial rotating crack model developed by Crisfield and Wills (1989) (referred to

as TSCRC ). The shear retention parameter β for the fixed crack models was taken as

0.001. Figure 3.8 shows the response behavior of each of these models. It was observed

from Figure 3.8 that co-axial rotating crack model performs better than fixed crack models

in the post peak regime since there is a release of energy associated with the rotation of

the primary crack (Rots and Blaauwendraad 1989). Co-axial rotating smeared cracks also

exhibit some drawbacks associated with numerical convergence (Crisfield and Wills 1989,

Jirásek 2000) and thereby decomposed strain multi-directional fixed crack model (de Borst

and Nauta 1986) was considered as the prototype model for further analysis since the

response from these models are better than that obtained from single fixed crack models

due to partial release of energy with development of new cracks in different orientations

and exhibits lesser convergence problems in comparison to co-axial rotating crack models.

Moreover, these decomposed strain multi-directional fixed cracks can be combined with

different plasticity models to represent behavior of concrete in compression.

Impact of shear retention factor

Figure 3.9 shows the effect of shear retention factor, β, on the global load-deformation

response. At its most basic level, β relates to shear stiffness of cracked concrete. The shear

retention factor, β, causes the principal stress in the cracked integration point to rotate upon

further loading (Cope et al. 1980). Shear retention in combination with tensile softening

(i.e. residual tensile strength at small crack widths), may result in the principal tensile

stress to easily exceed the tensile strength in a direction other than the normal to the crack.
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Figure 3.8: Simulation with different crack models

This explains the stiffening in the post-peak response when β is increased from 0.001 to

0.05 in the total strain single fixed crack (‘TSSFC’) model. If the shear retention factor, β,

is near to 0, then this phenomenon of stress-locking does not occur (Figure 3.9).

Impact of crack threshold angle

Figure 3.10 shows the effect of threshold angle, θ, for subsequent crack formation. In a

multiple fixed crack model the angle between the normal to the crack and the direction of

the principle tensile stress must exceed the threshold angle for another crack surface to form.

As the threshold angle, θ, becomes close to 0◦, a multi-directional fixed crack model exhibits

response similar to a rotating crack model. Rots and Blaauwendraad (1989), Jirásek (2000)

explains that with more number of cracks, there would be more energy dissipation and

thereby would result in less stiffened load-deformation response. On the other hand, more

cracks would result in more numerical convergence problems (Crisfield and Wills 1989). In

order to strike a balance, a threshold angle of 60◦ has been chosen for the prototype model.

Impact of element types and integration rules

It was also observed that the use of different elements and integration rules varied the load-

deformation response of the specimen. Simulation with a 8-node quadrilateral with a 2 by
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Figure 3.9: Different crack models with different β values
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Figure 3.10: Variation of threshold angle for subsequent crack formation, θ
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Figure 3.11: Fracture energy test simulation with different element types

2 gauss quadrature integration scheme produced the best correlation with the experimental

data in comparison to simulations by using a 4-node quadrilateral with a 2 by 2 integration

rule or a 8-node quadrilateral with a 3 by 3 integration rule (Figure 3.11(a)). Ideally only

one set of crack should develop in the notched region, which is observed in Q8 (2*2) in

Figure 3.11(b) and thereby the use of characteristic length or crack band width, h, equal to

the width of the element perpendicular to the crack is justified. But in other element types

and integration rules two sets of cracks are observed and thereby the characteristic length

used in these cases should be changed from that of the width of the element perpendicular

to the crack (which was used in the simulation) to half it’s value in order to obtain good

correlation with the observed response.
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Impact of material model parameters

A parametric study was conducted to determine the effect of material model parameters

(e.g. modulus of elasticity, fracture energy and tensile strength) on the global response.

All the parameters were varied by 10% higher and lower of the actual value provided by

the experimental investigation. Analyses of specimen C3 in Martin et al. (2006) were done

in which the fracture energy parameter, Gf , (Figure 3.12(a)); tensile strength of concrete,

ft, (Figure 3.12(b)); modulus of elasticity of concrete, Ec, (Figure 3.12(c)) were varied by

approximately 10% of the measured value. These parameter variations were considered to

represent the potential experimental error in measured values. It was observed that an

approximate 10% variations in the material parameter obtained from experiments resulted

in less than 10% variations in the simulated response.

Preferred model parameters

The results of the simulation study suggest that the preferred concrete model employs

Drucker-Prager model for concrete in compression, decomposed strain multi-directional

fixed crack model for concrete in tension, Hordijk model for tension softening in concrete

and a threshold angle of 60◦ for new crack formation.

3.5.2 Bond tests

Bond response is a critical component in modeling of RC structures. Modeling bond be-

havior between concrete and reinforcing steel requires modeling in directions parallel and

perpendicular to the bar. An elastic model is used to represent the bond response per-

pendicular to the direction of the bar. The response in the direction parallel to the bar

is calibrated based on an empirical model by Eligehausen. Based on experimental data of

Eligehausen et al. (1983) the maximum bond stress is taken as 2.46 times square root of

the maximum compressive strength of concrete (in MPa), whereas the residual strength is

taken as 0.9 times the square root of maximum compressive strength of concrete (in MPa).

The slip levels are also defined based upon experimental data provided by Eligehausen. The

slip at maximum stress is defined by a plateau from 1 to 3 mm and the residual strength is
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Figure 3.12: Material parameter variation of the UW simulations
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Figure 3.13: Bond slip response

assumed to be developed at 10.5 mm slip. The bond response, in direction parallel to the

bar, for concrete with compressive strength of 30 MPa is shown in Figure 3.13.

Anchorage bond zone response simulation

Good correlation was observed between simulated and experimental anchorage bond-zone

response by Viwathanatepa et al. (1979). The comparison of the observed and the computed

response for these models provides a means of evaluating the adequacy of the proposed bond

model for predicting bond-zone response under severe loading conditions similar to those

that develop under earthquake loading of reinforced concrete buildings. The geometry and

material parameters of the model, as incorporated in a two-dimensional finite element model

are represented in table 3.5.

The simulated anchorage bond specimen load-deformation response is shown in Fig-

ure 3.14(b), whereas the crack patterns (which were obtained similar to the one observed

in the laboratory) are shown in Figure 3.14(a). The progression of cracks in the simulation

was observed similar to the ones observed in the laboratory investigation. The kink in the

simulated response is observed when a major conical crack is formed in the specimen.
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Table 3.5: Anchorage bond-zone response by Viwathanatepa et al. (1979)

Model parameters value

width of concrete block 25 in

height of concrete block 48 in

thickness of concrete block 10 in

anchored reinforcing bar nominal diameter 1 in

longitudinal reinforcing bar nominal diameter 0.875 in

transverse reinforcing bar nominal diameter 0.5 in

longitudinal steel ratio 0.019

compressive strength of concrete 4.72 ksi

tensile strength of concrete 0.51 ksi

fracture energy of concrete 0.001 kip/in

Poisson’s ratio of concrete 0.175

Yield strength of the anchored reinforcing bar 68 ksi

Ultimate strength of the anchored reinforcing bar 102 ksi

Yield strength of transverse and longitudinal steel 72 ksi

Ultimate strength of transverse and longitudinal steel 102 ksi

(a) Crack patterns
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Figure 3.14: Anchorage bond slip response (Viwathanatepa et al. 1979)
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Figure 3.15: Flexural bond slip response

Flexural bond zone response simulation

Simulation of the flexural bending mechanism for bond slip was also carried out based on a

specimen tested in Lowes (1999), which consists of a 25 mm bar anchored in a plain concrete

prism 500 mm by 125 mm by 125 mm. The anchored bar is subjected to monotonically

increasing elongation at both ends of the exposed bar. Concrete of 30 MPa compressive

strength, 3 MPa tensile strength and an elastic modulus of 26 GPa was chosen for the

study. The yield strength for the reinforcing steel was taken as 470 MPa with an ultimate

tensile strength of 520 MPa, and an elastic modulus of 200 GPa. These geometry and

material parameters were obtained from Lowes (1999). Good correlation was observed as

regards to the crack patterns and also the load-deformation response analysis of the bond-

zone prototype model in Lowes (1999), as shown in Figure 3.15.

3.5.3 Flexure tests of beams

Simulation of the flexural response of beams and columns is required to obtain accurate

prediction of response at the joint perimeter and thereby, enable accurate simulation of

the joint response mechanism. While beams and columns typically exhibit shear failure,

shear-flexure failure or flexural failure, the beams and columns in the joint sub-assemblages

included in the data-set exhibited flexural response only. Thus, flexure mechanism for beams
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were considered as part of this simulation study.

The failure mechanism exhibited by a beam subjected to bending loads is typically

determined by the shear demand-capacity ratio, where shear demand is determined by the

maximum beam load and beam span and capacity is determined by concrete strength and

transverse steel ratio. Beams with low shear demand-capacity ratio exhibit flexural response;

high demand-capacity ratios exhibit shear failure and intermediate demand-capacity ratios

exhibit flexural-shear failure.

Burns and Seiss (1962) sample was chosen for simulation which exhibited flexural re-

sponse. Table 3.6 provides the geometry and material parameters for the specimen used

in the test. The specimen was simulated using a displacement control loading applied at

the top middle of the simply-supported beams. The concrete region in the specimen was

modeled by using 8-node quadrilateral elements with a 2 by 2 gauss quadrature. A total of

720 concrete continuum elements with size of 1 by 1 mm was used in the simulation. The

reinforcement was modeled as truss elements. The bond response was modeled as interface

elements between the concrete and the reinforcing steel. Drucker-Prager plasticity was used

as a material model for concrete in compression. Decomposed strain multiple fixed crack

model with Hordijk softening was used to represent the behavior of concrete in tension.

Von-Mises plasticity was used to represent the response of the reinforcing bars. The bond

response parallel to the direction of the bar was calibrated based on the experimental data

provided by Eligehausen and discussed in the previous section.

In table 3.6 L refers to the span length of the sample, h the in-plane height, b the out-of-

plane width, fc the concrete compressive strength, ft the tensile strength of concrete, Ec the

modulus of elasticity of concrete, Gf the fracture energy, (·)b refers to bottom longitudinal

steel parameters, (·)t refers to top longitudinal steel parameters, (·)s refers to stirrup steel

parameters, fy represents yield strength of reinforcing steel, fu the ultimate strength of

reinforcing steel, Es the modulus of elasticity of steel, db the diameter of steel bars, and nb

the number of steel bars.
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Table 3.6: Geometry and material parameters for flexural test specimen

Specimen Burns and Seiss (1962)

L 144 in

h 20 in

b 8 in

fc 4829 psi

ft 350 psi

Ec 3500 ksi

Gf 1.5 lb/in

(db)t NA

(nb)t NA

(fy)t NA

(fu)t NA

(Es)t NA

(db)b 0.71 in

(nb)b 2

(fy)b 44.9 psi

(fu)b 47 psi

(Es)b 29500 ksi

(db)s NA

(fy)s NA

(fu)s NA

(Es)s NA
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(a) Simulated specimen meshing and deflection
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Figure 3.16: Flexure test of Burns and Seiss sample specimen

Discussion of results for the beam flexure tests

Figure 3.16 shows the crack patterns of the specimen as observed in the experimental in-

vestigation by Burns and Seiss (1962). The figure also shows a good correlation of the

load-deformation response analysis. The simulated sample represented by perfect bond are

those in which in which full/perfect bond has been considered, whereas Eligehausen bond

refers to the specimen where bond model by Eligehausen has been considered. As expected

it is observed that the perfect bond model has higher initial and pre-peak stiffness compared

to the Eligehausen bond specimen. A difference in the crack pattern is also observed be-

tween the case of “perfect bond element” and the case of Eligehausen material bond model.

If the bond is not perfect, then the cracking is not continuous and much more discrete. It

is also observed that shear retention represented by β does not play a significant role in

the stiffness response at the pre-peak region. But, numerical convergence problems were

observed if the shear retention value was near to zero.
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3.6 Simulation of joint response

The objective in this chapter was to develop a continuum model of the joint region to study

the behavioral mechanisms within the joint region and also to observe the effect of variation

of modeling parameters on the joint global and behavioral response. To fulfill this objective

two idealized joint specimen are chosen from the data set in chapter 2 and are subjected to

monotonic displacement controlled loading.

Simulated test specimen with loading and boundary conditions is shown in Figure 3.17.

Constant axial load was applied at the column top using load-control. A monotonically

increasing lateral load was applied at the top of the column by displacement-control. The

joint region along with a plastic hinge region (taken equal to the depth of beam/column sec-

tion) was discretized with concrete continuum elements. Four node quadrilateral elements

with 2 by 2 gauss-quadrature integration was considered for the continuum elements. The

size of the element used was 10 mm by 10 mm. The total number of concrete continuum

elements used was 4500. Embedded reinforcement elements representing stirrups were also

used within the concrete continuum region. The longitudinal bars in beams and columns

were modeled as 2 dof bar elements which were connected to the concrete elements through

a line interface bond element. Beams and columns outside the connection region was repre-

sented by elastic line elements with an effective stiffness, equal to that of cracked concrete

as per ACI 318-05. The elastic line elements were specially connected to the concrete con-

tinuum elements so that there was proper transfer of moments from the beam/column line

elements to the continuum elements.

Since fracture energy data was not provided in the experimental literature, the fracture

energy for the specimen was taken as 0.16 N/mm with a characteristic length as 10 mm

which is same as the element dimension. An elasto-plastic von-Mises model was utilized to

represent the behavior of reinforcing steel. Eligehausen bond model was utilized for material

modeling of the bond element. An elastic material model as well as Drucker-Prager model

was used for concrete in compression. Decomposed strain multiple fixed crack model with

Hordijk model for tension softening was used to represent the response of concrete in tension.

Two specimen from Oka and Shiohara (1992) were chosen for purpose of simulation,
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Figure 3.17: Simulated joint specimen with loading and boundary conditions

namely OSJ5 and OSJ10. The particular specimen series was chosen since it consists of

a number of specimen as well as have specimen which exhibit all the three different types

of failure mechanisms observed for beam-column joints. Both specimen had a higher than

average joint shear stress and bond stress demand (see table A.5). The concrete compressive

stress was significantly different for the two specimen. Details of the geometric and material

properties of the two specimen can be found in table A.1 and A.2.

The software used for simulation was DIANA 9.1 and each of the specimen had a total

of 11458 dof. The simulation was carried out in Dell Server PE1800 computer (Microsoft

Windows Server 2003) with Intel(R) Xeon(TM) CPU 3.60 GHz and 4.0 GB RAM.

3.6.1 Discussion of results for joint simulation

Simulation was carried out for specimen OSJ5 which exhibited a BYJF type of failure. An

elastic material model for concrete was considered in compression. The other material and

element specifications are provided in the previous subsection. The cracked gauss points

at different displacement levels are shown in Figure 3.18. The crack patterns indicate that

cracks initiate at the corner regions and propagates along the joint interface. Finally at a
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later displacement level, diagonal cracks are observed in the joint region.

Figure 3.19 shows simulated and observed load deformation response of specimen OSJ5.

Good correlation could be observed in the pre-peak region. The simulated load-deformation

response was observed not to soften after the observed peak strength was achieved. This

anomalous behavior could be partly explained due to usage of elastic material model for

concrete.

The mechanism of failure in a BYJF specimen is complicated. Failure initiation starts

with the yielding of the beam longitudinal steel, after which failure could be either due

to anchorage/bond failure of the longitudinal beam bars or could be due to shear failure

within the joint region or it could also be due to simultaneous activation of both the failure

mechanisms. In the literature for OSJ5 specimen, shear failure after yielding of beam

longitudinal steel is observed but bond/anchorage response is not documented. In the

simulated response, Figure 3.20 shows distribution of compressive stress in x direction at

a displacement level of 56 mm. The regions shown in red color are those in which the

magnitude of the compressive stress is more than the magnitude of the concrete compressive

stress of 79.2 MPa. Since the stress in the concrete core was not above the concrete

compressive stress in the simulated model, the simulated model did not predict a shear

failure after beam yielding.

However, stress of concrete at the perimeter of joint was more than the concrete com-

pressive stress. The material response of concrete was provided as elastic, but if a material

model for concrete with strength degradation was provided then that would have influenced

the load-deformation response of the specimen and a softening response might have been

obtained. The stress strain response of a concrete element at the top, and a longitudinal

bottom reinforcement on the right hand interface of the joint reveals that concrete stress is

much higher compared to the concrete compressive stress and reinforcing steel has reached

yielding (Figure 3.21).

The distribution of steel stresses along the top reinforcement bar at 5% drift is shown in

Figure 3.22(a). The y-axis represents the stress in x-direction in MPa, whereas the x-axis

represents the distance in mm measured from one one end of the plastic hinge region in the

beams to the other end of the plastic hinge. Thereby, distance 300 to 600 represent the
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(a) At displacement step 10 (b) At displacement step 18

(c) At displacement step 40 (d) At displacement step 500

Figure 3.18: Cracked gauss points at different displacements demands
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Figure 3.19: Load deformation response of OSJ5 specimen
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Figure 3.21: Stress-strain response of concrete and steel at the right interface of the joint

joint region. The bond response at the joint perimeter is shown in Figure 3.22(b). These

figures suggest that in order to obtain a degradation in strength due to bond-loss, a varying

bond stress distribution response should be provided in the joint region. Currently in the

simulated specimen, Eligehausen bond model with a maximum bond stress of 2.46
√

fc is

provided for all the bond elements, which is clearly an overestimated value to be used for

bond stress within the joint. The maximum bond stress value in Eligehausen bond model

experiment was obtained by applying tensile force to a reinforcing bar anchored to a concrete

block. The stress distribution in a joint is more complex than the simple idealization of

anchorage failure in Eligehausen experiment and thereby proper bond stress values are to

be estimated.

Thereby with the the present software restrictions, the failure mechanism of a BYJF

specimen, OSJ5 could not be correlated well with the experimental observations. Two

aspects were identified which would improve the simulation response behavior: 1) better

model to represent the strength deterioration in concrete and 2) better model to represent

the bond stress - bar slip response along the reinforcement bar. Too much effort was not

utilized to model better material models for concrete and bond in DIANA 9.1 since these

simulations took more than 7 days in the computer specified above and thereby cannot be

successfully utilized for the purpose of PBSD of joints.

Another sample, specimen OSJ10, which exhibits a joint shear failure was also simulated
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Figure 3.22: Stress-strain response of concrete and steel at the right interface of the joint
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Figure 3.23: Distribution of compressive σxx at displacement level of 60 mm for OSJ10

and compared with experimental observations. A high compressive stress is expected within

the joint region for a sample representing joint shear failure. This was observed in the

simulated specimen response (see Figure 3.23). The compressive stress at the interior of

the joint is more than the concrete compressive stress suggesting that instead of using an

elastic model for concrete in compression, if a material model with strength degradation

is used for concrete, a good correlation could be obtained between simulated and observed

load-deformation response (see Figure 3.24).

The crack patterns observed in OSJ10 correlates well with the crack pattern propagation

obtained from simulation (see Figure). Cracks initiate at the joint corner perimeter and

then progresses diagonally in the joint region. Note the pattern of cracks observed in

the simulation of OSJ10 differs significantly with the pattern of cracks observed in the

simulation of OSJ5.

Good correlation between observed and simulated load-deformation response could be

observed in Figure 3.24 but could not be obtained in the post-peak region. Good correlation

in the post-peak regime could be obtained if strength reduction model for concrete is consid-

ered instead of the currently used elastic model for compression. Thereby, Drucker-Prager

model for compression is being used to obtain better response.
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Figure 3.24: Load deformation response of OSJ10 specimen

Analysis was carried out of the OSJ10 specimen just by changing the concrete com-

pressive response to that of Drucker-Prager model and keeping all other parameters the

same. The analysis could not be completed due to numerical convergence problems. The

load-deformation of the sample response is shown in Figure 3.26(a). It can be noted in here

that the displacement level at which convergence problem issues is significantly smaller to

the total displacement level of the specimen. The reason for lack of numerical convergence

is due to the weird response of the concrete tensile region as shown in Figure 3.26(b). The

response should have followed the Hordijk tensile softening curve but element convergence

could not be attained at the crack. The numerical algorithm in DIANA fails stating that

stresses in the main and the crack material are unequal.

Similar observations were also made by Wang et al. (1990) who concluded that the prob-

lem of convergence for multiple-fixed crack model with plasticity is similar to the numerical

convergence problems associated with multi-surface plasticity models. It is well known that

a standard radial return-mapping algorithm fails for multi-surface plasticity problems due

to presence of more than one plasticity yield surfaces in its vicinity. In this problem too,

multiple yield surfaces of cracking and crushing of concrete originate at a local level, thereby

resulting in numerical convergence failures.

Thereby, even though we could represent one response of concrete, i.e. cracking but both
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(c) At displacement step 20 (d) At displacement step 75

Figure 3.25: Cracked gauss points at different displacements demands
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Figure 3.26: Simulated response of OSJ10 with Drucker-Prager plasticity in compression
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the responses cracking and crushing of concrete could not be captured simultaneously. Due

to numerical unstable algorithms, and lack of better material models in DIANA 9.1 and

also due to huge amount of computational time required for one analysis (approximately 7

days to run one analysis on computer specified above) the investigation with the continuum

methodology is being abandoned. This methodology might be recommended for local in-

teraction behavior study at a smaller scale but should not be used as an analytical method

for performance based design method for joints.

3.7 Conclusion

In this chapter state of art nonlinear continuum finite element was utilized to develop

a model for the interior joint region. The model relies on the constitutive models for

constituent materials: concrete, steel and bond. These material models were calibrated

using a number of benchmark studies. It was observed that multiple fixed crack model

performed better in comparison to either the single fixed crack model and the rotating crack

model. Shear retention also contributed to a great extent in the load-deformation analysis

of different benchmark samples. The presence of bond was also observed not to influence

the global load-deformation behavior in the pre-peak regime even though distinctive crack

patterns were obtained for the case of perfect bond and Eligehausen bond model.

This study helped us to better understand the behavior of the joint specimen and can

be used as a great tool to study the local behavioral characteristics of the joint region like

the bond interaction or the shear panel response. The pattern of crack formation also laid

the foundation as well as supported previous research (Paulay 1989) for later developments

of diagonal strut model in chapters 4 and 5.

Even though continuum formulation can be utilized to simulate the response of an exper-

imental observation but it depends upon a lot of modeling parameters which does not have

any physical meaning. These modeling parameters can alter the response behavior of the

specimen, given the same geometry and the material properties for the specimen. Thereby

an improved understanding of these modeling parameters is required for the continuum

formulation of the any reinforced concrete structure.

The continuum methodology is plagued with convergence problems and requires huge
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amount of computational time as well as complexity. Thereby, this methodology cannot

be used as an analytical tool for performance based design and analysis tool for reinforced

concrete joints. Development of computationally stable and robust continuum methods for

analysis calls for further research in this area.
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Chapter 4

COMPONENT BASED MODELING OF JOINT REGION

4.1 Introduction

The advent of performance-based design has placed an emphasis on simulating the non-

linear response of structures subjected to seismic excitation (Filippou and Fenves 2004).

Given the potential impact of joint nonlinearity on system response, (as discussed in pre-

vious chapter) a number of researchers have proposed joint models for use in simulating

structural response to earthquake loading. A primary requirement of this type of model

is the need for compatibility with other component models that make up the structure.

Here these models are beam column line elements. Additionally the joint model should

include nonlinear response relationships that are to be calibrated by the user on the basis

of fundamental material parameters along with specimen geometry. The models, unlike the

continuum models developed in chapter 3, should also be computationally efficient, robust

and transparent in simulating controlling parameters.

This chapter presents a review of previous joint models, followed by the development of

a model which extends the previous work by Lowes and Altoontash (2003). The chapter

ends with a comprehensive evaluation and validation of the model using experimental data

set described in chapter 2.

4.2 Literature review of previous joint models

Finite element models of beam-column joints, apart from the continuum approach discussed

in chapter 3, are assumed to fall into two categories: Implicit models and explicit macro-

scopic models.

Implicit models: The stiffness and strength loss due to joint damage is modeled by mod-

ifying beam and column elements. Typically, nonlinear springs or plastic-hinges or

both are added at the member ends. Such models are useful to determine the overall
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impact of nonlinear joint action on structural response. These models are also difficult

to calibrate since the joint action is split between the adjacent beams and columns. On

the other hand, these models are computationally less demanding and can be easily

incorporated into any finite element program. Since these models does not consider

an explicit representation of the joint region, these do not satisfy the joint kinematics

and thereby can not be used for detailed investigation of mechanisms governing the

joint inelastic behavior.

Explicit macroscopic models: These models consider an explicit representation of the

joint region. Inelastic mechanisms governing joint behavior such as bar-slippage

through the joint, shear failure in the joint core form the backbone for these models.

These models satisfy joint kinematics and also can be used as separate macroscopic

elements in frame models composed of line elements. The models in this category

also vary in their level of discretization of the joint region, complexity, robustness and

accuracy with which it is able to capture the precise mechanism of failure within the

joint region.

A brief overview of these two types of joint models follows. The model developed as part

of the work falls in the second category.

4.2.1 Implicit joint models

In these approach, the beam and/or column models are calibrated to account for the inelastic

action of the beam-column joints into which they frame. In most cases one of the primary

inelastic response mechanisms observed in joints (shear or bar-slip) is considered. The

reason can be traced to the geographical locations: North-American design practices results

in beam-column connections that are relatively characterized by large bond-slip, whereas

New-Zealand design practice results in connection with strong bond conditions and higher

shear deformations (Pantazopoulou and Bonacci 1994). Thereby a mixed type of analytical

modeling effort for the RCBC joints (concentrating on the global response) was observed

amongst researchers around the globe.
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nonlinear rotational spring

elastic beam

Figure 4.1: One component frame model, Giberson (1969)

One component frame model

The model (Figure 4.1) is a beam element with two nonlinear rotational springs attached to

two ends of a perfectly elastic element (Giberson 1969). The springs account for nonlinear

action due to beam flexure and joint deformation. The inelastic moment-rotation relation-

ship of the rotational spring, which idealizes the joint region, was determined assuming

the point of contraflexure at the center of the member. The one component frame models

suffered from one primary drawback, which was the rotation of the equivalent rotational

spring is uniquely determined as a function of the moment acting on the spring. In other

words, the one component model uses the initially assumed moment distribution shape and

the fixed point of contraflexure in the member, instead of the current moment distribution

along the member when calculating member end rotations.

Two component frame model

The model by Otani (1974) consists of two parallel flexible line elements (an elastic and an

inelastic element), two inelastic rotational springs at the ends of the flexible line elements,

and two rigid line elements outside of the rotational springs (Figure 4.2). The concept of

two parallel flexible line elements follows from works by Clough et al. (1965) in which a

steel frame was idealized as an elastoplastic element to represent yielding characteristics

and fully elastic element to represent strain hardening characteristics of steel members.

In the model by Otani, the beam column joint core is modeled by an infinitely rigid

part outside of the rotational springs in the beam/column element. Rotational springs,

placed outside the joint core, simulates the rotation at the member ends due to slip of

longitudinal reinforcement within the joint core. Bond stress was assumed to be constant
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Figure 4.2: Two component frame model, Otani (1974)

along the development length and the compressive reinforcement was assumed not to slip.

The rotation due to slip was evaluated as the elongation of the tensile reinforcement along

the development length divided by the distance in between the tensile and compressive

reinforcing bars. Takeda hysteretic rule (Takeda et al. 1970) was simplified into a bilinear

backbone curve to represent the response of these springs. Joint shear deformation response

was neglected in this model. A modified Takeda hysteretic material model was calibrated for

the inelastic line elements so as to consider in a lumped manner the characteristic behaviors

of reinforced concrete frame members: cracking of concrete, yielding and strain hardening

of reinforcing steel, stiffness degradation due to bond slip and cracks within the member.

Anderson and Townsend (1977) improved the Otani model to include simulation of the

shear deformation response. The study by Anderson and Townsend primarily showed that

stiffness degradation in the material model for the rigid region, depicting the joint region,

is an essential requirement to predict the inelastic cyclic response of a structure since in

model by Otani the response was elasto-plastic with no strength and stiffness degradation.

The two-component frame models were based upon the assumption of constant bond

stress along the development length and reinforcing bar embedment length was considered

enough to develop steel forces of required magnitude, both of which seemed to contradict

experimental observations. The assumption of no slip-through of the bars within the joint

thereby lead to an interaction between the two joint end sections such that no unique

moment-rotation relationship could be derived for one end of the joint without taking into

account the effect of the other end.

Zero length concentrated inelastic rotational spring model

El-Metwally and Chen (1988) developed a model in which a zero length rotational spring was
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Figure 4.3: Zero length concentrated inelastic rotational spring model, El-Metwally and
Chen (1988)

placed between beams and columns to characterize the inelastic behavior within the joint.

Figure 4.3 shows an idealization of the model. Thermodynamics of an irreversible process

was used to develop a moment-rotation relationship for the rotational spring. The model is

defined by three parameters: the joint’s initial stiffness and ultimate moment capacity, and

an internal variable that represents the energy dissipated by the joint. Energy dissipated

by the joint is assumed to be due to deterioration of bond for reinforcing bars anchored in

the joint and the hysteretic behavior of the cracked reinforced concrete section at the joint

interface. Bond stress-slip envelope curve by Morita and Kaku (1984) was used.

However the model was unable to capture the strength and stiffness loss due to shear

loading of the joint.

Panel zone model

Alath and Kunnath (1995) proposed a model in which the joint was modeled as a rigid

link with a rotational spring connected to its end, as shown in Figure 4.4. The rotational

springs are calibrated by an inelastic shear-deformation relationship which includes degrad-

ing effects. The rigid links, connected to the beam/column line elements, are capable of

independent rotation. A modified set of empirical relations by Umemura and Aoyama

(1969) was utilized to represent the shear backbone envelope for the hysteretic model re-

sponse (Kunnath et al. 1992) of the panel region. Simulation of inelastic response due to
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Figure 4.4: Panel zone model, Alath and Kunnath (1995)

bar-slip was not included in this model formulation.

Shear beam element model

Uma and Prasad (1996) modeled the joint region using a flexural rigid shear beam element

placed in series with traditional beam/column flexural elements, as shown in Figure 4.5.

The inelastic shear response of the beam/ column element was calibrated using the softened

truss theory (Belarbi and Hsu 1995). Stress-strain relationship proposed by Sheikh and

Uzumeri (1982) was utilized for confined concrete within the joint region with softening of

concrete in compression proposed by Vecchio and Collins (1986) to account for cracks in

perpendicular direction. Slippage of reinforcing bars was not considered explicitly but was

incorporated in terms of increased pinching in the hysteretic response of the components

(Uma and Prasad 2004).

Model with rotational spring for shear and bond slip

Biddah and Ghobarah (1999) proposed a two spring joint element in which one spring

represented the inelastic shear response of the joint and the other represented bond-slip

within the joint region, as shown in Figure 4.6. The softened truss model (Hsu 1988) was

used to characterize the force-deformation relationship of the shear spring. The softened

truss model theory includes: a) equilibrium equations assuming steel bars to resist only axial
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Figure 4.5: Shear beam element model, Uma and Prasad (1996)
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Figure 4.6: Rotational spring model for both shear panel and bar-slip components, Biddah
and Ghobarah (1999)

stresses, b) compatibility equation of Collins (1978) to determine the angle of inclination

of the concrete struts, and c) constitutive laws of the materials. Softening of concrete

in compression due to cracking in the perpendicular direction was simulated using the

expression proposed by Vecchio and Collins (1986). A simple bilinear hardening relation,

based on experimental results (Kaku and Morita 1978), was used to represent the moment-

rotation relationship of the rotational springs representing bond-slip within the joint. The

model developed by Chung et al. (1987) was adopted to represent the hysteretic behavior

of the rotational springs representing bond slip.
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Summary

The implicit models were computationally efficient but the calibration of the model was dif-

ficult and sometimes did not correspond directly to any physical mechanism. The implicit

models typically required calibration of rotational springs and/or the rigid offsets. The ro-

tational springs cannot capture the kinematics of a finite-area 2d joint, whereas rotational

springs in combination with rigid offsets can capture shear deformation but not axial defor-

mation. The constitutive models required for the rotational springs and/or the rigid offsets

were difficult to calibrate and was not typically a direct function of fundamental material

and geometric properties. However, it should be remembered that these models were not

developed for local mechanism behavior study. The primary intention of these models was

to include the effect of the joint in the entire global frame response, which it satisfied with

reasonable accuracy.

4.2.2 Explicit macroscopic joint models

This group of models are typically macroscopic super-elements, in which the finite size of

the joint is modeled along with the different mechanisms that determine joint response.

These macroscopic models provides us a better representation of the inelastic mechanisms

governing joint response. These are also used along with conventional frame elements to

study the global behavioral response of frame structures. A brief overview of a number of

macroscopic joint models are being presented in this subsection.

Elmorsi-Kianoush-Tso model

Elmorsi et al. (2000) proposed a joint element comprising a panel zone and four transi-

tion zones (Figure 4.7). The panel zone is represented by a 12 node inelastic plane stress

element. Each of the four transition elements are represented by 10 node inelastic plane

stress transition elements which are connected to the adjacent beam and column elastic

line elements. The transition elements, represents the plastic hinges, where most of the

nonlinearities were assumed to occur, were extended to a distance of one full depth of the

member that is connected to it. Flexural reinforcement in the beams, columns and joint
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Figure 4.7: Elmorsi-Kianoush-Tso joint model (2000)

panels, placed at upper and lower extreme fibers of the adjacent plane stress elements, are

represented using inelastic truss elements. Both the transition elements and panel zones

are comprised of concrete material with reinforcing bars connected to it through bond-slip

elements.

The constitutive model for concrete is based upon the concept of orthogonal fixed cracks.

The normal stress-strain relation of concrete is based upon well-accepted empirical uniaxial

curves for concrete along with reduction in compressive strength to account for cracks in

perpendicular direction (Vecchio and Collins 1986). The important aspects of the concrete

behavior considered in the normal stress function are tension stiffening, compression hard-

ening and softening, degradation of concrete strength and stiffness in direction parallel to

crack, and compression unloading and reloading. A new varying shear stress-strain function

was defined to consider the effect of interface shear stiffness.

Material model used for reinforcing steel is similar to the relationship used by Menegotto

and Pinto (1977) and includes the aspects of yielding, strain hardening, Bauschinger effect



91

as well as cyclic unloading and reloading rules.

Contact elements were introduced in between the nodes of the flexural reinforcement

and the adjacent plane stress elements to account for bar-slippage. The assumed bond-

slip model is essentially similar to the one by Eligehausen et al. (1983) with modifications

proposed by Filippou (1986).

Fleury-Reynouard-Merabet model

The component-based model by Fleury et al. (2000) follows from the assumption that can

coexist in a joint are a) yielding of the main longitudinal reinforcing bars in beams and

/or columns at the perimeter of the joint, b) slip of reinforcing steel anchored in the joint

and opening of cracks at the joint perimeter, c) distortion of joint due to diagonal cracking,

d) shearing of reinforcement at the interface (dowel action). Thus the model, shown in

Figure 4.8 consists of: a) two four-noded quadrilateral elements placed in parallel that

describe the behavior of concrete and the transverse reinforcing steel in joint core in a

smeared manner, b) a mesh of quadrilateral elements of small width representing beam

longitudinal steel anchored in the joint and the bond between concrete and steel, c) two

elements allowing the connection of beams to the joint, d) two noded bar elements for column

longitudinal steel crossing the connection, e) kinematic constraints between the degrees of

freedom to ensure comtability.

Concrete material model was simulated using a smeared fixed orthogonal crack model

(Merabet et al. 1995). Plasticity theory, with isotropic hardening and associated flow, was

used to simulate the response of un-cracked concrete. The Ottosen criterion was used to

determine the elastic domain in compression as well as in tension.

A simple elastoplastic law with linear isotropic hardening model was adopted for rein-

forcing steel. Bauschinger effect was neglected in the model for reinforcing steel.

The bond model is based on the uniaxial bond-slip relation proposed by Eligehausen

et al. (1983) with modifications by Monti et al. (1997).
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Figure 4.8: Fleury-Reynouard-Merabet joint model (2000)

Youssef-Ghobarah model

Youssef and Ghobarah (2001) proposed a model in which the joint was represented by four

rigid members that enclose the joint, with pin connection between the between these rigid

elements and with shear springs connecting the diagonal. The impact of bar-slip within the

joint and concrete crushing at the joint perimeter was represented using three concrete and

three steel springs at each face of the connection region between the beams and columns and

the joint panel. Figure 4.9 shows an idealization of the model. The reinforcement steel in

the form of a group of bars, was represented by steel springs which idealize the relationship

between the force in the steel bars and the bond slip. The concrete spring represents the

relationship between the axial force on the concrete strut and the axial displacement of the

strut. The shear springs represent the shear response in the joint core.

The material model for concrete is represented by Kent and Park (1971) model for

concrete in compression and exponential tensile softening curve with a smooth transition

from tension to compression region (Youssef and Ghobarah 1999).
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Figure 4.9: Youssef-Ghobarah joint model (2001)

Analytical material model by Giuriani et al. (1969) was used to represent the bond

strength and slip relation. For solution of the governing equation for the bond-slip relation

to determine the envelope for the steel springs a methodology similar to Filippou (1986)

was utilized.

A new hysteretic material model was proposed for the shear-springs to represent the

shear behavior of reinforced concrete members subjected to shear force and bending moment

reversals (Ghobarah and Youssef 1999). Modified compressive field theory (Vecchio and

Collins 1986) was utilized to define the backbone envelope of the curve.

Lowes-Altoontash model

Figure 4.10 shows an idealization of the model developed by Lowes and Altoontash (2003).

The joint element has four exterior nodes each with three dof, thus the joint is compatible

with traditional 2d beam-column elements. The joint model, comprises of eight zero-length

bar slip springs, four interface shear springs and a panel that deforms only in shear. The

shear-panel component simulates strength and stiffness loss due to shear failure of the joint

core, bar-slip springs simulate stiffness and strength loss due to anchorage-zone damage, and
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Figure 4.10: Lowes-Altoontash joint model (2003)

interface-shear springs simulates reduced capacity for shear transfer at the joint perimeter

due to crack opening. The deformation of the component is based upon the displacement

at the four internal dof in the shear panel along with the combination of displacements at

the 12 exterior dof.

Modified compressive field theory (Vecchio and Collins 1986) was used to define the

envelope of the shear panel. Joint transverse steel and column interior bars are assumed

to contribute to shear panel stiffness and strength. Calibration of parameters in the hys-

teretic one-dimensional material model for the shear panel was developed using only the

joint geometry and fundamental material parameters. The cyclic response parameters were

calibrated based on experimental data.

A new bar-slip material model was proposed based on the assumption that bond stress

within the joint is constant or piecewise constant and slip is entirely due to elongation

of the steel. Bond strength and cyclic response parameters are proposed on the basis of

experimental studies (Eligehausen et al. 1983, Viwathanatepa et al. 1979, Shima et al. 1987,

Lowes 1999).
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This element forms the basis for the new model development, a detailed discussion of

the calibration of the joint component models are presented in section .

Altoontash-Deierlein model

Altoontash and Deierlein (2003) proposed a two dimensional joint element with four ex-

terior nodes, constrained to a central node by multi-point constraints. These multi-point

constraints are imposed at a global system level. The joint load-deformation response was

determined by a shear panel and a set of rotational springs that connects the shear panel

to the frame elements. Figure 4.11 represents an idealization of the model. The shear panel

was assumed to deform only in shear and is represented by an internal central node with

four kinematic degrees of freedom, with three degrees corresponding to rigid body motions

and a fourth degree of freedom that was used to define the shear distortion of the joint.

The central node is connected to the external nodes by four multi-point constraints. The

rotational springs at the external nodes of the shear panel represents, in a lumped sense, the

bar-slip in between the reinforcing steel and the concrete along with the material inelasticity

in the plastic hinge region. This joint model has been extended to a 3d representation and

can also take into account large deflections (Altoontash 2004).

The material model used for modeling the panel core region is the modified compressive

field theory (Vecchio and Collins 1986). The bond-slip material mode proposed in Lowes

and Altoontash (2003) was utilized to represent the behavior of the bond-slip springs at the

joint perimeter.

LaFave-Shin model

Figure 4.12 shows an idealization of the joint model proposed by LaFave and Shin (2005).

The model comprises of four rigid link elements located on the perimeter of the joint. The

links are connected via hinges and load-deformation response is simulated via three nonlinear

rotational springs embedded in one of the four hinges. This model was implemented in

DRAIN-2DX and Element 10 developed by Foutch et al. (2003) was used for the nonlinear

rotational springs. These springs are intended to simulate the nonlinear response of joint
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Figure 4.11: Altoontash-Deierlein joint model (2003)

core under shear loading. Additional rotational springs are placed between the beam ends

and the joint to simulate the inelastic action due to bar-slip and the plastic hinge region in

the beams (DRAIN 2DX Element 10 and Element 2 respectively).

Modified compression field theory (Vecchio and Collins 1986) was used to determine the

moment curvature relationship of the three nonlinear springs attached in parallel to repre-

sent the shear behavior within the joint. The bond-slip rotational springs were calibrated

using the formulation proposed by Morita and Kaku (1984).

Tajiri-Shiohara-Kusuhara model

Figure 4.13 shows the joint element proposed by Tajiri et al. (2006). This connection macro-

element model is represented by four nodes, twelve degree of freedom. The super-element

represents the behavior of the joint along with the plastic hinge regions of the beams and

columns adjacent to the joint region. In this element formulation, the nonlinear response

of the joint core was represented by a number of axial springs connecting rigid bodies. The

axial springs represent the behavior of concrete, reinforcing steel and bond zone response.

The rigid bodies represent concrete sections that remain plane after deformation.
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Figure 4.12: LaFave-Shin joint model (2005)

Concrete springs within the joint and also within the plastic hinge region of the beams

and columns are modeled using a modified stress-strain relationship of Park et al. (1982).

The unloading stiffness of the constitutive relationship for concrete assumes no stiffness

degradation. A modified version of Ramberg and Osgood (1943) was utilized for the con-

stitutive relationship of steel springs. The model proposed by Morita and Kaku (1975)

was used to represent the bond-slip relationship. The diagonal arrangement of concrete

springs in the joint regions takes into account the smeared cracking within the joint core

and thereby no cracked concrete models were utilized in this research.

Summary

A number of joint models have been proposed in the past. However, relatively limited data

sets were used in the development and validation of these models. To create a computa-

tionally efficient, robust joint model that can be used for joints with a wide range design,

geometric and material parameters, a new joint model was developed for the study. This

new model represents a modification of the model proposed by Lowes and Altoontash (2003).

This model was developed and validated using the data set presented in chapter 2.
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Figure 4.13: Tajiri-Shiohara-Kusuhara joint model (2006)
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4.3 Proposed super-element model for the joint (Mitra and Lowes 2007): El-
ement formulation

Both the Mitra-Lowes and Lowes-Altoontash joint models employ a four node, twelve degree-

of-freedom element for use in modeling the response of reinforced concrete beam-column

joints in two-dimensional structural analysis. The joint element for both the models rep-

resents a super-element comprising a shear-panel component that simulates strength and

stiffness loss due to failure of the joint core, eight bar-slip springs that simulate stiffness

and strength loss due to anchorage-zone damage, and four interface-shear springs that sim-

ulate reduced capacity for shear transfer at the joint perimeter due to crack opening. The

new element formulation moves the bar-slip springs, which in the Lowes-Altoontash model

are located at the perimeter of the joint element, to the centroid of the beam and column

flexural tension and compression zones (Figure 4.14). This results in improved simulation

of forces in the bar-slip springs. The new joint model also includes improved constitutive

models for the shear panel component and modifications to the material model for bar-slip

springs.

The new joint element formulation is basically a generalization of the Lowes-Altoontash

model which in turn can be obtained as a special case of the new joint element formulation.

The formulation of the new joint model has been described in detail in the following sub-

sections.

4.3.1 Kinematics

The deformation of the joint element components is defined by the displacements and rota-

tions of the external and internal nodes. The shear panel component is assumed to deform

only in shear and the shear deformation is defined by four internal nodes. Small displace-

ments and rotations are assumed in the super-element formulation. A positive bar-slip

spring deformation is associated with tensile force applied to the bars. For the shear panel

component a positive shear deformation is associated with clockwise arrangement of the

shear forces at the internal nodes in the joint core. For the interface-shear springs, a posi-

tive shear deformation is associated with a positive external and zero internal displacement.
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Figure 4.14: Mitra-Lowes joint model

Determination of the element material state requires the solution of a nonlinear system

to determine the internal element translations that satisfy element equilibrium. Eq. 4.1

represents the relationship between the component deformations ∆, to the external nodal

displacements and rotations, ui and internal nodal displacements, vi. Figure 4.15 shows the

component deformations and the external and internal nodal displacements.
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∆6 = u5 − v2 (4.1f)
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∆8 = u8 +
ŵ
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∆9 = u7 − v3 (4.1i)

∆10 = −u10 −
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2
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v1 − v3

h

)

+
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(4.1j)
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+
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(4.1k)

∆12 = u11 − v4 (4.1l)

∆13 = −v1

h
+

v2

w
+

v3

h
− v4

w
(4.1m)

where w represents the total width of the joint, h the total height of the joint, ŵ represents

the distance between the tension compression couple (or distance between bar-slip springs)

in columns and ĥ the distance between the tension compression couple (or distance between

bar-slip springs) in beams. Thereby, the vector of component deformations ∆ is defined

as a function of the vector of internal and external nodal displacements, U, through the

kinematic matrix A as follows:

∆ = A · U (4.2)
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Figure 4.15: Component deformations

where ∆ is the vector of joint element component deformations;

∆ = (∆1,∆2, . . . ,∆12,∆13)
T (4.3)

U in Eq 4.2 is the vector of external and internal generalized nodal displacements:

U = (u1, u2, . . . , u11, u12, v1, v2, v3, v4)
T (4.4)
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The kinematic transformation matrix, A is defined as:

A =
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2w

0 (w+ŵ)
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2h

0 −

(h−ĥ)
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(4.5)

and elements of ∆, U and A are shown in Figure 4.15.

4.3.2 Equilibrium Equations

There exists a complimentary set of 16 internal and external nodal resultants to the set

of 16 internal and external nodal displacements. Nodal resultants are computed directly

from the component forces by imposing equilibrium at the external and internal nodes. The
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equilibrium equations for the joint are given as

F1 = f3 (4.6a)

F2 = −f1 − f2 (4.6b)

F3 =
ŵ

2
(f2 − f1) (4.6c)
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2
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2
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In a matrix representation of Eq. 4.6, the vector of external, F and internal Φ nodal

resultant forces is defined as a function of a vector of component forces f through the

transpose of the kinematic matrix A as follows:







F

Φ







= A
T · f (4.7)
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Figure 4.16: External and internal nodal forces and component forces

External nodal resultant force vector F is represented as:

F = (F1, F2, . . . , F11, F13)
T (4.8)

Internal nodal resultant force vector Φ is represented as:

Φ = (Φ1,Φ2,Φ3,Φ4)
T (4.9)

where fi, Fi and Φi are as shown in figure 4.16.

4.3.3 Internal equilibrium of the beam-column joint element

Since the internal element nodes are unique to the joint element, an admissible element

state is achieved when the internal nodal resultants are zero. This requires solution of the

following system of coupled nonlinear equations.

0 = Φ = Ã
T · f (4.10)
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where Ã refers to columns 13 through 16 of A. This requirement is used to solve for

the vector of internal nodal displacements, v, by satisfying internal equilibrium within the

element, and is accomplished by using the classical Newton-Raphson solution algorithm.

Definition of element tangent and resultant

Use of the above element formulation in a displacement based finite element analysis pro-

gram requires the computation of external nodal resultant vector R as well as the derivative

of the resultants with respect to the external nodal displacements, which is typically the

element tangent matrix. Vector of external nodal resultant forces R, is computed from the

component force vector as

R = F = Â
T · f (4.11)

where Â represents columns 1 through 12 of A. The derivative of the resultant vector,

R, with respect to the external nodal displacement vector, u, results in the element tangent

matrix. This matrix is computed from the tangent of 13 model components and thereby

requires a static condensation of the global element tangent matrix, K.

K







du

dv







=





Kee Kei

Kie Kii











du

dv







=







dF

dΦ







=







dR

0







(4.12)

where

K = A
T · k · A (4.13)

and k is 13 by 13 matrix of component tangents.

ki,j =
dfi

d∆j
, i = 1 . . . 13, j = 1 . . . 13 (4.14)

In the current formulation it is assumed that there is no coupling action between the com-

ponents which constitute the super-element and thereby k is diagonal. Thus, the 12 by 12
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element tangent matrix is defined

dR

du
= Kee − Kei

[

Kii

]−1
Kie (4.15)

4.4 One-dimensional hysteretic load-deformation response model

To facilitate implementation of the model, the load-deformation response of each of the

components of the joint element is defined using the one-dimensional hysteretic model de-

veloped by Lowes and Altoontash (2003) along with modifications proposed in this thesis.

The material model have been implemented in the open-source software program OpenSEES

(http://opensees.berkeley.edu) along with some modifications and improvements (see Pinch-

ing4 uniaxial material model in OpenSEES). In this section the original hysteretic model

developed by Lowes and Altoontash have been described in details.

This model consists of a multi-linear response envelope, a tri-linear unload-reload path

and three damage rules that control the evolution of these paths (Figure 4.17). The multi-

linear response envelope for each of the components in the joint is obtained as a function of

the material and geometrical properties. The calibration procedures for the shear-panel and

bar-slip components are described in the following sections. Due to lack of experimental

data, the interface shear-slip spring components are assumed as elastic.

4.4.1 Material state definition

Figure 4.17 shows the four material states that define the material model. States 1 and 2,

which represent the envelope to response loading, are defined as input parameters by the

user and may be modified during the analysis to simulate hysteretic strength degradation.

With each deformation reversal the load-paths for states 3 and 4 are redefined. The load de-

formation point at which reversal occurs defines one end point for state 3 (state 4); the state

3-state 2 (state 4-state 1) transition defined the other. Two additional load-deformation

points define the state 3 (state 4) load path: the point reached when substantial unload-

ing has occurred and the point at which substantial reloading has occurred. For state 3

(state 4) the load developed upon unloading is defined as a fraction of the minimum (maxi-
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Figure 4.17: Hysteretic one-dimensional load-deformation model

mum strength) that can be developed. With the unloading stiffness defined, this establishes

the end of the substantial unload phase. The load-deformation point at which substantial

reloading occurs for state 3 (state 4) is defined as the fraction of the minimum (maxi-

mum) historic deformation demand and a fraction of the load developed at the minimum

(maximum) deformation demand.

4.4.2 Hysteretic response

The impact of deformation history on response is determined by three damage rules. These

damage rules control degradation in unloading stiffness (unloading stiffness degradation),

deterioration in strength achieved at previously unachieved deformation demands (strength

degradation), and deterioration in strength in the vicinity of maximum and minimum defor-

mation demands (reloading strength degradation). Each of the three damage rules employs

a damage index, δ, defined as follows

δ =
(

α1

(

d̃max

)α3

+ α2 (κ)α4

)

≤ δlim (4.16)
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where

d̃max = max

[

dmax

Dmax
,

dmin

Dmin

]

(4.17)

and α are parameters defined to fit experimental data, δlim is the maximum possible value

of the damage index, dmax and dmin are the maximum and minimum historic deformation

demands, Dmax and Dmin are the positive and negative deformations at which strength loss

initiates in states 1 and 2, subscript i refers to the current load step, and κ is a measure of

energy dissipated under cyclic loading as is defined in Eqs. 4.18a and 4.18b.

κ =
Ei

Emonotonic
(4.18a)

κ =
∑

∣

∣

∣

∣

du

4umax

∣

∣

∣

∣

(4.18b)

where Ei is the accumulated hysteretic energy defined as

Ei =

∫

load history
dE (4.19)

with Emonotonic taken equal to energy required to achieve Dmax under monotonic loading, du

is equal to the displacement in a load-deformation history, and umax refers to the deformation

achieved up to the current load step i. Thereby, κ is defined either as a function of hysteretic

energy as defined in Eq. 4.18a or as a function of number of equivalent load-cycles using the

analogy of rain-flow counting algorithm used in fatigue analysis in Eq. 4.18b.

The stiffness and strength degradation are defined as follows:

ki = k0

(

1 − δk
i

)

(4.20a)

fmax,i = fmax,0

(

1 − δf
i

)

(4.20b)

dmax,i = dmax,0

(

1 + δd
i

)

(4.20c)

where k is the unloading stiffness, δk
i is the unloading stiffness damage index, fmax is the

maximum strength of the response envelope, δf
i is the strength damage index, dmax is the

maximum historic deformation demand and target for reloading, δd
i is the reloading stiffness
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damage index, and subscripts i and 0 refer, respectively, to load step i and the initial load

step. Figure 4.4.2 shows the effect of each of these stiffness and strength degradation on

the load-deformation response.

4.5 Shear panel model calibration using modified compressive field theory

Calibration of the one-dimensional hysteretic material model, discussed in the previous

section, is required to define the response of the joint components. Knowledge of geometry

and fundamental material properties have only been used to calibrate the material response

of the joint components. This section describes the calibration of the shear panel component,

as was done in Lowes and Altoontash (2003).

To simulate the strength and stiffness loss due to shear loading of the joint core, Lowes

and Altoontash (2003) developed a calibration model for the shear panel based on modified

compression field theory (MCFT) (Vecchio and Collins 1986). The assumptions employed

in developing this model are as follows:

• Joint transverse reinforcement and all column longitudinal reinforcement are used to

compute the stiffness and strength of the joint core.

• Concrete compression strength is reduced, using the factors provided by Stevens et al.

(1991a), to model the impact of cyclic loading.

• Reinforcing steel exhibits strain hardening.

• In computing joint shear strength, the joint is assumed to deform only in shear.

• The gross dimension of the joint are used to compute joint shear stiffness and strength.

4.5.1 Evaluation of the MCFT for calibration of joint element shear panel component

Mitra and Lowes (2004), LaFave and Shin (2005), Lowes et al. (2005) show that that MCFT

based model simulates well the response of joints with moderate volumes of transverse

steel, but that the model is overly conservative for joints with little or no transverse steel.

Figure 4.19 shows ratio of predicted, using MCFT with cyclic reduction, τmcft cyclic, to

observed, τmax, joint shear strength versus ρj and φ. For detailed explanation of these

parameters refer to section 2.3.2.
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In evaluating these data, it is important to note that a perfect model would result in a

ratio of simulated to observed strength of 1.0 for all joints that exhibits JF and some joints

that exhibit BYJF and a ratio greater than 1.0 for some joints that exhibit BYJF and all

joints that exhibit BY. This is because observed shear strength is limited by beam flexural

strength for all joints that exhibit BY and some that exhibit BYJF. The figures 4.19(b)

and 4.19(a) clearly indicate that the MCFT-based model with the reduction factor to ac-

count for cyclic loading under predicts the observed strength for joints that exhibit JF and

BYJF. Moreover, the figure also shows that for joints that exhibit JF and BYJF, the ratio

of simulated to observed shear strength is a function of the transverse reinforcement ratio.

Since the transverse reinforcement ratio is included in the model, this dependence is un-

expected and undesirable. Further, this dependence implies that the MCFT-based model

under-predicts strength for joints with low transverse reinforcement ratios and over-predict

strength for joints with higher transverse reinforcement ratios. Based upon these observa-

tions it is proposed that MCFT-based model with cyclic strength reduction is appropriate

for use with joints that have ρj greater than 0.011 or φ greater than 0.55.

Application of the MCFT based model without reduction in strength due to cyclic load-

ing results in improved prediction of the observed shear strength of the joints. Figure 4.20

shows ratio of shear strength predicted using the MCFT based model without strength re-

duction due to cyclic loading, τmcft monotonic, to observed shear strength, τmax, joint shear

strength versus transverse steel ratio, ρj and ratio of total joint transverse steel capacity

to joint shear force demand, φ. However, the data in Figure 4.20 indicate that the ratio

of simulated to observed shear strength is still a function of the transverse reinforcement

ratio. Based upon these observations it is proposed that MCFT-based model without cyclic

strength reduction is appropriate for use with joints that have ρj greater than 0.0034 or φ

greater than 0.29.

Since both the models, using and not using cyclic reduction with MCFT model, are

undesirably dependent on ρj and φ, a model is required that will perform well over a

broader range of ρj and φ values and is not strongly dependent upon those parameters.
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4.6 Proposed diagonal compression strut mechanism for shear panel calibra-
tion of Mitra-Lowes joint model

For the current study, a new approach for calibrating the shear panel was developed employ-

ing the assumption that joint shear is primarily transferred via a concrete compression strut

(Paulay et al. 1978) and that joint transverse reinforcement acts to increase the strength

and deformation capacity of this strut. This new model enables simulation of response for

joints with a wide range of ρj . Figure 4.21 shows an idealization of the strut-model that

employs the following assumptions:

• The orientation and in-plane width of the strut are assumed to be constant and defined

by the depth of the column and beam flexural compression zones, at a load level

corresponding to the beams developing nominal flexural strength on opposite sides of

the joint.

• Strut depth is defined as the maximum of the out-of-plane depth of the beam and

column.

• The confined concrete model presented by Mander et al. (1988) defines the stress-strain

response of the strut.

• Column longitudinal and joint horizontal reinforcing steel act to confine the joint

core concrete; only the component of the confining force acting perpendicular to the
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orientation of the compression strut is considered.

• Concrete compressive strength is reduced to account for cracking parallel to the axis

of the strut and as well as cyclic loading.

• The joint carries shear only through the compression strut. By equating the horizontal

(or vertical) load carried by the strut with that carried by a joint panel carrying

uniform shear stress, panel shear stress may be related to strut stress as follows:

τstrut = fc strut
wstrut · cos αstrut

w
(4.21)

where τstrut is the shear stress in the shear-panel component, fc strut is the effective

strut stress, wstrut is the in-plane width of the strut, αstrut the angle of inclination of

the strut with the horizontal, and w is the in-plane width of the joint.

The effective strut stress fc strut is not equal to the compressive strength in concrete.

In fact the compressive strength of concrete is reduced due to the presence of cracks and

cyclic loading. This reduction in concrete compressive strength resulting in an effective

strut stress is discussed in the following subsection.

4.6.1 Reduction in concrete compressive strength

The results of previous research indicate that concrete compressive strength is reduced due

to tensile loading in the orthogonal direction and subsequent tensile cracking parallel to the

direction of compressive loading (Vecchio and Collins 1986, Belarbi and Hsu 1995, Shirai

and Noguchi 1989)and also due to cyclic loading (Stevens et al. 1991a). Figure 4.22 shows

the ratio of observed to predicted concrete strut stress for the 13 joint sub-assemblage tests

that 1) exhibited joint shear failure prior to or following beam yielding and 2) have shear

strain data reported in the literature.

For each specimen, data are included for three points on the shear stress-strain history.

In Figure 4.22 fc obs is computed as

fc obs = τobs
w

wstrut · cos αstrut
(4.22)
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Figure 4.22: Reduction equations to the concrete compressive strength

where τobs is computed using Eq. 2.2 with actual, instead of maximum, moments and shears,

and w, h, wstrut and αstrut are as defined previously. Figure 4.22 shows six models for

predicting the reduction in compression strength resulting from load history. The reduction

factor, ζ, for all the models are presented as follows. In the expressions below εt is the

principal tensile strain computed from the laboratory shear strain data assuming the joint

deforms only in shear, and εcc is the strain at the compressive strength per Mander et al.

(1988)The first model (Vecchio 1986) is the original model proposed by Vecchio and Collins

(1986) and is given as

ζ =
1

0.8 + 0.34
(

εt

εcc

) ≤ 1 (4.23)

The second model (Stevens 1991) is a combination of the revised model by Vecchio and

Collins (1986) model (eq. 4.24a modified by Stevens et al. (1991b) (eq. 4.24b) to account
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for cyclic load history, and is given as

ζ1 =
1

0.9 + 0.27
(

εt

εcc

) ≤ 1 (4.24a)

ζ2 =
1

1.0 + 0.5
(

εt

εcc

) ≤ 0.67 (4.24b)

ζ = ζ1 · ζ2 (4.24c)

The third model (Hsu 1995) is the model proposed by Belarbi and Hsu (1995), and is

represented as

ζ =
0.9

1.0 + 400εt
≤ 0.9 (4.25)

The fourth model (Noguchi 1989) is the model proposed by Shirai and Noguchi (1989), and

is represented as

ζ =
1

0.27 + 0.96
(

εt

εcc

) ≤ 1.0 (4.26)

The fifth and sixth models are proposed here respectively to provide a better fit to the data

for joints with transverse reinforcement ( ρj > 0) and without transverse reinforcement

(ρj = 0). Table 4.1 shows the root mean square error of each of these strength reduction

equations when compared with the experimental joint shear stress-strain data. For joints

with transverse reinforcement, the new strength-reduction model is defined

fc strut

fc Mander
= 3.62

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

2

− 2.82

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

+ 1for

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

< 0.39 (4.27a)

= 0.45for

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

≥ 0.39 (4.27b)

and for joints without transverse reinforcement:

fc strut

fc Mander
= 0.36

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

2

− 0.60

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

+ 1for

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

< 0.83 (4.28a)

= 0.75for

∣

∣

∣

∣

εt

εcc

∣

∣

∣

∣

≥ 0.83 (4.28b)

where fc strut is the strut strength including strength reduction to account for tensile stress
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Table 4.1: Root mean square error values (RMSE) for the concrete compressive strength
reduction models

Redn. Eq. RMSE

Vecchio 1986 0.40
Stevens 1991 0.26

Hsu 1995 0.20
Noguchi 1989 0.40

Proposed ρj > 0 0.08
Proposed ρj = 0 0.08

in the orthogonal direction and cyclic loading; fc Mander is the concrete compressive stress

computed per Mander et al. (1988); εt is the principal tensile strain computed from the

laboratory shear strain data assuming the joint deforms only in shear, and εcc is the strain

at the compressive strength per Mander et al. (1988). Model parameters are defined to

provide a best fit to the experimental data assuming the strength reduction factor is 1.0 for

zero transverse strain and decreases quadratically to a limit value.

Evaluation of the proposed strength-reduction models shows that the new models pro-

vide a better fit to the data than do the models developed previously by other researchers

(Vecchio and Collins 1986, Stevens et al. 1991b, Shirai and Noguchi 1989, Belarbi and Hsu

1995). This is attributed to the fact that the previous models were developed for use in

simulating the response of concrete in large, uniformly reinforced, uniformly loaded panels,

which is not representative of concrete in beam-column joints. Evaluation of the two new

models shows that joints without transverse reinforcement exhibit less strength loss than

do joints with transverse reinforcement. This is attributed to the fact that for joints with-

out transverse reinforcement, out-of-plane bending of column longitudinal reinforcement

provides some confinement of joint core concrete. This mechanism is not included in com-

puting concrete compressive stress-strain response. A similar observation of lower reduction

in compressive strength associated for the case with low transverse reinforcement has also

been obtained in von Ramin and Matamoros (2006b).
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Table 4.2: Comparison of the ratio of simulated to observed maximum shear stresses pre-
dicted by different models

Specimen exhibiting
failure mechanism

Number τmcft monotonic/τmax τmcft cyclic/τmax τstrut/τmax

Mean C.O.V. Mean C.O.V. Mean C.O.V.

JF 22 1.10 0.31 0.81 0.29 1.09 0.23

BYJF 18 1.02 0.42 0.81 0.43 1.09 0.13

BY 17 1.64 0.40 1.25 0.48 1.23 0.18

4.6.2 Evaluation of the newly proposed model for joint shear panel component calibration

Evaluation of the data in table 4.2 indicates that for joints that exhibit shear failure (JF

or BYJF), the proposed model predicts the observed strength more accurately and with a

smaller coefficient of variation than is achieved using the MCFT-based model.

Additionally, the data in Figure 4.23(a) show that the ratio of observed to predicted

strength does not exhibit the same level of dependence on transverse steel ratio, ρj, that the

MCFT-based model does. Similar results are observed when dependence on φ is considered,

as has been shown in Figure 4.23(b). The data in table 4.2 and figure 4.23 indicate that

the strut-based model is appropriate for use with joints with a wide range of transverse

reinforcement ratios.

4.6.3 Simulation of stiffness deterioration under cyclic load

Using the above material model for the shear-panel component we obtain the multi-linear

envelope (states 1 and 2) of the one-dimensional hysteretic load-deformation response en-

velope for the shear panel component. Calibration of the shear-panel response model also

requires specification of the parameters defining the unload-reload path and stiffness and

strength loss under cyclic loading. Assuming symmetry with respect to load direction, and

using experimental shear stress-strain data (a reduced data set of 13 samples from chapter

2 where the joint stress strain response is provided by the experimental investigators), the

following average values for the path parameters were determined: strain at which reload-

ing occurs as a fraction of maximum (minimum) historic strain, rDisp = 0.09, stress at

which reloading occurs as a fraction of the stress developed at maximum historic strain,

rForce = 0.21, and ratio of stress developed upon unloading, from a negative (positive)
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Figure 4.23: Variation of the ratio of simulated shear stress using the new model with
observed shear stress
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Figure 4.24: Damage degradation rules for the shear panel

stress to a maximum (minimum) of the stress envelope, uForce = 0.0.

In order to maintain calibration simplicity, both the unloading and reloading stiffness

degradation has been determined primarily by maximum deformation demand. Figure 4.24

shows value of the unloading stiffness parameter, δk, and reloading stiffness parameter, δd
i ,

computed from experimental joint shear strain data versus the ratio of strain with the strain

at maximum stress ε/εmax. A reduced data set of 13 samples from chapter 2 with joint

shear stress strain data provided were considered in the plots. Coefficients in the damage

parameter equation Eq. 4.29 were computed to provide a best fit to the data, with the

following results

δk
i = 0.64

(

d̃max,i

)0.22
≤ 0.9 (4.29)

δd
i = 0.20

(

d̃max,i

)0.51
≤ 0.4 (4.30)

where δk
i , δd

i and d̃max are as defined previously.

4.6.4 Simulation of strength deterioration under cyclic load

The envelope to the proposed joint-panel response model simulates strength loss due to

crushing of the concrete strut as well as opening of cracks parallel to the strut. However,

experimental data suggest that yielding of beam reinforcing steel causes damage to anchor-
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Figure 4.25: strength reduction with φ

age zone concrete that reduces joint shear capacity. This mechanism of strength loss is

simulated using the hysteretic damage rules included in the material model. Strength loss

is assumed to initiate once beam yielding occurs and maximum strength loss is defined to

be a function of the joint shear capacity-demand ratio, φ, as shown in figure 4.25, with the

result that

δf
i = α1

(

d̃max,i − d̃yield

)

≤ δf
lim ∀ d̃max,i ≥ d̃yield (4.31)

where

α1 =
δf
lim

1 − d̃yield

(4.32a)

d̃yield =
dyield

Dmax
(4.32b)

δf
lim = 0.25 − 0.10φ (4.32c)

with dyield equal to the deformation demand associated with beams reaching yield and all

other variables are as previously defined.

4.7 Bar-slip model calibration

The bar-slip springs included in the joint element are intended to simulate stiffness and

strength loss associated with deterioration of beam- and column-bar anchorage in the joint.

Lowes and Altoontash (2003) proposed a calibration model for the bar-slip springs on the
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basis of an assumed bond-stress distribution within the joint and empirically derived bond

strength values, and a slip limit of 3.0 mm beyond which springs exhibited a softening-type

response, and cyclic-response parameters (which were defined using cyclic bond test data).

Evaluation of this model using a data set in chapter 2 suggested that the model could be

modified to improve accuracy, ensure numerical stability for the global system (Mitra and

Lowes 2004). In this section, the bar-slip model prepared by Lowes and Altoontash (2003)

is reviewed and improvements to this model are presented.

4.7.1 Lowes-Altoontash Bar slip model

In the study by Lowes and Altoontash (2003), a model was developed using data from

experimental testing of anchorage-zone specimen and making some assumptions about bond-

stress distribution within the joint. The simplified assumptions about joint anchorage-

response are:

• Bond stress along the anchored length of the reinforcing bar is assumed to be uniform

for reinforcement that remains elastic and piecewise uniform for reinforcement loaded

beyond yield.

• Slip is assumed to define the relative movement of the reinforcement bar with respect

to the perimeter of the joint and is a function of the strain distribution along the bar.

• Bar is assumed to exhibit zero slip at the point of zero bar stress.

• Based on studies by Eligehausen et al. (1983) and Lowes (1999) it was recommended

that bond strength deteriorates once slip exceeds 3 mm (0.1 in) and the post peak

stiffness is defined as equal to 10% of the initial stiffness.

Given these assumptions, the bar-stress versus bar-slip relationship is defined as follows:
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dslip =

lfs
∫

0

τE
πdb

Ab
· 1

E
x dx

= 2
τE

E

l2fs

db
∀ fs < fy

=

le
∫

0

4

db

τE

E
x dx +

ly+le
∫

le

(

fy

E
+ τy

4

db

(x − le)

Eh

)

dx

= 2
τE

E

l2e
db

+
fy · ly

E
+ 2

τY

Eh

l2y
db

∀ fs ≥ fy (4.33)

with

lfs =
fs

τET
· Ab

πdb
; (4.34a)

le =
fy

τET
· Ab

πdb
; (4.34b)

ly =
fs − fy

τY T
· Ab

πdb
(4.34c)

where fs is the bar stress at the joint perimeter, fy the yield strength of steel, E the

elastic steel modulus, Eh the hardening modulus of steel assuming the steel response to

be represented by a bilinear response, τE is the bond strength for elastic steel, τY is the

bond strength for yielded steel, Ab the nominal bar area, db the nominal bar diameter, le

and ly respectively the length of the reinforcing bar for which steel stress is less than and

greater than the yield stress. For the case of le + ly greater than the width of the joint, the

deterioration of bond strength under cyclic loading is more severe and it is appropriate to

assume reduced bond strength in the elastic region of the reinforcing bar.

These average bond strength values were determined from previous experimental inves-

tigations of anchorage-zone specimens and structural sub-assemblages (Eligehausen et al.

1983, Viwathanatepa et al. 1979, Shima et al. 1987, Lowes 1999). The results of experimen-

tal testing indicate that bond strength is a function of the material state of the anchored

bar as well as the concrete and transverse reinforcing steel in the vicinity of the bar. It was
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Table 4.3: Average bond strengths as a function of steel stress state (adapted from Lowes
and Altoontash (2003))

Bar Stress, fs (fy is yield
strength, taken same for ten-
sion and compression)

Average bond strength in
MPa. (fc in MPa.)

Average bond strength in
psi. (fc in psi.)

Tension, fs < fy τET = 1.8
√

fc τET = 21
√

fc

Tension, fs < fy τY T = 0.4
√

fc to 0.05
√

fc τY T = 4.8
√

fc to 0.6
√

fc

Compression, −fs < fy τEC = 2.2
√

fc τEC = 26
√

fc

Compression, −fs > fy τY C = 3.6
√

fc τY C = 43
√

fc

τEτ

fs fy

fs < fy fs > fy
fs · Ab

τY
bond stress

bar stress

Figure 4.26: Bond stress and bar stress distribution for a bar anchored in beam-column
joint

observed from experimental investigations that bond strength is relatively higher where

there is a compressive stress field perpendicular to the reinforcing bar, and relatively lower

where there is a tensile stress field. Moreover, bond strength also reduced for reinforcement

carrying stress in excess of the tensile yield strength and increased for the case of reinforce-

ment carrying compressive strength less than the yield strength of the bar in compression.

Thus, Table 4.3 provides bond strength values for the four different bond-zone conditions

that may develop within the joint region. Figure 4.26 represents the distribution of bond

stress and bar stress within the anchored region of the reinforcing steel in the joint. A

detailed discussion of what experimental tests were used to obtain the values in Table 4.3

are provided in Lowes and Altoontash (2003).

Bar slip spring constitutive model

Development of the bar-slip spring constitutive model requires definition of the relationship

between bar stress and spring force. The axial and flexural forces from the beam and column
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members are transferred to the joint through the tension and compression forces in the bar-

slip springs. For tensile loading, it is appropriate to assume that all of the tensile force is

carried by reinforcing steel. Thus, the total tensile force in the spring is transferred into

the joint through bond. However, for compressive loading, the total compressive force is

carried by the concrete and reinforcing steel. Thus, only a fraction of the compressive force

is transferred to the joint through bond. Following this approach, concrete compression

force, Cc, and the steel compression resultant force, Cs, are computed as

Cc = 0.85fcβcw (4.35a)

Cs = f c
sAc

s = 0.003
c − d′

c
EsA

c
s (4.35b)

where β is the scale factor to account for the use of a uniform concrete compressive stress

distribution in place of a true stress distribution, c is the neutral axis depth of the section, w

represents the width of the section, d′ represents the depth to the centroid of the compression

reinforcement, Es is the reinforcing elastic steel modulus, Ac
s is the area of reinforcing steel

carrying compression.

Assuming the centroid of the total concrete compression force is defined by the concrete-

stress distribution, the compressive spring force, C is defined as

C = Cs + Cc = f c
sAc

s



1 +
0.85fcdw

EsAc
s

2 (1 − j)

0.003β
(

1 − βd′

2d(1−j)

)



 (4.36)

where d is the depth to tension reinforcement, jd is the tension-compression couple distance

of a cross-section. Typically, in reinforced concrete section design, j is assumed as a constant

value of 0.75 for columns and 0.85 for beams.

4.7.2 Proposed bar-slip model for Mitra-Lowes joint

Here, the model developed by Lowes and Altoontash (2003) is modified to improve accuracy,

ensure numerical stability for the global system, and to ensure applicability for a wide range

of design and demand parameters for interior reinforced-concrete beam-column joints. The
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first issue considered in developing the new bar-slip model was initiation of strength loss in

the bar-slip springs. A review of experimental data by Mitra and Lowes (2004) indicated

the 3.0 mm slip limit proposed by Lowes and Altoontash (2003) was too conservative. To

determine new criterion for initiation of strength loss, simulated bar-slip data for the joint

sub-assemblages listed in Table B.2 that exhibited BY or BYJF were considered. Only

joints that exhibit BY and BYJF were considered as the response of the joints could be

expected to be controlled by bond, with strength loss in BYJF could either be due to bond

or due to shear stress degradation in the joint panel. These tests were simulated using the

modeling approach discussed in section 5.9 and the new joint element formulation with an

elastic shear-panel component, elastic interface-shear components and bar-slip components

calibrated as per Lowes and Altoontash (2003) with the exception that strength loss was

not simulated. Figure 4.27(a) shows the simulated maximum slip in the beam bar-slip

components. These data show no clear distinction between joints that exhibit BYJF and

BY. Similar results were found when the ratio of the maximum slip to the slip associated

with an anchorage length equal to the joint width was considered(Figure 4.27(b)). Thus,

it was concluded that, for the given approach to modeling bar slip, a slip-based criterion

cannot be used to initiate strength deterioration of the bar-slip components.

The second issue considered in developing the new model was numerical stability of

the global solution algorithm. It was found that if multiple bar-slip springs exhibited a

negative tangent stiffness, the joint element and global system developed multiple negative

eigenvalues. Thus, the global system could not be solved using traditional nonlinear solution

algorithms.

To address the above two issues, the new calibration model developed as part of this

study employs the recommendations of Lowes and Altoontash (2003) but 1) delays initiation

of bar-slip strength loss until reinforcing steel reaches ultimate strength and 2) simulates

strength loss using a hysteretic damage rule rather than an envelope that exhibits softening.

This strength-loss model is defined as

δf
i = α1

(

d̃max,i − d̃ult

)

≤ δf
lim ∀ d̃max,i > d̃ult (4.37)
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Figure 4.27: Slip based criterion for strength deterioration for Bar-Slip springs
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where

α1 =
δf
lim

1 − d̃ult

(4.38a)

d̃ult = max

[

dult,comp

Dmin
,
dult,ten

Dmax

]

(4.38b)

where dult,comp and dult,ten refer to the deformation demand associated with longitudinal

steel reaching ultimate strength in compression and tension, Dmin and Dmax define deforma-

tions associated with reinforcing steel reaching minimum and maximum strain capacity, and

δf
lim is defined such that minimum strength is equal to the residual bond strength associated

with development of a frictional mechanism.

The third issue considered in developing the new model was unload-reload response under

cyclic loading. Lowes and Altoontash (2003) proposed unload-reload response parameters

(rDisp, rForce, uForce) for bar-slip springs on the basis of bond-test data. These pa-

rameters resulted in a friction-type response, characterized by low strength and stiffness,

for most of the unload-reload cycle. Bond test data show similar unload-reload response

for tension and compression, and model parameters were defined to be equal. However,

because bar-slip spring strength and stiffness was increased in compression to account for

the contribution of concrete, the use of equal unload-reload response parameters resulted in

overly rapid stiffness and strength gain for reloading from tension to compression. For joint

sub-assemblages, this translated to an over-prediction of reloading strength and reduced

“pinching” of joint load-deformation response curves.

In the new model, the model parameter rForce, which defines the force at which reload-

ing occurs as a fraction of the force developed at minimum historic slip, is uniquely defined

for tension and compression. For tension, rForcet is defined per the recommendation of

Lowes and Altoontash (2003) to be 0.25. For compression, rForcec:

rForcec = rForcet
F ult

ten

F ult
comp

(4.39)

where F ult is the ultimate strength in tension and compression (represented with sub-

scripts (.)ten and (.)comp respectively). This results in a friction-type response being sim-
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ulated for reloading in tension and compression as well as accurate simulation of sub-

assemblage “pinching”.

The material model has been implemented in the OpenSEES platform as Bar-Slip Ma-

terial.

4.8 Application of the proposed calibration procedures

The previous sections present a series of calibration procedures that must be employed to

simulate joint response. Following is the recommended process for creating a model of a

particular joint with specific material and geometric properties:

1. Complete a moment-curvature analysis of the beams and column that frame into the

joint. Here it is assumed that beams carry zero axial load while columns carry axial

load associated with gravity loading.

2. From the moment-curvature analysis, determine i) the moment associated with first

yield of beam reinforcing steel, ii) the distance between tension and compression re-

sultants at nominal flexural strength (defined per ACI 318 (2005)), and iii) the neutral

axis depth at nominal flexural strength.

3. Define joint element formulation parameters using joint geometry and distance be-

tween beam and column tension and compression resultants.

4. Using neutral axis depths for beams and columns, determine the width, wstrut, and

angle, αstrut, of the concrete compression strut as shown in Figure 4.21.

5. Determine concrete compression strut response. This requires use of i) the concrete

model by Mander et al. (1988) with concrete confinement determined by reinforcement

geometry and strut angle, αstrut , ii) the concrete strength reduction models proposed

here (Eqs. 4.27, 4.28), and iii) cyclic response parameters defined here (Eqs. 4.29,

4.31) and in Lowes and Altoontash (2003).

6. Determine bar-slip spring response using the basic model proposed by Lowes and

Altoontash (2003) with strength reduction defined using Eqs. 4.37 and 4.39.

7. Interface-slip springs are defined to be stiff and elastic.
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4.9 Simulation of laboratory tests

The joint element formulation and calibration procedures were evaluated through compar-

ison of simulation and observed response for tests listed in Table B.3 and B.4. Numerical

simulation of the laboratory tests was accomplished using the OpenSEES analysis platform

(McKenna et al. 2005). OpenSEES is an object-oriented, open-source framework for finite

element analysis that is currently under development by researchers at the Pacific Earth-

quake Engineering Research Center. OpenSEES was chosen for use because of the relative

ease with which the new joint element formulation and material models could be introduced

into the framework and because it includes nonlinear beam-column element formulations

and global solution algorithms, thereby eliminating the need to develop these for the current

study.

Figure 4.28 shows an idealization of the numerical model. Lateral loading was applied

using displacement control at the top of the column. A constant column axial load was

applied using load control. The boundary conditions are representative of those employed

in the laboratory.

The nonlinear response of beams and columns was simulated using the OpenSEES

“beamWithHinges” element formulation (Scott and Fenves 2006). This element formu-

lation assumes a linear moment distribution and employs a numerical integration scheme

that includes two quadrature points within the user-defined plastic hinges at the element

ends and a single quadrature point at mid-span. At the interface with the joint, the plastic-

hinge length was defined equal to half the height of the member section following Corley

(1966). At the supports, since no inelastic action was expected, the plastic-hinge length was

defined equal to zero. At mid-span, the element was assumed to be elastic with an effective

moment of inertia defined per ACI318-05 Section 9.5.2.3.

A fiber-discretization was used to simulate flexural response within the plastic-hinges.

Concrete material response was simulated using the OpenSEES “Concrete01” material

model. The modified Kent-Park model (Park et al. 1982) with a degraded linear unload-

ing/reloading stiffness (Karsan and Jirsa 1969) was used to define compression response,

and zero tensile strength was assumed. The OpenSEES “Steel02” material model was used
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Figure 4.28: Numerical model of a typical building joint sub-assemblage tested in laboratory

to simulate the steel response; this model employs a bilinear envelope and a curvilinear

unload-reload response.

C++ source code for the joint element formulation (“beamColumnJoint2d”) and the

material models (“Pinching4” and “BarSlip”) presented in this manuscript are currently

available on the OpenSEES website (http://opensees.berkeley.edu). Additionally, all of

models are included in executable version of the OpenSEES code and documented in the

OpenSEES User’s Manual (Mazonni et al. 2006).

4.10 Comparison of simulated and observed response

The tests listed in Table B.3 were simulated using the new joint model, including the new

joint element formulation and shear-panel and bar-slip spring calibration methods, following

the calibration process outlined in the previous section. Tables 4.4 and 4.5 lists the mean

and coefficient of variation of the ratio of observed to simulated response quantities for the

57 specimens that were simulated. A more extensive presentation of the simulation data
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Table 4.4: Comparison of the ratio of simulated to observed stiffness values

Specimen Number Initial Stiffness Post yield stiffness Unloading stiffness
(kN/mm) (kN/mm) max. load (kN/mm)

Mean C.O.V. Mean C.O.V. Mean C.O.V.

All 57 1.06 0.15 1.07 0.27 1.03 0.13
JF 22 1.14 0.13 1.09 0.19

BYJF 18 1.07 0.15 1.00 0.22 1.02 0.10
BY 17 1.00 0.15 1.11 0.29 1.00 0.09

Table 4.5: Comparison of the ratio of simulated to observed strength and drift values

Specimen No. Drift at Max. column Strength at final drift Average nominal
max. load load kN level / max. strength Pinching ratio

Mean C.O.V. Mean C.O.V. Mean C.O.V. Mean C.O.V.

All 57 1.12 0.27 1.03 0.17 1.04 0.20 1.04 0.12
JF 22 1.01 0.26 1.09 0.23 1.05 0.20 0.99 0.14

BYJF 18 1.21 0.32 1.00 0.09 1.03 0.25 1.03 0.13
BY 17 1.14 0.20 1.00 0.08 1.04 0.16 1.07 0.10

can be found in table B.3 and B.4.

Observations that can be drawn from the data in these tables include

Failure mechanisms: On average, the model simulates the correct inelastic failure mecha-

nism, with 82% accuracy for specimen exhibiting JF, 89% accuracy for BYJF specimen

and 94% accuracy for BY specimen.

Initial and unloading stiffness: The proposed model represents well the observed initial

stiffness and the unloading stiffness at maximum load. For these measures, the average

ratio of simulated to observed stiffness ranges from 1.03 to 1.06 with coefficients of

variation less than 15%. The initial stiffness is a measure of stiffness of the adjacent

beam-column elements when the joint responds elastically during initial load cycles.

Unloading stiffness is a measure of stiffness deterioration exhibited by the shear-panel

and/or the bar-slip component when the global system reaches maximum load.

Post-yield tangent stiffness: The proposed model predicts well the post-yield stiffness,

with an average ratio of simulated to observed stiffness, for specimens that exhibit

beam yielding prior to joint failure, of 1.0, with a coefficient of variation of 22%. For

this analysis, ‘yield’ is defined by first yield of beam reinforcing steel, and stiffness are
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not considered for joints that exhibit softening prior to yield. The post-yield stiffness

is the result of several influencing factors including the degrading post-peak response

of the shear panel, the hardening response of the bar-slip components, and the flexural

stiffness of beams and columns. Given the complexity of the response, a coefficient of

variation of 22% is considered relatively low.

Maximum strength: The model represents well the observed maximum strength of the

sub-assemblage, with the average ratio of simulated to observed response equal to

1.03. The coefficient of variation of 17% on this average value also is considered to be

relatively low given the wide variation in design parameters included in the data set.

Drift at maximum strength: The model simulates the drift at maximum strength with

less accuracy than strength. For all of the specimens, the average ratio of simulated

to observed drift is 1.12 with a coefficient of variation of 27%. One of the reasons for

the higher level of variability in this response measure is that drift values are limited

to the peaks of the drift history imposed in the laboratory; the difference between the

peak drift imposed in two sequential cycles may be large.

Strength loss at final drift level: On average, the model predicts well the observed strength

during the final load cycle, with an average ratio of simulated to observed strength of

1.04 and a coefficient of variation of 20%. These results validate the proposed shear-

panel calibration model, including the proposed strength reduction model for joints

that exhibit yielding of beam longitudinal reinforcing steel prior to joint failure.

Pinching ratio: is defined, using data from the cycle corresponding to maximum load, as

the ratio of the strength at zero drift to the maximum strength. On average, the model

closely predicts the observed pinching ratio with a mean of 1.04 and a coefficient of

variation of 12%.

Figure 4.29 show load-displacement histories for the one of the laboratory sub-assemblages

OSJ10 that was considered to be the best case examples of simulating observed response.

The grey lines at the background represent the experimental observations and fine black

line at the top represents the simulated observation. Similarly, Figure 4.30 shows the load-

displacement histories for a worst case sample, namely PEER4150. In specimen PEER4150
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Figure 4.29: Best simulation of load-deformation data for ‘JF’ sample: OSJ10

the shear stress envelope of the joint core could not be obtained correctly based on our pro-

posed process, which explains the difference in the maximum column load between the ob-

served and the simulated response. Both the above samples, namely OSJ10 and PEER4150

represents joint shear failure samples (‘JF’). Two ‘BYJF’ samples showing comparison of

simulated and observed response are provided in Figures 4.31 and 4.32. A full listing of all

the experimental and simulated load-deformation response is provided in appendix B and

the simulated and observed load-deflection plots of the specimen are given in appendix D.

4.11 Conclusion

A model for use in simulating the response of reinforced concrete beam column joints was

developed and evaluated using an extensive experimental data set. The model builds on

a previously proposed model by Lowes and Altoontash (2003) and includes 1) a revised

element formulation that provides accurate prediction of joint load mechanisms, 2) a new,

more accurate, model for simulating joint shear response that is appropriate for use with

a wide range of joint designs and simulates strength loss due to anchorage-zone damage

within the joint, and 3) an improved method for simulating anchorage response of beam and

column reinforcing steel that does not impede classical nonlinear solution algorithms and is

not overly conservative in predicting failure. The model was implemented in the OpenSEES
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Figure 4.30: Worst simulation of load-deformation data for ‘JF’ sample: PEER4150
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Figure 4.31: Load deformation response of a ‘BYJF’ specimen: DW X2
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Figure 4.32: Load deformation response of a ‘BYJF’ specimen: OKA J4

analysis framework and is available for use by others (http://opensees.berkeley.edu). This

component based model for the joint region is computationally robust and less demanding

in regards to computational time and complexity compared to the continuum model. This

model can also be utilized in 2 dimensional frame analysis of structures along with other

conventional line elements. The component based model is also able to simulate the complete

load-deformation relation and thereby outweighs the simplicity of the strut-and-tie model

and also the probabilistic failure initiation model. This component based super-element for

the joint can be utilized for performance based analysis of connection regions.

The model was evaluated by comparing simulated and observed response for 57 interior

joint sub-assemblages tested in the laboratory. Joints had widely varying design charac-

teristics and exhibited different failure modes: joint failure prior to beam yielding (JF),

beam yielding prior to joint failure (BYJF) and beam yielding without joint failure (BY).

Results indicate that the observed failure mode was simulated correctly for 89% of the

specimens. Results indicate also that model represents well observed cyclic response char-

acteristics including initial stiffness, unloading stiffness at maximum strength, maximum

strength, strength loss at the final laboratory drift demand level, and pinching ratio.

The results of this study support several additional conclusions about modeling of the

seismic response of interior building joints. First, a compression-strut model may be used

to simulate the load-deformation response of the joint core; however, experimental data
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indicate that response is significantly different for joints with and without transverse re-

inforcement. Second, accurate simulation of joint stiffness requires consideration of both

nonlinear joint core response as well as bond-slip response of frame member longitudinal re-

inforcement anchored in the joint. In particular, sub-assemblage stiffness during unloading

and reloading and the pinching of the sub-assemblage load-deformation response history are

determined by simulation of bar-slip response. Third, strength loss in joints that exhibit

beam-yielding cannot be predicted accurately by considering bond-slip response and em-

ploying a slip-based failure criterion. Fourth, accurate simulation of strength loss in joints

that exhibit beam-yielding may be achieved by accounting for the impact of anchorage-zone

damage on joint core strength.
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Chapter 5

STRUT-AND-TIE MODELING OF JOINTS SUBJECTED TO

SEISMIC LOADING

5.1 Introduction

Strut-and-tie models are discrete representations of actual stress fields resulting from applied

load and support conditions. Like a real truss, a strut-and-tie model consists of compression

members (struts) and tension members (ties) interconnected at nodes (referred to as nodal

zones or nodal regions).

An admissible strut-and-tie model (STM) satisfies equilibrium at the nodes and does not

load struts, ties or nodes beyond their capacities. A particular STM of a system provides

a lower bound on the strength of the system since neither compatibility requirements nor

explicit material constitutive relationships are considered in developing an STM. Thus, there

is no unique solution and multiple admissible STM may be developed for each load case for

any system. However, as a result of limited ductility in the structural concrete, there are

only a small number of viable solutions for each design region.

Strut-and-tie models are used widely by engineers to dimension and detail reinforced

concrete structures and this design methodology is included in most structural design codes

around the world (ACI 318-05, AASHTO LRFD 1994, National Building Code of Canada

2005, EuroCode-2 1998). However, most of these design codes allow STM for non-seismic

applications but not for seismic applications. The objective of the research presented here is

to extend the applicability of STM, as defined in ACI 318-05, to performance-based-seismic

design of joints. To accomplish this, STM were developed for several joints in the data set

(see chapter 2) at peak load level and the stresses in the strut, nodal and bond stresses

were compared to ACI prescribed limits. It was observed that modifications to the ACI

requirements are required for seismic applications.

The layout of this chapter follows from the research objectives. In section 5.2 background
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Figure 5.1: STM for a simply supported beam

on STM applied for non-seismic applications is presented. Section 5.3 reviews the previous

research to apply STM for seismic design of joints. Section 5.4 presents the developmental

work on seismic design recommendations for joints.

5.2 Previous research on Strut and Tie modeling

5.2.1 Review of STM

Pioneering work by Ritter (1899) and Mörsch (1909) to develop the truss analogy laid

the foundation for modern strut-and-tie models (STM). The early truss analogy assumed

concrete to be incapable of resisting tension and was used primarily to idealize the flow of

forces in a cracked beam. Ritter idealized a simply supported concrete beam as a truss in

which the top compression block of the beam section was analogous to the top chord of the

truss, the longitudinal reinforcement at the bottom truss to the bottom chord of the truss,

the transverse stirrups to the vertical components, and discrete compressive concrete zones

in between to the diagonal members of the truss. Mörsch (1909) expanded on Ritter’s model

by proposing that the diagonal compressive stress in concrete need not be a discrete zone,

as proposed by Ritter (1899), but could be a continuous field in equilibrium with discrete

stirrup forces (see Figure 5.1).

Thereby, in a STM, struts represents compression fields in concrete. The centerline of

the strut is aligned with the orientation of the principal compressive stress. The idealized
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shape of a strut in a plane (2D) member is assumed to be prismatic, bottle shaped or fan

shaped (ACI 318-05). Struts can be strengthened by steel reinforcements, in which case

they are termed as reinforced struts. Ties, typically represent reinforcing steel, though

occasionally models have been proposed that include concrete ties, in which the orientation

of the tie is aligned with the principal tensile stress. Forces are transferred between struts

and ties at the nodes; thus, nodal regions represent multidirectional states of stress.

An important breakthrough in application of STM to discontinuity regions (D-regions)

in structures was accomplished by Schlaich et al. (1987). Following Schlaich’s lead, STM

became a tool to examine the flow of stresses within a region of the structure where tra-

ditional Bernoulli-Euler beam theory is not valid and shear deformation are not negligible,

thereby enabling simplified analysis for all regions of the structure. Since then, researches

have taken a four-fold approach to advancing STM.

1. Development of empirically based recommendations for the effective strength of con-

crete struts and the effective strength of concrete in nodal regions. Concrete in these

regions may crack under loading and thus would not be expected to develop full

strength. Most of the research to date has considered monotonic loading and de-

sign for non-seismic loads. Prominent studies include Schlaich et al. (1987), Alshegeir

(1992), Adebar and Zhou (1993), Yun and Ramirez (1996), Bergmeister et al. (1991),

MacGregor (1997). The results obtained from these studies have been partly incorpo-

rated into ACI 318-05 Appendix A. Recently, ACI committee 445 began investigating

the application of STM to seismic loading of structures. Here, it could be expected that

further reduction of concrete strength as well as other prescriptive requirements might

be necessary. Preliminary studies of this study (Lowes 1999, Sritharan et al. 2000,

Sritharan and Ingham 2003, von Ramin and Matamoros 2006a, Alcocer and Uribe

2006) indicate that application of STM to seismic design of structural components

requires lower effective concrete strength. Even though researchers have proposed

different strength reduction values for different D-regions such as for bridge joints,

deep beams, but, no research, till now, have been performed to check the validity of

these recommended strength reduction factors for interior joints subjected to seismic
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loading. The research work discussed in this chapter addresses this issue.

2. Including modeling of material response and the requirement of strain compatibility

to ensure a unique analytical solution for design of structures (Hwang and Lee 1999;

2000; 2002, Yun 2000a).

3. Development of computer software for STM. CAST developed by Tjhin and Kuchma

(2002) from University of Illinois at Urbana-Champagne and NL-STM developed by

Yun (2000a) from Korea. CAST is a stand-alone software package for design that relies

on the conventional approach of using equilibrium and yield criterion to determine the

appropriate STM. The user provides a truss arrangement and the externally applied

loads, and CAST produces the forces in each component of the truss. NL-STM is a

software package that consists of three parts: 1) a non-linear finite element program

PLANE that is used to solve 2d continuum mechanics problems, 2) a nonlinear finite

element program TRUSS that takes stress from the PLANE analysis and uses them

to develop a truss model of the structure and solves the truss, 3) a final component

that enables the user to dimension struts, nodes and ties from the analysis results.

4. Application of topological optimization methods, in which various optimization ap-

proach such as maximum stiffness and minimum volume are used to develop the most

feasible configuration for the loaded structure (Biondini et al. 2001). After the configu-

ration was finalized finite-element methods or enhanced STM with strain compatibility

and material constitutive relation were utilized to develop a unique solution for the

problem.

The research presented here falls within the first category above, in that restrictions

are sought for strut, tie and nodal strengths for seismic design of reinforced interior beam-

column joints. Additional background information addressing this topic is presented in the

following sub-sections.

5.2.2 Current code practice and state-of-art research to advance STM for monotonic load-

ing of interior joints

Design using STM relies on specified capacities for struts, ties and nodes. These strengths

are provided by the structural design codes (ACI 318-R05, AASHTO LRFD 1994, National
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Table 5.1: ACI 318R05 specified values for effective compressive strength in the strut

Clause No. Criterion β Value

A.3.2.1 Prismatic strut of uniform
cross-section area over it’s
length

0.85

A.3.2.2a Bottle-shaped struts with re-
inforcement satisfying A.3.3

0.64

A.3.2.2b Bottle-shaped struts of
normal-weight concrete with-
out reinforcement satisfying
A.3.3

0.51

building Code of Canada 2005, EuroCode-2 1998). In this thesis ACI318-05 recommenda-

tions are evaluated. The effective compressive strength of the strut, fce, is related to the

actual concrete compressive strength, fc, through a strut strength reduction factor, β.

fce = β · fc (5.1)

Table 5.1 specifies values for β as recommended in ACI318-05. It should be pointed out

here that these specified factors in table 5.1 are developed for non-seismic applications.

While designing a structure, different types of D-regions (such as deep beams, corbels,

squat shear walls, pile cap, beam-column joints) depending upon geometry and loading

condition can be envisaged. In this thesis reinforced concrete beam-column joint regions

are being investigated. It had been pointed out by Vollum and Newman (1999) that it

is relatively straightforward to develop STM if the node dimensions can be related to the

width of the supports and positions of reinforcement (e.g. deep beams); but that is not

the case with beam-column joints. The complications that result in application of STM to

model interior beam-column joints have been explored here:

• Strut and nodal zone geometry : Definition of the strut geometry is sometimes uncer-

tain. ACI 318-05 recommends defining the strut width on the basis of the geometry

of the structure. However, for interior joints, a wide range of diagonal strut widths

meet geometric constraints. Similarly in an internal joint nodal zone, more than three

members intersect and defining the dimensions of the node is difficult.
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• Strut and node capacity : The ultimate strength of struts and nodal zones are de-

termined by the shape and geometry of the strut and nodes, the level of confinement

provided, stress field in the structure (such as tension perpendicular to the strut stress

results in lower strength) and the cyclic demand history. Thus, the performance of

one specific D-region will be different from that of another. The effective strength re-

duction factors provided in ACI 318-05 are applicable to all D-regions. Thus, research

is required to determine if modification of these factors are required for these values

to be appropriate for joints.

• Bond stress of longitudinal reinforcements: In real structure force transfer between

the reinforcing steel and the concrete occurs gradually over a finite, but significant

length of reinforcing steel. However in a STM, force transfer occur at the nodes

over a very short length of the reinforcing bar. This implies high bond stress at the

nodes. Appropriate limits on joint bond demands are necessary which requires further

research.

A very few studies have addressed STM of interior reinforced concrete building joints;

these include Kim and Mander (2000) and Hwang and Lee (2000). Both of these studies

evaluated the recommendations of ACI-ASCE 352 using laboratory testing of joint sub-

assemblages subjected to monotonic loading. The following sections provides a detailed

review of these studies.

Kim and Mander (2000) model

Kim and Mander (2000) concluded that the post-elastic behavior of beam-column connec-

tions can be effectively modeled using a STM approach with a fan-shaped crack pattern.

The theoretical framework proposed in their study was validated with an experimental test

of a knee joint.

STM of a interior beam-column joint region by Kim and Mander (2000) was developed

assuming that interior column bars do not contribute to the load transfer mechanism within

the joint region. Thus, the model comprises one diagonal strut that spans the extreme

corners of the joint in combination with other struts located between horizontal ties, and
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Figure 5.2: Kim-Mander STM for interior beam-column joint

ties aligned with beam longitudinal steel and extreme layers of column steel. Struts are

assumed shaped as rhomboids, with maximum widths located at the center line of the joint

panel and minimum widths at the corner of the joint panel. The interior beam-column joint

strut arrangement and area is shown in Figure 5.2.

The section area of the ith strut was obtained as

Acdi =
cos αi

2 (1 + n) (1 + cos2 αi)
d · jhb (5.2)



147

where αi is the angle measured from the axis of the ith. strut to the horizontal line, that is

αi = tan−1

[(

1 − i

1 + n

)

jhb

jhc

]

(5.3)

in which n is the number of layers of transverse steel in the joint, d is the out-of-plane thick-

ness of the strut taken equal to the maximum out-of-plane width of the beams or columns, hb

and hc are respectively the in-plane width of the beams and columns respectively, jhb and

jhc are respectively, the distance between internal tension-compression couples in beams

and columns at the perimeter of the joint, taken equal to the distance between the center

layers of longitudinal steel. The term j in jhb and jhc is a constant factor between 0 and 1.

This modeling approach neglected the role of internal column longitudinal bars and

is primarily based upon the assumption that only the transverse steel in the joint region

contributes to the resistance against crack formation within the joint region by confining the

strut. However, if interior column longitudinal column reinforcement does not yield under

column flexural load then this reinforcement has additional capacity to carry load and may

be included in the STM. This modeling approach also makes an assumption of considering

the farthest longitudinal steel layers in case of specimen having two layers of steel, which is

also not considered to be a good proposition. In this model, the area of the strut has also

been determined empirically without any basis in order to satisfy code specified strength

limits.

Hwang and Lee (2000) model

A softened STM was proposed by Hwang and Lee (2000) for determination of the shear

strength capacity of interior beam-column joints for seismic resistance. The analytical model

for the joint region is based on the concept of force transfer through struts and ties and

satisfies equilibrium, compatibility and the constitutive laws of cracked reinforced concrete.

In the Hwang-Lee model three different joint shear resisting mechanisms, the Diagonal,

Horizontal and Vertical mechanisms contribute to joint shear strength. Figure 5.3 shows

all the three mechanisms.

In Figure 5.3, hb r and hc r are the distances between the extreme longitudinal reinforce-
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Figure 5.3: Hwang-Lee STM for interior beam-column joint

ment in the beams and columns, respectively. The effective area of the diagonal strut, Astr,

is defined as

Astr = as · bs (5.4)

where as is the depth of the diagonal strut and bs is the width of the diagonal strut, which is

considered as the effective width of the joint per ACI 318 (1995). The depth of the diagonal

strut, as, was taken equal to the depth of the flexural compression zone of an elastic column

per the recommendations of Zhang and Jirsa (1982), Paulay and Priestley (1992) and is

represented as

as =

(

0.25 + 0.85
N

Agfc

)

hc (5.5)

where N is the axial force acting on the column, fc is the concrete compressive strength,

Ag is the gross area of the column section, and hc is the thickness of the column in the

direction of loading. In this research, an empirical algorithm is proposed to determine

the effective number of internal column longitudinal steel layers and transverse hoop steel

layers that contribute to load transfer in the joint region, given the actual total number

of transverse steel hoop layers and interior column longitudinal bars in the specimen .

This empirical algorithm of determining the effective number lacks any proper physical or

behavioral justification.

The primary intention of the previous two described research paper was to determine
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an analytical model for the joint region. So, the research area of effective strength of struts

and nodal stresses were not explored. ACI specified effective strength limits were used to

define strut strengths.

5.3 Proposed STM for interior beam-column joints

To investigate the response of building joints to seismic loading and develop a methodology

for the application of strut-and-tie modeling for seismic design of building joints, a series of

STM were created for 75 representative joint specimen in the data set, described in chapter

2. These models included a single strut model, a distributed strut model, and a combined

strut model. Each of these models are described in details in the sub sections that follow.

Each of the three types of STM were developed using the same basic assumptions:

• Load transfer occurs only at the nodes.

• Only equilibrium and component strengths (strut, tie and nodes) are considered in

developing the STM.

• The problem is assumed to be two-dimensional in nature. The out-of-plane depth of

the struts is taken equal to the maximum of the column and the beam out-of-plane

depths.

• The STM is created using the axial load and maximum lateral load applied to the

joint sub-assemblage in the laboratory.

• Node shapes are defined by the intersection of struts and ties of specified dimensions.

• Ties representing top or bottom beam longitudinal reinforcement are located at the

centroid of the bars. The in-plane width of the ties is defined equal to the total width

of bar layers, limited by the cover region to the bars.

• The strength of the ties representing beam and column longitudinal steel is limited

by the ultimate strength of the reinforcing bars. The strength of the ties representing

joint transverse steel is defined by the yield strength of the bars.

5.3.1 Single-Strut model

Paulay et al. (1978) proposed that bond strength is lost in a joint subjected to multiple
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Figure 5.4: Single strut STM

earthquake load cycles and as a result, load is transferred within the joint primarily through

a single concrete strut. The single-strut model developed as part of this study follows from

this load-transfer mechanism, idealized by Paulay et al. (1978).

Figure 5.4 shows the single-strut model. In addition to the assumptions listed in section

5.3 to develop the single-strut model it was assumed that:

• Joint transverse steel were not modeled explicitly.

• Interior column longitudinal bars were not modeled explicitly.

Strut and node dimensions were defined by the depth of the flexural compression zones

in beams and columns framing into the joint at nominal moment. For beams, the width

of the compression zone was taken equal to the neutral axis depth at nominal moment.

For columns, which were assumed to carry axial load, it was taken as the maximum of the

neutral axis depth obtained from the section analysis and the depth obtained for the flexural

compression zone for elastic column (Paulay and Priestley 1992) in Eq. 5.5, since column

typically does not reach nominal moment prior to beams reaching the nominal moment.

The strut width was determined from the width of the above defined compression zones in

the beams and columns framing into the joint, as the square root of the summation of the

square of these two widths.
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Figure 5.5: Distributed truss STM

5.3.2 Distributed-truss model

Paulay et al. (1978) proposed that prior to loss of bond strength within the joint region, force

transfer occurs through distributed truss mechanism formed by the mesh of joint transverse

steel and column longitudinal steel. The distributed truss model is shown in Figure 5.5. The

capacity of this STM is defined by the yield strength of the joint transverse reinforcements,

and was observed to be substantially less than the observed maximum strength of the sub-

assemblage in the laboratory. This result is consistent with Paulay et al.’s proposition that

the distributed truss mechanism represents joint load transfer at low load levels at which

the bond stress within the joint is approximately uniform. Given the lower capacity of this

STM, this modeling strategy was not pursued further in the study.

5.3.3 Combined strut-truss model

The combined strut-truss model (Figure 5.6) represents a combination of the two previous

models. The stress in the joint transverse steel is at or below yield strength and stress in

the beam longitudinal reinforcement bar is approximately equal to the ultimate strength.

For this STM, since most are located at the intersection of many struts and ties, current

structural design codes (ACI 318-05, ACI-ASCE 352) do not provide adequate guidance for
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Figure 5.6: Combined strut-truss STM

determining strut dimension. Strut width is required to determine the strength demand on

the concrete strut. However, with many struts in the joint perimeter region it is difficult

to use geometric constraints to determine the strut width of joints. Thus, for the current

study three approaches were used to determine strut width and concrete stress.

1. The width of the strut was defined equal to the total diagonal length of the joint (st1

in Figure 5.7(a)). Total strut load was defined as the summation of all the compressive

strut loads in the joint crossing the diagonal. This is an unconservative approach to

assessing strut stress demands as the entire joint would not be activated in transferring

loads. As expected, this approach results in very wide struts, small concrete stress

demands and small strut strength reduction factors. This approach provides a lower

bound on the strut strength reduction factor.

2. The strut width was determined by the spacing of the column longitudinal bars and

the joint transverse steel (st2 in Figure 5.7(b)). Total strut load was defined as the

summation of the primary diagonal strut force and the average of the additional

strut forces in the joint region. Since this approach depends on the relative spacing

of the internal column longitudinal bars and the joint transverse steel, very small

strut widths will be obtained if there are many interior column longitudinal bars
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or joint transverse steel within the joint. Similarly, very wide strut widths will be

obtained for sparse distributions of column longitudinal steel and/or joint transverse

steel. The proposition of strut widths being dependent on the number of interior

column longitudinal bars and/or joint transverse steel and not on the compressive

load within the joint region is not appealing since it results in higher values of strut

strength reduction factors, irrespective of the load in the joint, for specimen with a

large number of interior column longitudinal steel.

3. Strut width was defined by the depth of the compressive zones in the beams and

columns (st3 in Figure 5.7(c)), as was done in the single strut model. The depth

of the compression zone in the beams was taken equal to the depth of the neutral

axis, obtained from section analysis at nominal flexural strength per ACI 318-05. For

the columns, the depth of the compression zone was defined as the maximum of the

depth obtained from the section analysis at nominal flexural strength and the depth

obtained for the flexural compression zone for elastic column (Paulay and Priestley

1992), since column typically does not reach nominal moment prior to beams reaching

the nominal moment. The strut width was determined from the depth of the above

defined compression depths in the beams and columns framing into the joint, as the

square root of the summation of the square of these two depths. The total strut force

was defined equal to the summation of individual strut forces within the strut width

region in the joint. This approach resulted in strut stresses which were average strut

stress within the joint region.

Figure 5.7 represents the above different methods of determination of strut width within

the joint region. Results obtained using these different methods for determination of strut

width have been discussed in the following section.

5.4 Discussion of results obtained from proposed STM of interior joints

The single strut and combined strut-truss model described in the previous section were

used to model seventy-five of the joint sub-assemblage specimen in the data-set presented

in chapter 2. A typical STM for a single strut model and a combined strut-truss model is
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Figure 5.7: Different methods for strut width determination in combined mechanism
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shown in Figures 5.4 and 5.4 respectively. The zoomed figure of the joint region for each

of the specimen with the combined strut-truss model is provided in Appendix E.

Figure 5.8: Typical single strut model for Specimen EKOA HC

The seventy-five specimens chosen span the range of material and geometric parameters

included in the data set. Simulation of each of these specimen were performed using the

single strut and combined strut-truss model. Forces were determined in each of the struts

and ties when the specimen is subjected to a combination of maximum lateral load and

axial load. Results obtained from the study were used to evaluate the current ACI318-05

recommendations for strut and nodal capacities. New recommendations for strut and nodal

stress for seismic design were developed using the results of the STM effort.

5.4.1 STM provision for struts and nodes in interior joint region

STM provisions for nodes and struts used in design and analysis of reinforced concrete

structures depend on ACI318-05 recommended values for compressive strength of concrete.

The efficiency factors recommended by ACI318-05 for struts are given in table 5.1. Several

efficiency factors for nodal stresses are also provided in ACI318-05 Appendix A, based on

the type of intersecting elements at the nodes.
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Figure 5.9: Typical combined strut-truss model for Specimen EKOA HC

Figure 5.10: CCC node in interior beam-column joint

Node at an interior joint corner can be classified as a CCC node (see Figure 5.10) in

which there are three compression members. ACI318-05 recommends an efficiency factor of

0.85 for CCC nodes. The total compressive force acting on the node is divided by the cross-

sectional area of the inclined face of the node to obtain the nodal stresses. The in-plane

width of the nodal region is the same as the strut width of the joint, and the out-of-plane

depth of the joint is the maximum of the beam and column out-of-plane depths.

These reduction factor recommendations for struts and nodes in ACI318-05 are being

investigated in this chapter as regards to their applicability for interior beam-column joints

subjected to seismic loading.
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Determination of strut strength reduction factor

Seventy-five specimen sub-assemblage (refer Chapter 2) spanning the entire range of design,

geometric and material parameters in the entire data-set were analyzed using STM. Models

were developed using both the single-strut and combined strut-truss methods (section 5.3.1

and 5.3.3 respectively) and the basic modeling procedures are discussed in section 5.3. Each

of the specimen were modeled and example STM’s are included in Appendix E. Using the

results of these analyses, the maximum strut stress factor, β, and nodal bond stress factor

were computed. The results are presented in the following paragraphs.

The compressive strength reduction factor for the main diagonal strut, β, was obtained

for the case of single strut model with strut width obtained from the compression zone in

the beams and columns at nominal yield strength. Figure 5.4 shows the typical model.

Figure 5.11(a) shows the β factors for the diagonal strut in the single-strut mechanism.

It also shows different recommended ACI318-05 limits, as given in table 5.1. Different

symbols have been used to represent different failure mechanisms within the joint (see

section 2.4). Since the strut strength reduction values were determined at maximum lateral

load, thereby no distinctive difference in values of β could be obtained in between ’BY’ and

’BYJF’ specimens and thereby these two types of specimens have been marked by the same

symbol. The plot shows that the recommended values by ACI318-05 are un-conservative

and a value of 0.4 is being proposed for the compressive strength reduction factor in the

main diagonal strut in the joint. ACI318-05 employs a β value of 0.85. A reduced value

of β, as observed from our research, could be expected for joints subjected to repetitive

loading, as is the case for seismic loading.

The combined strut-truss model was used to determine appropriate β values. As dis-

cussed in section 4.3.3 there are three possible approaches for defining strut stress for the

confined strut model. All three approaches were considered and it was found that results

of strut strength reduction factor obtained from the first approach, in which strut width is

defined by the entire diagonal width, were very small. The other two approaches of con-

sideration of the strut width (one based on geometry and other based on compression zone

region) for determination of β have been investigated. The plots for the β factors obtained
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from these two methods are shown in Figures 5.11(b) and 5.11(c) respectively. Plots in the

figures use different symbols for joint failure mechanism (defined by Section 2.4) and also

show ACI318-05 limits for strut strength. It was observed that the ACI318-05 recommended

values were un-conservative.

As discussed before, ACI318-05 was originally developed for non-seismic applications,

so obviously the values proposed for reduction of compressive strength in the strut region

are un-conservative for seismic loading of structures. The values of strut strength reduction

factors obtained from the basis of geometry (in which the spacing of interior column bars

and the joint transverse steel were utilized to determine the strut width) are observed to

result in values that sometimes exceed 1. This can be explained based on the amount and

distribution of steel within the joint core. If there are many layers of transverse steel or

many internal column longitudinal bars, this results in smaller strut widths and thus, higher

values for β. This dependency of β on number and arrangement of steel within the joint

core is undesirable, thus this method was not considered further in the study.

The case of combined STM with compression zones used for determination of the strut

width represents a reliable method for determination of β factors. The results obtained in

Figure 5.11(c) suggest a value of 0.4 for β which can be used as a conservative estimate for

prevention of failure within the reinforced concrete beam-column joint region.

In Figure 5.11(c) no difference between β values for joints that fail in a brittle manner

prior to beam yielding (‘JF’ specimen) and those that fail in a ductile manner following beam

yielding (‘BYJF’ and ‘BY’ specimen) can be detected. To investigate the issue further, β

values were plotted in Figure 5.12 which lists a reduced subset of specimen in Figure 5.11(c).

The reduced data set in which it was possible to determine the extent of strength loss in

the final load cycle was considered, since the entire load-deformation response could not

be obtained for all the experimental investigations. Figure 5.12 shows β values with tests

defined as 1)‘JS’ specimen for which the failure is initiated by joint shear but the strength

loss at the last cycle is less than 20% of the maximum strength, 2)‘JSF’ specimen for which

failure is initiated by joint shear and which exhibits a strength loss of more than 20% from

the maximum strength 3)‘BY’ specimen for which the strength at the last cycle is more

than 80% of the maximum strength, and 4)‘BYJF’ specimen for which there is more than
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Figure 5.11: β factors for struts in joints
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Figure 5.12: Combined strut-truss mechanism (strut width based on compressive zone
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20% reduction in strength in the last cycle from the maximum strength. Thereby, within

this 4 sets of data the primary distinction would be between the specimen that exhibit

failure i.e. ‘JSF’ (or those that exhibit brittle mechanism of failure) and ‘BYJF’ (those that

exhibit ductile mechanism of failure). The reason why the ‘JS’ and ‘BY’ specimen were not

experimentally loaded till failure is unknown. Figure 5.12 suggests a β factor of 0.64 for the

main diagonal strut in the joint region below which brittle failure in the joint region will

not be observed. This proposed limit below which brittle failure would not occur have been

discussed in details later (section 5.4.2) in which specimen were evaluated with respect to

drift capacity of the specimen.

Determination of nodal compressive stress reduction factor

ACI318-05 Appendix A limits nodal stress on the basis of type of forces acting on the nodal

region. and ACI-ASCE 352 provides limits on nodal stress based on the type of forces acting

on a nodal region. A nodal region is usually defined as the region where three different force

directions meet. For the case of an interior joint, there are more than three forces acting on

a region. However in the corner nodal region of an internal joint, it can be considered to be

as a CCC node. The recommended reduction value for compressive stress in a CCC node

as per ACI318-05 is 0.85. The nodal stresses are obtained for the simulated specimen in
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Figure 5.13: Nodal strut compressive strength reduction factor

the data-set and recommendations are provided for nodal stress values in an interior joint

subjected to seismic loading.

Figure 5.10 shows the forces acting on the nodal region of an interior joint. As explained

in section 5.4.1, the nodal stress obtained for a CCC node in an interior beam column joint

is exactly identical to the strut stress values. Thereby a similar proposition of 0.40 can

also be made for nodal compressive strength reduction factors in an interior beam column

joint subjected to seismic loading. Figure 5.13 represents ACI318-05 recommended and the

proposed value. No distinction could be obtained between specimen with different type of

failure mechanism. The lower value of nodal stress reduction factor is justifiable since the

specimen are subjected to seismic loading and ACI318-05 only provides recommendations

for non-seismic application.

Determination of bond stress of longitudinal reinforcement bars

The combined STM approach for interior joint was used to determine the bond stress of

longitudinal reinforcement bars. The difference of tensile forces in the reinforcement bars

at the nodes constitute the total bond force. The total tensile force is divided by the

total circumferential area of the bar and the development length in order to obtain the

bond stress. Development length of the bars was considered to be the spacing between the
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Figure 5.14: Bond demand in an interior joint

internal column longitudinal bars. The bond stress was normalized with the square root

of the compressive strength of concrete. Figure 5.14 shows the normalized bond stress of

the simulated specimen. No distinction could be observed between specimen with different

type of failure mechanism.

5.4.2 Development of STM provisions for seismic design of joints

Current ACI318-05 Appendix A guidelines for application of STM are intended for non-

seismic applications and are superseded by Chapter 21 of the ACI Building Code (ACI318

2005). To extend STM for seismic design it is necessary to ensure that components have

adequate strength and can maintain the deformation required to develop this strength under

multiple load cycles. One approach to ensure this is to define strut and node strengths on

the basis of deflection demands (Sritharan et al. 2000, von Ramin and Matamoros 2006b). In

the current study, this approach was explored to establish a relation between the measured

demand parameters, such as maximum strut stress, β, and bond stress, and measured

performance capacity measures, such as drift capacity and strength loss at last cycle.
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Figure 5.15: Combined strut-truss STM β with drift capacity

Investigation of the impact of demand on drift capacity

Drift capacity is defined as the maximum inter-story drift experienced by joint sub-assemblies

in cycles prior to which an increase in drift demand results in more than 20% reduction in

strength from the maximum. If a specimen did not exhibit loss of more than 20%, even in

the last cycle of experimental loading, it was not included in this phase of study. Specimen

that exhibit “brittle” response could be expected to have lower drift capacity than those

that exhibit “ductile” response. Combined strut-truss mechanism was considered for this

investigation. The strut width is obtained from compressive zone depth of the adjacent

beam and column sections at nominal yield strength. The relationship between the demand

parameters, strut stress reduction factor and bond stress normalized with square root of

compressive strength of concrete, is being investigated here with the performance measure

of drift capacity, in the following paragraphs.

Figure 5.15 shows the relationship between the drift capacity and strut strength reduc-

tion factors (β). A reduced data set was considered since only those specimen samples were

considered which experienced more than 20% reduction in strength from the maximum. It

was observed, as expected, that specimen with a ductile mechanism (BYJF+BY) exhibited

a higher drift capacity in comparison to the ones exhibiting a brittle mechanism (JF) of

failure. It was also observed that specimen exhibiting JF had a higher value of β in compar-
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Figure 5.16: Nodal bond stress with drift capacity

ison to the ones which exhibited BYJF or BY. A limit value on β of 0.64 is being proposed

which precludes JF specimen (or brittle mechanism of failure) and ensures drift capacity

greater than 4% with only one exception.

Nodal bond stress represent another demand parameter for interior beam column joint

sub-assemblage subjected to seismic loading. Calculation of nodal bond stress has been

presented in the previous subsection. The strut-truss combined mechanism was used to in-

vestigate the relationship between nodal bond stress and drift capacity. Figure 5.16 presents

the relationship between nodal bond stress and drift capacity. These data indicate that bond

stress does not determine joint failure mechanism.

Investigation of the impact of demand on strength loss in last drift cycle

The severity of strength loss in the final drift cycle can be considered a performance measure.

Figure 5.17 show strength loss, as a % of maximum strength for the last load cycle versus

strut stress demand, β. The data in Figure 5.17 shows an increased value of β for specimens

in which joint failure precedes beam yielding. Since failure in a specimen is defined as

reduction in strength of more than 20% from the maximum, a dotted line in Figure 5.17

shows the region above the 20% strength reduction. The Figure also shows the proposed

line of 0.64 which separates the ductile mode of failure to the brittle mode of failure.
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Figure 5.17: Combined strut-truss STM β with strength reduction at last drift cycle
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Figure 5.18: Bond demand at nodes with strength reduction at last drift cycle
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Figure 5.19: Main diagonal strut force contribution with φ

Figure 5.18 show strength loss, as a % of maximum strength for the last load cycle versus

strut stress demand, β. No relation between strength reduction in the last drift cycle and

bond demand at the nodes can be observed.

5.4.3 Behavioral mechanisms observed in the combined STM for joint

The combined strut-truss mechanism comprises a single strut and number of distributed

truss. When cracking originates in a specimen, it is hypothesized that it follows the dis-

tributed strut mechanism, since a distributed truss mechanism is only viable when the

stresses in the joint transverse steel is below yield stress. Later as the column lateral load

reaches its maximum, it either follows a single strut mechanism or a combined strut-truss

mechanism. So, at maximum strength and in the post peak region, it exhibits either a

single strut or a combined strut-truss mechanism whereas in the pre-peak region it exhibits

a distributed truss mechanism. A similar observation was also made by Paulay et al. (1978)

for interior beam column joints in which the authors proposed that there are two possible

mechanisms of transfer of load within the joint: single-strut mechanism or the distributed

truss mechanism and there are possible interactions in between these two mechanisms.

The data in Figure 5.19 show that with increase in φ (transverse steel strength expressed

as a ratio of the total shear force in the joint) the contribution of the main diagonal strut
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Figure 5.20: Relationship of φ with β and bond demand
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to the total strut force decreases. This suggests that at lower values of φ the main diagonal

strut force contribution is more significant and the single strut mechanism dominates the

response. Whereas, for larger φ values, the combined strut-truss mechanism contributes

more significantly to joint load transfer at post-peak load levels.

Figure 5.20(a) shows the relation between strut strength reduction factor, β to ratio of

joint transverse steel strength to total shear demand, φ. Figure 5.20(b) shows the relation

between bond stress to ratio of joint transverse steel strength to total shear demand, φ. No

relation could be observed between theses demand and performance measures.

5.5 Summary

Strut-and-tie models were developed for 75 joints from the data set which spanned the wide

range of material and geometric parameters for reinforced-concrete interior beam-column

joints. The STM followed ACI318-05 Appendix A recommendations and specifications

with the exception that the strut strength reduction factors were not restricted. Three

models, namely single-strut, distributed-truss and combined strut-truss, were considered

for the analysis. Ultimately, the combined strut-truss model was employed for further

evaluation. In the combined strut-truss model, three different propositions were made for

determining the strut widths of the main diagonal compression strut in the joint, which are

1) the total diagonal length of the joint, 2) based on spacing of interior column longitudinal

bars and stirrups, and 3) based on width of compressive region of beams and columns at

nominal moment. Ultimately the third approach was considered the best approach and

was employed to further evaluate strut-stress values, nodal stress values and nodal bond

stress values. These strut-stress values, nodal stress and bond stress values were evaluated

against ACI318-05 recommendations and relationships were investigated between the above

joint demand parameters with several joint performance measures such as drift capacity and

strength loss at the last cycle to determine appropriate recommendations in application of

STM to performance based design of interior joints.

5.6 Conclusion

Several conclusions were obtained from the above research:
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• A strut strength reduction factor of 0.40 is proposed to ensure joints do not exhibit

significant strength loss under seismic loading.

• A strut strength reduction factor of 0.64 is proposed to ensure that joints have suffi-

cient strength to develop the yield strength of beams.

• As transverse steel increases the diagonal strut contribution in the combined mecha-

nism decreases.

• Lower strut stress demand results in higher drift capacity.

• No relation could be obtained in between strut strength reduction factor with strength

loss at last cycle.

• No relation could be obtained between bond strength with response mechanism, drift

capacity and strength loss at last cycle.
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Chapter 6

CONCLUSION AND FUTURE RECOMMENDATIONS FOR

RESEARCH

6.1 Summary of research activities

This thesis documents a study of the behavior and modeling of reinforced-concrete beam-

column joints under seismic loading. Four different types of models of varying complexity

were developed, calibrated and evaluated using an experimental data set comprising joints

with wide range of geometric, material and design parameters. The experimental data set

and each of the model development efforts are summarized in the following paragraphs.

A data set was assembled comprising of 110 previous experimental investigations of

reinforced beam-column joint sub-assemblages. The data set includes only two-dimensional

interior building joint sub-assemblages without slabs, beam eccentricity, or out-of-plane

beams for which response is determined by beam flexural yielding and/or joint failure.

The data set include joints with a wide range of design parameters, but does not include

joints with plain round (smooth) reinforcing steel bars. The data set includes only sub-

assemblages subjected to quasi-static cyclic loading in the laboratory for which there is

enough data recorded for the purpose of modeling and comparison with the simulated

observations. A qualitative evaluation of the data set was performed to determine critical

design parameters. In the data set, a brittle response is associated with joint failure prior to

beam yielding whereas a ductile mechanism is associated with beam yielding prior to joint

failure.

Using the data set, a probabilistic failure-initiation model was developed to determine

the type of failure mechanism (brittle versus ductile) that could be expected for a joint

with a specific set of design parameters. A result of this modeling effort was to develop a

simplistic model that can be used to predict failure with an uncertainty of 10%. Another

result of this modeling effort is quantification of the relative importance of different design
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parameters in determining whether a joint will exhibit brittle or ductile response.

To provide further understanding of interaction of different inelastic mechanisms within

the joint region, a two-dimensional continuum finite element modeling of joints was explored

using DIANA 9.1. The joint model comprised of standard four-node quadrilateral elements

to represent concrete, two-node bar elements to represent reinforcing steel, and interface

bond elements placed between reinforcing bar and concrete. Drucker-Prager plasticity with

a linear tension cutoff, a specified hardening/softening envelope, and tension-softening enve-

lope was used to represent concrete behavior. Reinforcing steel was modeled using J2 plas-

ticity with isotropic hardening. The one-dimensional slip model proposed by Eligehausen

et al. (1983) was used for the bond model. To improve understanding of the software,

constitutive models and simulation of reinforced concrete behavior, a series of benchmark

analyses of relatively simple plain and reinforced concrete components were performed ini-

tially. Good correlation could be observed between the simulated and the experimental

results. To improve understanding of the joint behavior, a series of analyses of two joint:

1) OSJ10 exhibiting ‘JF’ mechanism and 2) OSJ5 exhibiting ‘BYJF’ mechanism were done

with different constitutive models for concrete and bond to capture the inelastic mecha-

nisms of cracking, crushing of concrete and bond-slip behavior of the reinforcing steel. The

modeling effort provided only limited improvement in understanding of joint behavior at a

very high computational cost.

Performance-based design requires accurate prediction of component load and defor-

mation demands. With the objective of developing a computationally robust strategy for

predicting the load-deformation response of joints, a component-based super-element model

for joint was developed. The joint super-element is a four-node, twelve degree-of-freedom

element that can be used in 2D frame analysis of structures. The joint element comprises of

a shear-panel component that simulates strength and stiffness loss due to failure of the joint

core, eight bar-slip springs that simulate stiffness and strength loss due to anchorage-zone

damage, and four interface-shear springs that simulate reduced capacity for shear transfer

at the joint perimeter due to crack opening. The joint represents two primary failure mech-

anisms: shear failure of the joint core and anchorage failure of the reinforcing steel. This

joint element was build on the previous work by Lowes and Altoontash (2003) and uses the
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experimental data set to revise the previous element formulation and calibration methods.

The new joint element includes 1) a revised element formulation that provides accurate

prediction of joint load mechanisms, 2) a new, more accurate, model for simulating joint

shear response that is appropriate for use with a wide range of joint designs and simulates

strength loss due to anchorage zone damage within the joint, and 3) an improved method

for simulating anchorage response of beam and column reinforcing steel that does not im-

pede nonlinear solution algorithms and is not overly conservative in predicting failure. This

modeling effort provided an efficient computationally robust analytical tool for modeling of

2D reinforced beam column joints in frame structures subjected to seismic loading.

To enable the PBSD of joints recommendations for a strut-and-tie modeling of the

joints were developed. A strut-and-tie model represents the flow of forces through a joint

and provides a basis for designing the components, including the reinforcing steel to carry

these forces. Here the recommendations of ACI 318-05 were evaluated for application to

seismic design of joints. For most of the joints in the data set, a simple and refined strut-

and-tie model was developed at the maximum lateral load. Strut, tie and nodal bond

stress demands were determined and the relationship between demands and performance

measures (e.g. drift capacity, strength loss at final load cycle) were evaluated. Ultimately

modifications to ACI 318-05 design codes were developed for PBSD of joints.

6.2 Conclusions about the behavior and modeling of joints

The research presented here supports a number of conclusions about the seismic behavior

and modeling of reinforced-concrete beam-column joints. The following conclusions enable

the advancement of PBSD of joints.

• The probabilistic modeling strategy provides a first-hand estimate of the factors re-

sponsible for failure initiation within the joint region and also identifies the relative

importance of the factors in determination of the failure initiation mechanism in the

joint region.

• The state-of-art commercial continuum finite element packages (e.g. DIANA 9.1) even

though could be utilized to study individual inelastic mechanisms, but cannot be used



173

for study of complex interaction of different inelastic mechanisms due to very high

computational overhead (with regards to both complexity and time) and absence of

stable, robust numerical algorithms for capturing different failure mechanisms simul-

taneously.

• A joint super-element component based model, which was developed and calibrated

as part of the study, provides a good correlation between simulated and observed

load-deformation response of reinforced-concrete beam-column joints and thus can

be utilized as a computationally efficient and robust model in 2D analysis of frame

structures subjected to seismic loading.

• New recommendations were developed for PBSD of joints utilizing strut-and-tie mod-

eling strategy, since the recommendations by ACI 318-05 design codes were found to

be inadequate.

6.3 Comparison of different modeling strategies and their application

The research presented here focussed on four methods of varying complexity for modeling

joints under seismic loading. All of these models have a place in PBSD and comparison of

these models provides additional insight into joint behavior and design.

The probabilistic model is simple to use and provides a measure of the likelihood a

joint will exhibit a specific failure mode. As such, it is an ideal tool for a quick evaluation

of the performance of an existing structure or even a newly designed system. However,

it provides no insight into load-deformation response of the specimen subjected to cyclic

loading. Continuum finite element analysis provides a detailed understanding of the mecha-

nism that controls response. However this cannot be done using the state-of-art commercial

software available today. Additionally it seems likely that the computational demands and

time required for model creation and evaluation of results will make this type of modeling

more appropriate for research than for use by a practicing engineer. For application in the

design office as well as in research, the strut-and-tie model for design and component-based

super-element model for prediction of load-deformation response of the specimen are better

choices. The strut-and-tie model requires the introduction of a number of assumptions and

provides a crude representation of joint response. As such it has the potential for significant
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inaccuracy and requires introduction of a high level of conservatism for application in design.

While the strut-and-tie model provides sufficient information for design, it cannot be used

to generate the load-deformation response history required for PBSD of an entire struc-

ture. Here, the component-based joint super-element is required. This model uses fewer

assumptions about behavior and can be used to determine the mechanism by which a joint

loses strength and stiffness. Additionally the results of this study suggest that the model

provides relatively accurate prediction of response as well as enables efficient simulation of

2D frame response.

Of the models developed and calibrated as part of the study, the joint super-element

appears to most significantly advance the PBSD of joints, while the probabilistic model

appears to provide the greatest amount of information (about the influence of joint demand

parameters on the joint response) for the smallest investment of modeling time. From the

perspective of design by engineers, the strut-and-tie method provides important conservative

recommendations about joint demands and establishes relationship between demand and

performance measures for joints.

6.4 Recommendations for future research

Several recommendations can be made based on the work done in this thesis.

The binomial probabilistic model (discrete choice logit model) can be extended to a

multinomial discrete choice model in which the dependent variables would be the different

failure mechanisms (such as 1) only beam yielding at 4% drift, 2) beam yielding followed

by failure at 4% drift, 3) joint failure prior to beam yielding) instead of just failure initia-

tion mechanisms. Moreover within the framework of probabilistic approach a drift capacity

model or a maximum strength reduction model can be developed for different failure mech-

anisms within the joint region.

The research on continuum finite element methods for joints have not been pursued

further in the thesis due to huge amount of computational overhead associated with the

commercial software DIANA 9.1. Introduction of better numerical algorithms, constitutive

models, and elements might pave the way for a better understanding of the interaction of

different inelastic mechanisms within the joints. The coupling action between the damage
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due to bar-slip and shear response within the joint calls for further research with more

improved concrete constitutive models and numerically stable algorithms.

Improvements can be made in the calibration of the components in the super-element

model such that it is applicable to a wider range of data sets including exterior, knee and

T-shaped joints. A three dimensional joint formulation needs to be developed that can not

only consider all these cases but also considers the case of eccentric joints and joints with

slabs or transverse beams attached to it, since it has been observed experimentally that the

slabs or transverse beams significantly affects the behavior of the joint regions.

Topological optimization of struts and ties within the joint region would pave the way

for a better understanding of the transfer of forces within the joint region with a wide

variety of material and geometry variations. The resultant truss model obtained from the

topological optimization could then be analyzed within the framework of nonlinear finite

element analysis of trusses to obtain a clear load-deformation response analysis of joints.

Currently, in this research it has been assumed that the force transfer within the joint region

is a mechanism between the diagonal strut method and the distributed truss method, based

on experimental investigation and research. Topological optimization might lead to some

entirely new picture of force transfer within the joint region.

The modeling hierarchy presented in here for reinforced concrete beam-column joints

could be utilized to study other different components of a reinforced concrete structure

subjected to seismic loading such as coupling beams, shear walls etc. Usually most of

the research on a structural component is primarily related to experimental investigations

and/or some analytical methodology. But, extensive validation of an analytical methodology

utilizing the work of other researchers is usually very rare. Developing a data-set for other

structural components and performing an extended study of the behavior of that component

will pave the way for better design standards for performance based design of structures.
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Z. P. Bažant, F. C. Caner, I. Carol, M. D. Adley, and S. A. Akers. Microplane model m4
for concrete i: Formulation with work conjugate deviatoric stress. Journal of Engineering
Mechanics, ASCE, 126(9):944–953, 2000.

C. W. Beckingsale. Post elastic behavior of reinforced concrete beam-column joints. PhD
thesis, Department of Civil Engineering, University of Canterbury, Christchurch, New
Zealand, 1980.

A. Belarbi and T. C. Hsu. Constitutive laws of softened concrete in biaxial tension-
compression. ACI Structural Journal, pages 562–573, 1995.

T. Belytschko, J. Fish, and B. E. Engelmann. A finite element with embedded localization
zones. Computational methods in applied mechanics and engineering, 70:59–89, 1988.

T. Belytschko, Y. Y. Lu, and L. Gu. Element free galerkin methods. International Journal
for Numerical Methods in Engineering, 37:229–256, 1994.

M. Ben-Akiva and S. R. Lerman. Discrete choice analysis: theory and application to predict
travel demand. MIT Press, Cambridge, MA, 1985.

K. Bergmeister, J. E. Breen, and J. O. Jirsa. Dimensioning of nodes and development of
reinforcement. In C. Meyer and H. Okamura, editors, IABSE Colloquium, Structural
Concrete, Stuttgart, Germany, pages 551–564, 1991.

D. Besdo. Ein beitrag zur nichtlinearen theorie des cosserat kontinuums. Acta Mechanica,
20:105–131, 1974.

A. Biddah and A. Ghobarah. Modeling of shear deformation and bond slip in reinforced
concrete joints. Structural Engineering and Mechanics, 7(4):413–432, 1999.

F. Biondini, F. Bontempi, and P. G. Malerba. Stress path adapting strut-and-tie models
in cracked and uncracked RC elements. Structural Engineering and Mechanics, 12(6):
685–698, 2001.

G. R. Birss. The elastic behavior of earthquake resistant reinforced concrete interior beam-
column joints. Technical Report Research report 78-13, Department of Civil Engineering,
University of Canterbury, New-Zealand, 1978.



179

J. Blaauwendraad. Realizations and restrictions - application of numerical models to con-
crete structures. In C. Meyer and H. Okamura, editors, Finite Element Analysis of
Reinforced Concrete Structures, Proceedings US-Japan Seminar ASCE, pages 557–578,
1985.

J. Blaauwendraad and H. J. Grootenboer. Essenials for discrete crack analysis. In IABSE
Reports 34, Colloquium for Advanced Mechanics of Reinforced Concrete, Delft University
Press, The Netherlands, pages 263–272, 1981.

R.W.G. Blakeley, L.M. Megget, and M.J.N. Priestley. Seismic performance of two full
size reinforced concrete beam-column joint units. Bulletin of the New-Zealand National
Society for Earthquake Engineering, 8(1):38–69, 1975.

J. E. Bolander and S. Berton. Cohesive zone modeling of fracture in irregular lattices. In
V. C. Li, editor, Fracture Mechanics of Concrete Structures, Ia-FramCOS, pages 989–994,
2004.

J. Bonacci and J. K. Wight. Displacement based assessment of reinforced concrete frames in
earthquakes. In J. K. Wight and M. E. Kreger, editors, ACI Special Publications SP 162:
M. A. Sozen Symposium: A tribute from his students, pages 117–138. ACI, Farmington
Hills, Michigan, 1996.

J. F. Bonacci and S. J. Pantazopoulou. Parametric investigation of joint mechanics. ACI
Structural Journal, 90(1):61–71, 1993.

B. Bresler and K. S. Pister. Strength of concrete under combined stresses. ACI Journal,
55:321–345, 1958.

B. Bresler and A. C. Scordelis. Shear strength of reinforced concrete beams. Journal of
American Concrete Institute, 60:51–72, 1963.

N. H. Burns and C. P. Seiss. Load-deformation characteristics of beam-column connec-
tions in reinforced concrete. Technical Report Civil Engineering Studies, SRS No. 234,
Department of Civil Engineering, University of California, Berkeley, 1962.

B. Carter, P. Wawrzynek, and A. Ingraffea. Automated 3d crack growth simulation. Inter-
national Journal for Numerical Methods in Engineering, 47:229–253, 1998.

J. Cervenka. Mixed mode discrete crack propagation in concrete structures. PhD thesis,
Department of Civil Engineering, University of Colorado, Boulder, Colorado, 1994.

M. Cervera and J. Oliver. Seismic evaluation of concrete dams via continuum damage
models. Earthquake Engineering and Structural Dynamics, 24:1225–1245, 1995.

J. L. Chaboche. Continuum damage mechanics: Part 1 - General concepts. Journal of
Applied Mechanics ASME, 55:59–64, 1988.

W. F. Chen. Plasticity in reinforced concrete. McGraw-Hill New York, 1982.



180

W. F. Chen and D. J. Han. Plasticity for structural engineers. Springer-Verlag, New York
Inc., 1988.

Y. S. Chung, C. Meyer, and M. Shinozuka. Seismic damage assessment of reinforced concrete
members. Technical Report NCEER-87-0022, State University of New-York at Buffalo,
1987.

Y. S. Chung, M. Shinozuka, and C. Meyer. Sarcf users guide - seismic analysis of reinforced
concrete frames. Technical Report NCEER-88-0044, State University of New-York at
Buffalo, 1988.

R. W. Clough, K. L. Benuska, and E. L. Wilson. Inelastic earthquake response of tall build-
ings. In Third World Conference on Earthquake Engineering, New-Zealand, volume 11,
pages 68–89, 1965.

M. P. Collins. Towards a rational theory for reinforced concrete members in shear. Journal
of the Structural Division, ASCE, 104:649–666, 1978.

R. J. Cope, P. V. Rao, L. A. Clark, and P. Norris. Modeling of reinforced concrete behavior
for finite element analysis of bridge slabs. In C. Taylor et al., editor, Numerical Methods
for Nonlinear Problems 1, pages 457–470. Pineridge Press, Swansea, 1980.

W. G. Corley. Rotational capacity of reinforced concrete beam. Journal of the Structural
Division, ASCE, 92(ST5), 1966.

H. A. W. Cornelissen, D. A. Hordijk, and H. W. Reinhardt. Experimental determination
of crack softening characteristics of normal-weight and light-weight concrete. Heron, 31
(2):1–22, 1986.
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J. Ožbolt and R. Eligehausen. Simulation of cycling bond behavior. In Z. P. et al. Bažant,
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J. Schlaich, K. Schäfer, and M. Jennewein. Towards a consistent design of structural con-
crete. PCI Journal, 32(3):74–150, 1987.

M. H. Scott and G. L. Fenves. Plastic hinge integration methods for force based beam-
column elements. Journal of Structural Engineering, ASCE, 132(2):244–252, 2006.

S. A. Sheikh and S. M. Uzumeri. Analytical model for concrete confinement in tied columns.
Journal of the Structural Division, ASCE, 108:2703–2722, 1982.

H. Shima, L. L. Chou, and H. Okamura. Bond characteristics in the post yield range of
deformed bars. Concrete Library of Japan Society of Civil Engineering, 10:113–124, 1987.

M. Shin and J. M. LaFave. Modeling of cyclic joint shear deformation contributions in
RC beam column connections to overall frame behavior. Structural Engineering and
Mechanics, 18(5):645–669, 2004.

H. Shiohara. New model for shear failure of RC interior beam-column connections. Journal
of Structural Engineering, ASCE, 127(2):152–160, 2001.

J. M. Shipman and K. H. Gerstle. Bond deterioration in concrete panels under load cycles.
ACI Journal, 76(2):311–325, 1979.

S. Shirai and H. Noguchi. Compressive deterioration of cracked concrete. In ASCE Struc-
tures Congress 1989: Design, Analysis and Testing, New-York, pages 1–10, 1989.

J. C. Simo and J. W. Ju. Stress and strain based continuum damage models - i. formulation.
International Journal of Solids and Structures, 23:821–840, 1987.

J. C. Simo and J. Oliver. A new approach to the analysis and simulation of strain softening
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Appendix A

EXPERIMENTAL SPECIMEN DATA

Table A.1: Specimen geometry data

Specimen Joint geometry (mm) Beam geometry (mm) Column geometry aspect

height width depth length depth cover length depth cover ratio

Hj Wj Dj Lb Db Cb Lc Dc Cc ι

Durrani & X1 420 362 362 2498 280 51 2251 362 51 1.16

Wight X2 420 362 362 2498 280 51 2251 362 51 1.16

(1982) X3 420 362 362 2498 280 51 2251 362 51 1.16

Otani, J1 300 300 300 2440 200 51 1280 300 51 1.00

Kobayashi J2 300 300 300 2440 200 51 1280 300 51 1.00

& Aoyama J3 300 300 300 2440 200 51 1280 300 51 1.00

(1984) J4 300 300 300 2440 200 51 1280 300 51 1.00

J5 300 300 300 2440 200 51 1280 300 51 1.00

J6 300 300 300 2440 200 51 1280 300 51 1.00

Meinheit U1 458 458 331 4883 280 35 3662 331 38 1.00

& Jirsa U2 458 458 331 4883 280 35 3662 331 38 1.00

(1977) U3 458 458 331 4883 280 35 3662 331 38 1.00

U5 458 458 331 4883 280 35 3662 331 38 1.00

U6 458 458 331 4883 280 35 3662 331 38 1.00

U12 458 458 331 4883 280 35 3662 331 38 1.00

U13 458 458 331 4883 280 35 3662 331 38 1.00

Walker, PEER14 509 458 407 4069 407 38 2174 407 38 1.11

(2001) & PEER22 509 458 407 4069 407 38 2174 407 38 1.11

Alire PEER0850 509 458 407 4069 407 25 2174 407 25 1.11

(2002) PEER0995 509 458 407 4069 407 25 2174 407 25 1.11

PEER4150 509 458 407 4069 407 25 2174 407 25 1.11

Park & U1 457 406 305 4238 229 42 2473 305 43 1.13

Ruitong U2 457 406 305 4238 229 45 2473 305 44 1.13

(1988) U3 457 406 305 4238 229 42 2473 305 43 1.13

continued on next page
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continued from previous page

Hj Wj Dj Lb Db Cb Lc Dc Cc ι

U4 457 406 305 4238 229 45 2473 305 44 1.13

Noguchi & J1 300 300 300 2700 200 35 1470 300 40 1.00

Kashiwazaki J3 300 300 300 2700 200 35 1470 300 40 1.00

(1992) J4 300 300 300 2700 200 35 1470 300 40 1.00

J5 300 300 300 2700 200 35 1470 300 40 1.00

J6 300 300 300 2700 200 35 1470 300 40 1.00

Oka & J1 300 300 300 2860 240 30 1440 300 30 1.00

Shiohara J2 300 300 300 2860 240 30 1440 300 30 1.00

(1992) J4 300 300 300 2860 240 30 1440 300 30 1.00

J5 300 300 300 2860 240 30 1440 300 30 1.00

J6 300 300 300 2860 240 30 1440 300 30 1.00

J7 300 300 300 2860 240 30 1440 300 30 1.00

J8 300 300 300 2860 240 30 1440 300 30 1.00

J10 300 300 300 2860 240 30 1440 300 30 1.00

J11 300 300 300 2860 240 30 1440 300 30 1.00

Kitayama, J1 300 300 300 2700 200 30 1470 300 30 1.00

Otani & J6 300 300 300 2700 200 30 1470 300 30 1.00

Aoyama C1 300 300 300 2700 200 30 1470 300 30 1.00

(1987) C3 300 300 300 2700 200 30 1470 300 30 1.00

Park & U1 457 406 305 5740 229 30 3217 305 42 1.13

Milburn (1983) U2 457 406 305 5740 229 30 3217 305 42 1.13

Endoh, Kamura HC 300 300 300 2700 200 30 1470 300 40 1.00

Otani & HLC 300 300 300 2700 200 30 1470 300 40 1.00

Aoyama LA1 300 300 300 2700 200 35 1470 300 40 1.00

(1991) A1 300 300 300 2700 200 35 1470 300 40 1.00

Higashi & SD35Aa-4 300 200 200 2000 150 30 1700 200 30 1.50

Ohwada SD35Aa-7 300 200 200 2000 150 30 1700 200 30 1.50

(1969) SD35Aa-8 300 200 200 2000 150 30 1700 200 30 1.50

LSD35Aa-1 300 200 200 2000 150 30 1700 200 30 1.50

LSD35Aa-2 300 200 200 2000 150 30 1700 200 30 1.50

LSD35Ab-1 300 200 200 2000 150 30 1700 200 30 1.50

LSD35Ab-2 300 200 200 2000 150 30 1700 200 30 1.50

Beckingsale U11 610 457 457 4877 356 41 3354 457 43 1.33

(1980) U12 610 457 457 4877 356 41 3354 457 43 1.33

Atalla & SHC1 203 178 127 2102 127 20 832 127 20 1.14

Agababian SHC2 203 178 127 2102 127 20 832 127 20 1.14

(2004) SOC3 203 178 127 2102 127 20 832 127 20 1.14

Birss, Park B1 610 457 457 5177 356 35 3430 457 40 1.33

& Paulay (1978) B2 610 457 457 5177 356 35 3430 457 40 1.33

continued on next page
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Hj Wj Dj Lb Db Cb Lc Dc Cc ι

Teraoka, HJ1 400 400 400 3000 300 35 2000 400 40 1.00

Kanoh, HJ2 400 400 400 3000 300 35 2000 400 40 1.00

Hayashi HJ3 400 400 400 3000 300 35 2000 400 40 1.00

& Sasaki HJ4 400 400 400 3000 300 35 2000 400 40 1.00

(1997) HJ5 400 400 400 3000 300 35 2000 400 40 1.00

HJ6 400 400 400 3000 300 35 2000 400 40 1.00

HJ7 400 400 400 3000 300 35 2000 400 40 1.00

HJ8 400 400 400 3000 300 35 2000 400 40 1.00

HJ9 400 400 400 3000 300 35 2000 400 40 1.00

HJ10 400 400 400 3000 300 35 2000 400 40 1.00

HJ11 400 400 400 3000 300 35 2000 400 40 1.00

HJ12 400 400 400 3000 300 35 2000 400 40 1.00

HJ13 400 400 400 3000 300 35 2000 400 40 1.00

HJ14 400 400 400 3000 300 35 2000 400 40 1.00

Hayashi, NO43 400 400 400 3000 300 45 2000 400 45 1.00

Teraoka, NO44 400 400 400 3000 300 45 2000 400 45 1.00

Mollick NO45 400 400 400 3000 300 45 2000 400 45 1.00

& Kanoh NO46 400 400 400 3000 300 45 2000 400 45 1.00

(1994) NO47 400 400 400 3000 300 45 2000 400 45 1.00

NO48 400 400 400 3000 300 45 2000 400 45 1.00

NO49 400 400 400 3000 300 45 2000 400 45 1.00

NO50 400 400 400 3000 300 45 2000 400 45 1.00

HNO8 400 400 400 3000 300 45 2000 400 45 1.00

HNO9 400 400 400 3000 300 45 2000 400 45 1.00

HNO10 400 400 400 3000 300 45 2000 400 45 1.00

Teraoka, HNO1 400 400 400 2800 300 45 1800 400 45 1.00

Kanoh, HNO2 400 400 400 2800 300 45 1800 400 45 1.00

Tanaka & HNO3 400 400 400 2800 300 45 1800 400 45 1.00

Hayashi HNO4 400 400 400 2800 300 45 1800 400 45 1.00

(1994) HNO5 400 400 400 2800 300 45 1800 400 45 1.00

HNO6 400 400 400 2800 300 45 1800 400 45 1.00

Zaid S1 300 300 300 2390 200 35 1020 300 35 1.00

(2001) S2 300 300 300 2390 300 35 1020 300 35 1.00

S3 300 300 300 2390 200 35 1020 300 35 1.00

Joh, B1 350 300 300 3000 150 30 1750 300 30 1.17

Goto & B2 350 300 300 3000 280 30 1750 300 30 1.17

Shibata B8HH 350 300 300 3300 200 30 1750 300 30 1.17

(1991) B8HL 350 300 300 3300 200 30 1750 300 30 1.17

B8LH 350 300 300 3300 200 30 1750 300 30 1.17

continued on next page
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Hj Wj Dj Lb Db Cb Lc Dc Cc ι

B8MH 350 300 300 3300 200 30 1750 300 30 1.17

B9 350 300 300 3300 200 30 1750 300 30 1.17

B10 350 300 300 3300 200 30 1750 300 30 1.17

B11 350 300 300 3300 200 30 1750 300 30 1.17

Fujii & A1 250 220 220 2000 160 25 1500 220 30 1.14

Morita A2 250 220 220 2000 160 25 1500 220 30 1.14

(1991) A3 250 220 220 2000 160 25 1500 220 30 1.14

A4 250 220 220 2000 160 25 1500 220 30 1.14

where height of the joint, Hj, is equal to the in-plane height of the beam section; width

of the joint, Wj , is equal to the in-plane height of the column section, Dc and Db are the

out-of-plane depth of the column and beam section respectively, and Dj is the depth of the

joint taken equal to the maximum of Db and Dc. Lb is the total length of beams and Lc the

total height of the columns. The term ι is defined in chapter 2 and represents the aspect

ratio of the joint.
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Table A.2: Specimen material data (concrete compressive strength and beam reinforcement

details)

Specimen Concrete Beam reinforcement details

fc Top longitudinal Bottom longitudinal Transverse

db bt fy bt nbbt db bb fy bb nbbb As bhp fy bhp spbhp ̟

MPa mm MPa mm MPa mm2 MPa mm

DW-X1 34.34 22 331 4 19 345 4 71 337 89 1.31

DW-X2 33.66 22 331 4 19 345 4 71 337 89 1.31

DW-X3 31.03 22 331 3 19 345 3 71 337 89 1.31

OKA-J1 25.70 13 401 8 13 401 4 28 368 50 2.00

OKA-J2 24.03 13 401 8 13 401 4 28 368 50 2.00

OKA-J3 24.03 13 401 8 13 401 4 28 368 50 2.00

OKA-J4 25.70 13 401 8 13 401 4 28 368 50 2.00

OKA-J5 28.74 13 401 8 13 401 4 28 368 50 2.00

OKA-J6 28.74 13 346 4 13 346 3 28 368 100 1.33

MJ-U1 26.21 32 449 3 25 406 3 71 485 89 1.79

MJ-U2 41.79 32 449 3 25 406 3 71 485 89 1.79

MJ-U3 26.62 32 449 3 25 406 3 71 485 89 1.79

MJ-U5 35.86 32 449 3 25 406 3 71 485 89 1.79

MJ-U6 36.76 32 449 3 25 406 3 71 485 89 1.79

MJ-U12 35.17 32 449 3 25 406 3 71 485 89 1.79

MJ-U13 41.31 32 449 3 25 406 3 71 485 89 1.79

W-PEER14 31.77 22 423 4 16 503 4 129 662 89 1.65

W-PEER22 38.41 22 528 6 22 528 4 129 662 89 1.50

A-PEER0850 34.97 22 504 2 22 504 2 129 536 89 1.00

A-PEER0995 60.46 22 504 5 22 504 3 129 536 89 1.67

A-PEER4150 32.99 29 541 6 29 545 6 129 536 89 0.99

PR-U1 45.89 16 294 5 16 294 2 28 282 80 2.50

PR-U2 36.00 28 314 2 20 300 2 38 364 80 2.05

PR-U3 36.19 16 294 5 16 294 2 28 282 80 2.50

PR-U4 40.10 28 314 2 20 300 2 38 364 80 2.05

NK-J1 70.00 13 718 9 13 718 7 28 955 50 1.29

NK-J3 107.00 13 718 10 13 718 10 28 955 50 1.00

NK-J4 70.00 13 718 9 13 718 7 28 955 50 1.29

NK-J5 70.00 13 718 10 13 718 10 28 955 50 1.00

NK-J6 53.50 13 718 8 13 718 7 28 955 50 1.14

continued on next page
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fc db bt fy bt nbbt db bb fy bb nbbb As bhp fy bhp spbhp ̟

OS-J1 81.20 13 638 9 13 638 7 28 1374 50 1.29

OS-J2 81.20 13 1456 8 13 1456 8 28 1374 50 1.00

OS-J4 72.80 13 515 10 13 515 10 28 1374 50 1.00

OS-J5 72.80 13 839 9 13 839 7 28 1374 50 1.29

OS-J6 79.20 13 676 9 13 676 7 28 775 50 1.29

OS-J7 79.20 13 676 7 13 676 5 28 857 50 1.40

OS-J8 79.20 19 370 9 19 370 7 28 775 50 1.29

OS-J10 39.20 13 700 9 13 700 7 28 598 50 1.29

OS-J11 39.20 19 372 9 19 372 7 28 401 50 1.29

KOA-J1 25.69 13 401 8 13 401 4 28 368 50 2.00

KOA-J6 25.69 13 346 4 13 346 3 28 324 100 1.33

KOA-C1 25.60 10 320 12 10 320 6 28 324 50 2.00

KOA-C3 25.60 10 320 12 10 320 6 28 324 50 2.00

PM-U1 41.30 16 315 8 16 315 8 79 321 89 1.00

PM-U2 46.90 20 307 4 20 307 4 79 321 125 1.00

EKOA-HC 41.48 10 374 12 10 374 12 28 420 50 1.00

EKOA-HLC 40.60 10 368 12 10 368 12 28 373 50 1.00

EKOA-LA1 34.81 13 801 8 13 801 4 28 420 40 2.00

EKOA-A1 30.60 13 780 8 13 780 4 28 422 40 2.00

HO-SD35Aa-4 30.40 10 419 3 10 419 3 13 350 50 1.00

HO-SD35Aa-7 38.05 10 400 3 10 400 3 13 350 50 1.00

HO-SD35Aa-8 38.05 10 400 3 10 400 3 13 350 50 1.00

HO-LSD35Aa-1 41.09 10 400 3 10 400 3 13 350 50 1.00

HO-LSD35Aa-2 41.09 10 400 3 10 400 3 13 350 50 1.00

HO-LSD35Ab-1 41.09 10 400 3 10 400 3 13 350 50 1.00

HO-LSD35Ab-2 41.09 10 400 3 10 400 3 13 350 50 1.00

B-U11 35.90 19 298 8 19 298 4 31 330 76 2.00

B-U12 34.60 19 298 6 19 298 6 31 330 76 1.00

AA-SHC1 56.54 10 413 3 10 413 3 32 551 76 1.00

AA-SHC2 59.55 10 413 3 10 413 3 32 551 76 1.00

AA-SOC3 47.20 10 413 3 10 413 3 32 551 76 1.00

BPP-B1 27.90 20 288 8 20 288 8 33 398 75 1.00

BPP-B2 31.52 20 288 8 20 288 8 33 398 75 1.00

TKHS-HJ1 53.98 19 382 4 19 382 4 32 312 75 1.00

TKHS-HJ2 53.98 16 624 4 16 624 4 32 312 75 1.00

TKHS-HJ3 53.98 19 858 2 19 858 2 32 347 85 1.00

TKHS-HJ4 53.98 19 382 6 19 382 6 32 608 100 1.00

TKHS-HJ5 53.98 19 645 4 19 645 4 32 608 100 1.00

TKHS-HJ6 53.98 19 858 3 19 858 3 32 608 75 1.00

continued on next page
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fc db bt fy bt nbbt db bb fy bb nbbb As bhp fy bhp spbhp ̟

TKHS-HJ7 88.33 22 422 6 22 422 6 32 608 75 1.00

TKHS-HJ8 88.33 22 599 4 22 599 4 32 608 75 1.00

TKHS-HJ9 88.33 19 858 4 19 858 4 32 608 75 1.00

TKHS-HJ10 88.33 16 611 8 16 611 8 32 608 80 1.00

TKHS-HJ11 88.33 22 441 8 22 441 8 32 608 60 1.00

TKHS-HJ12 88.33 22 604 8 22 604 8 32 608 50 1.00

TKHS-HJ13 117.77 18 623 8 18 623 8 32 608 60 1.00

TKHS-HJ14 117.77 22 604 8 22 604 8 32 608 50 1.00

HTMK-NO43 54.27 19 383 4 19 383 4 28 312 75 1.00

HTMK-NO44 54.27 16 624 4 16 624 4 28 312 75 1.00

HTMK-NO45 54.27 22 599 4 22 599 4 28 312 75 1.00

HTMK-NO46 54.27 19 858 2 19 858 2 79 347 85 1.00

HTMK-NO47 54.27 19 382 6 19 382 6 28 755 100 1.00

HTMK-NO48 54.27 19 645 4 19 645 4 28 755 100 1.00

HTMK-NO49 54.27 22 599 5 22 599 5 28 755 100 1.00

HTMK-NO50 54.27 19 858 3 19 858 3 28 755 75 1.00

HTMK-HNO8 87.97 22 422 6 22 422 6 28 755 75 1.00

HTMK-HNO9 87.97 22 599 4 22 599 4 28 755 75 1.00

HTMK-HNO10 87.97 19 858 4 19 858 4 28 755 75 1.00

TKTH-HNO1 88.72 16 611 8 16 611 8 28 604 80 1.00

TKTH-HNO2 88.72 16 611 8 16 611 8 28 604 60 1.00

TKTH-HNO3 88.72 22 442 8 22 442 8 28 604 60 1.00

TKTH-HNO4 88.72 22 605 8 22 605 8 28 604 50 1.00

TKTH-HNO5 116.98 18 623 8 18 623 8 28 604 60 1.00

TKTH-HNO6 116.98 22 605 8 22 605 8 28 604 50 1.00

Z-S1 24.02 10 390 5 10 390 5 32 390 50 1.00

Z-S2 24.02 12 355 12 12 355 12 32 390 50 1.00

Z-S3 24.02 16 465 5 16 465 5 32 390 50 1.00

JGS-B1 21.20 13 371 3 13 371 3 28 307 100 1.00

JGS-B2 22.54 13 371 3 13 371 3 28 307 100 1.00

JGS-B8HH 25.61 13 404 3 13 404 3 28 377 50 1.00

JGS-B8HL 27.41 13 404 3 13 404 3 28 377 100 1.00

JGS-B8LH 26.90 13 404 3 13 404 3 28 377 50 1.00

JGS-B8MH 28.11 13 404 3 13 404 3 28 377 50 1.00

JGS-B9 25.60 13 404 3 13 404 3 28 377 100 1.00

JGS-B10 24.90 13 404 3 13 404 3 28 377 100 1.00

JGS-B11 25.90 13 404 3 13 404 3 28 377 100 1.00

FM-A1 40.22 10 1069 8 10 1069 8 28 291 80 1.00

FM-A2 40.22 10 409 8 10 409 8 28 291 80 1.00

continued on next page
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fc db bt fy bt nbbt db bb fy bb nbbb As bhp fy bhp spbhp ̟

FM-A3 40.22 10 1069 8 10 1069 8 28 291 80 1.00

FM-A4 40.22 10 1069 8 10 1069 8 28 291 80 1.00

where fc represents concrete compressive stress, (·)bt represents the parameters for top

longitudinal beam bar, (·)bb represents parameters for bottom longitudinal beam bars and

(·)bhp represent parameters for longitudinal beam hoop steel. The terms db represents the

diameter of the longitudinal bar, fy represents the yield stress of the bar, nb the number of

bars, sp the spacing of hoop steel, As the cross-sectional area of the transverse steel. The

term varpi has been defined in chapter 2 and represents the ratio of top longitudinal beam

bar force the bottom longitudinal beam bar force at yield.
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Table A.3: Specimen material data (Column and joint reinforcement details)

Specimen Column reinforcement Joint reinforcement

Longitudinal Transverse Hoop

db col fy col nbcol As chp fy chp spchp db jhp fy jhp spjhp njhp config.

mm MPa mm2 MPa mm mm MPa mm

DW-X1 25 414 8 129 352 89 13 352 153 2 2SD

DW-X2 25 414 8 129 352 89 13 352 76 3 2SD

DW-X3 22 331 8 129 352 89 13 352 153 2 2SD

OKA-J1 13 401 16 28 368 80 6 368 75 3 2S

OKA-J2 13 401 16 28 368 80 6 368 75 3 4S

OKA-J3 13 401 16 28 368 80 6 368 25 7 4S

OKA-J4 13 401 16 28 368 80 6 368 75 3 2S

OKA-J5 13 401 10 28 368 80 6 368 75 3 2S

OKA-J6 10 362 12 28 368 50 6 368 50 5 2S

MJ-U1 22 457 8 129 409 89 13 409 153 2 2S

MJ-U2 32 449 8 129 409 89 13 409 153 2 2S

MJ-U3 36 402 10 129 409 89 13 409 153 2 2S

MJ-U5 32 449 8 129 409 89 13 409 153 2 2S

MJ-U6 32 449 8 129 409 89 13 409 153 2 2S

MJ-U12 32 449 8 129 409 89 16 423 51 6 2S

MJ-U13 32 449 8 129 409 89 13 409 51 6 2S

W-PEER14 22 423 8 129 662 89 0 0 0 0 0

W-PEER22 29 538 8 129 662 89 0 0 0 0 0

A-PEER0850 13 537 8 129 536 89 0 0 0 0 0

A-PEER0995 19 505 8 129 536 89 0 0 0 0 0

A-PEER4150 29 545 10 129 536 89 0 0 0 0 0

PR-U1 16 498 8 28 282 60 12 283 75 5 2SD

PR-U2 20 476 8 38 364 60 12 283 80 5 2SD

PR-U3 16 498 8 28 282 60 6 282 75 5 2SD

PR-U4 20 476 8 38 364 60 10 320 80 5 2SD

NK-J1 13 718 20 28 955 40 6 955 50 3 4S

NK-J3 13 718 22 28 955 40 6 955 50 3 4S

NK-J4 13 718 20 28 955 40 6 955 50 3 4S

NK-J5 13 718 24 28 955 40 6 955 50 3 4S

NK-J6 13 718 20 28 955 40 6 955 50 3 4S

continued on next page
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db col fy col nbcol As chp fy chp spchp db jhp fy jhp spjhp njhp config.

OS-J1 13 638 24 28 1374 50 6 1374 50 5 2S

OS-J2 13 1456 24 28 1374 50 6 1374 50 5 2S

OS-J4 13 515 24 28 1374 50 6 1374 50 5 2S

OS-J5 13 839 24 28 1374 50 6 1374 50 5 2S

OS-J6 13 676 24 28 775 50 6 775 100 3 2S

OS-J7 13 676 24 28 857 50 6 857 50 5 2S

OS-J8 19 370 24 28 775 50 6 775 50 5 2S

OS-J10 13 700 24 28 598 50 6 598 50 5 2S

OS-J11 19 372 24 28 401 50 6 401 50 5 2S

KOA-J1 13 401 16 28 375 80 6 368 70 3 2S

KOA-J6 10 320 12 28 375 80 6 324 50 5 2S

KOA-C1 13 422 16 28 335 50 6 324 70 3 2S

KOA-C3 13 422 16 28 335 50 10 324 45 5 4S

PM-U1 24 473 6 79 321 60 16 320 52 8 3S

PM-U2 24 473 6 79 321 60 16 320 65 6 3S

EKOA-HC 16 369 12 28 420 50 6 282 60 2 2S

EKOA-HLC 16 360 12 28 373 50 6 290 60 2 2S

EKOA-LA1 16 550 16 28 420 40 6 286 45 3 2S

EKOA-A1 16 539 16 28 422 40 6 320 45 3 2S

HO-SD35Aa-4 10 419 8 13 350 40 4 350 60 5 2S

HO-SD35Aa-7 10 400 8 13 350 40 4 350 60 5 2S

HO-SD35Aa-8 10 400 8 13 350 40 4 350 60 5 2S

HO-LSD35Aa-1 10 400 8 13 350 40 4 350 60 5 2S

HO-LSD35Aa-2 10 400 8 13 350 40 4 350 60 5 2S

HO-LSD35Ab-1 10 400 8 13 350 40 4 350 60 5 2S

HO-LSD35Ab-2 10 400 8 13 350 40 4 350 60 5 2S

B-U11 22 423 12 127 336 50 13 336 68 8 4S

B-U12 22 422 12 127 336 50 13 336 68 8 4S

AA-SHC1 13 413 4 32 551 51 6 551 100 1 2S

AA-SHC2 13 413 4 32 551 51 6 551 50 2 2S

AA-SOC3 13 413 4 32 551 51 6 551 50 2 2S

BPP-B1 24 427 12 127 346 120 13 346 153 4 4S

BPP-B2 24 427 12 33 398 120 7 398 153 4 4S

TKHS-HJ1 19 383 12 71 347 100 10 347 50 8 2S

TKHS-HJ2 19 383 12 71 347 100 10 347 50 8 2S

TKHS-HJ3 19 383 12 71 347 100 10 347 50 8 2S

TKHS-HJ4 19 646 12 71 347 100 10 347 50 8 2S

TKHS-HJ5 19 646 12 71 347 100 10 347 50 8 2S

TKHS-HJ6 19 646 12 71 347 100 10 347 50 8 2S

continued on next page
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db col fy col nbcol As chp fy chp spchp db jhp fy jhp spjhp njhp config.

TKHS-HJ7 19 646 12 71 347 100 8 681 50 8 2SD

TKHS-HJ8 19 646 12 71 347 100 8 681 50 8 2SD

TKHS-HJ9 19 646 12 71 347 100 8 681 50 8 2SD

TKHS-HJ10 21 614 12 71 343 50 8 681 50 8 2SD

TKHS-HJ11 21 442 12 71 343 50 8 681 50 8 2SD

TKHS-HJ12 21 614 12 71 343 50 8 681 50 8 2SD

TKHS-HJ13 21 614 12 71 343 50 8 681 50 8 2SD

TKHS-HJ14 21 614 12 71 343 50 8 681 50 8 2SD

HTMK-NO43 19 383 12 79 347 100 10 347 50 8 2S

HTMK-NO44 19 383 12 79 347 100 10 347 50 8 2S

HTMK-NO45 19 383 12 79 347 100 10 347 50 8 2S

HTMK-NO46 19 383 12 79 347 100 10 347 50 8 2S

HTMK-NO47 19 645 12 79 347 100 10 347 50 8 2S

HTMK-NO48 19 645 12 79 347 100 10 347 50 8 2S

HTMK-NO49 19 645 12 79 347 100 10 347 50 8 2S

HTMK-NO50 19 645 12 79 347 100 10 347 50 8 2S

HTMK-HNO8 19 645 12 79 347 100 8 797 50 8 2SD

HTMK-HNO9 19 645 12 79 347 100 8 797 50 8 2SD

HTMK-HNO10 19 645 12 79 347 100 8 797 50 8 2SD

TKTH-HNO1 22 610 12 79 343 50 8 681 50 8 2SD

TKTH-HNO2 22 610 12 79 343 50 8 681 50 8 2SD

TKTH-HNO3 22 442 12 79 343 50 8 681 50 8 2SD

TKTH-HNO4 22 610 12 79 343 50 8 681 50 8 2SD

TKTH-HNO5 22 610 12 79 343 50 8 681 50 8 2SD

TKTH-HNO6 22 610 12 79 343 50 8 681 50 8 2SD

Z-S1 19 450 12 32 390 40 6 390 60 4 2S

Z-S2 19 450 12 32 390 40 6 390 60 4 2S

Z-S3 19 450 12 32 390 40 6 390 60 4 2S

JGS-B1 13 371 8 28 307 50 6 307 88 3 2S

JGS-B2 13 371 8 28 307 50 6 307 88 6 4S

JGS-B8HH 13 404 14 28 377 50 5 1320 43 6 4S

JGS-B8HL 13 404 14 28 377 50 5 1320 43 6 4S

JGS-B8LH 13 404 14 28 377 50 6 377 88 3 2S

JGS-B8MH 13 404 14 28 377 50 6 377 45 5 2S

JGS-B9 13 404 14 28 377 50 5 1320 43 6 4S

JGS-B10 13 404 14 28 377 50 5 1320 43 6 4S

JGS-B11 13 404 14 28 377 50 5 1320 43 6 4S

FM-A1 13 644 16 28 291 80 6 291 60 3 2S

FM-A2 13 388 16 28 291 80 6 291 60 3 2S

continued on next page
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db col fy col nbcol As chp fy chp spchp db jhp fy jhp spjhp njhp config.

FM-A3 13 644 16 28 291 80 6 291 60 3 2S

FM-A4 13 644 16 28 291 80 6 291 45 4 4S

where (·)col represents parameters for the longitudinal column steel, (·)chp represents pa-

rameters for the column hoop steel, (·)jhp represents parameters for the joint stirrup steel.

The terms db represents the diameter of the longitudinal bar, fy represents the yield stress

of the bar, nb the number of bars, sp the spacing of hoop steel, As the cross-sectional area

of the transverse steel, n the actual number of hoop steel in that region. The term config

represents the pattern of arrangement of the stirrup steel in the joint, where S refers to a

square orientation, SD refers to a square and diamond orientation and numbers associated

with them represents the number of legs of the stirrups.
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Table A.4: Specimen drift and load data

Specimen Ax ld Drft mx Lat ld Fail Str los Fail Drft Str lss Drft

Ttl Rat lat ld mx yld int lst cyc mech cap drft cap lst cyc

P p Dmx Vmx Vyld Fint Slmx Fmch Dcap Sldcap Dlst

N % N N % % % %

DW-X1 244750 0.05 2.54 191350 128015 B 24.36 BYJF 5.08 16.28 5.93

DW-X2 244750 0.06 3.38 200250 128030 B 19.45 BY 5.86 19.45 5.86

DW-X3 214490 0.05 3.67 160200 97660 B 13.89 BY 5.88 13.89 5.88

OKA-J1 176168 0.08 5.00 114509 77338 B 18.19 BY 7.50 18.19 7.50

OKA-J2 176168 0.08 5.00 118532 77271 B 17.20 BY 7.50 17.20 7.50

OKA-J3 176168 0.08 5.00 131582 77271 B 15.77 BY 7.50 15.77 7.50

OKA-J4 704672 0.30 2.50 111860 77338 B 39.00 BYJF 5.00 8.30 7.50

OKA-J5 176168 0.07 3.78 133447 77939 B 36.41 BYJF 5.00 1.00 7.50

OKA-J6 528504 0.20 2.50 98067 50040 B 30.00 BYJF 5.00 15.00 7.50

MJ-U1 1588650 0.40 NA 108160 162460 J NA JF NA NA NA

MJ-U2 1602000 0.25 NA 158222 163393 J NA JF NA NA NA

MJ-U3 1584200 0.39 NA 121139 162485 J NA JF NA NA NA

MJ-U5 213600 0.04 NA 152042 163005 J NA JF NA NA NA

MJ-U6 2683350 0.48 NA 163785 163062 J NA JF NA NA NA

MJ-U12 1615350 0.30 NA 192524 162960 B NA BYJF NA NA NA

MJ-U13 1570850 0.25 NA 153896 163361 J NA JF NA NA NA

W-PEER14 590293 0.10 2.83 267227 157761 B 33.38 BYJF 4.00 11.60 5.00

W-PEER22 713869 0.10 1.89 359606 325198 B 38.13 BYJF 4.00 18.75 5.00

A-PEER0850 649789 0.10 2.83 209328 188279 B 4.34 BY 5.00 4.34 5.00

A-PEER0995 1123581 0.10 2.53 415800 281781 B 25.08 BYJF 4.00 16.00 5.00

A-PEER4150 612988 0.10 1.69 560700 732233 J 40.48 JF 3.00 4.00 5.00

PR-U1 110000 0.02 4.25 80300 40463 B 0.00 BY 4.25 0.00 4.25

PR-U2 134000 0.03 3.03 111700 71433 B 15.00 BY 4.25 15.00 4.25

PR-U3 110000 0.02 2.43 79400 40244 B 12.00 BY 4.25 12.00 4.25

PR-U4 134000 0.03 3.03 106500 71925 B 25.00 BYJF 3.64 2.00 4.25

NK-J1 756000 0.12 2.04 236470 233613 B 31.23 BYJF 4.08 15.34 5.10

NK-J3 1155600 0.12 3.06 300000 316469 J 15.15 JF 5.10 15.15 5.10

NK-J4 756000 0.12 3.06 249700 233613 B 21.29 BYJF 4.08 6.00 5.10

NK-J5 756000 0.12 3.06 245690 312147 J 36.04 JF 4.08 16.68 5.10

NK-J6 577800 0.12 3.06 217760 229945 J 28.42 JF 4.08 17.34 5.10

continued on next page
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P p Dmx Vmx Vyld Fint Slmx Fmch Dcap Sldcap Dlst

OS-J1 834000 0.11 3.00 257000 198703 B 23.68 BYJF 4.00 10.89 5.00

OS-J2 834000 0.11 3.00 276000 506902 J 8.63 JF 5.00 8.63 5.00

OS-J4 834000 0.13 3.00 265000 221177 B 18.58 BY 5.00 18.58 5.00

OS-J5 834000 0.13 3.00 297000 257380 B 24.06 BYJF 4.00 8.42 5.00

OS-J6 834000 0.12 3.00 274000 208393 B 24.84 BYJF 4.00 12.04 5.00

OS-J7 834000 0.12 3.00 219000 164031 B 10.00 BY 5.00 10.00 5.00

OS-J8 834000 0.12 2.00 311000 254093 B 36.94 BYJF 3.00 10.62 5.00

OS-J10 417000 0.12 2.00 196000 210975 J 28.55 JF 4.00 17.35 5.00

OS-J11 417000 0.12 2.00 232000 244500 J 40.82 JF 3.00 10.78 5.00

KOA-J1 176520 0.08 4.35 114738 78065 B 15.00 BY 6.12 15.00 6.12

KOA-J6 176520 0.08 2.18 82000 49024 B 32.00 BYJF 4.08 12.50 6.12

KOA-C1 176520 0.08 4.35 100000 82526 B 3.00 BY 7.14 3.00 7.14

KOA-C3 176520 0.08 4.35 98039 82526 B 2.00 BY 7.14 2.00 7.14

PM-U1 511418 0.10 4.18 128735 121437 B 10.00 BY 6.56 10.00 6.56

PM-U2 580763 0.10 4.18 140065 107011 B 31.00 BYJF 6.56 1.00 8.44

EKOA-HC 176520 0.05 4.35 126702 107566 B 3.56 BY 6.53 3.56 6.53

EKOA-HLC 176520 0.05 2.18 126702 105766 B 27.40 BYJF 4.35 5.00 6.53

EKOA-LA1 176520 0.06 4.08 159848 144630 J 18.24 JF 6.67 18.24 6.67

EKOA-A1 176520 0.06 4.08 150042 139698 J 12.89 JF 6.67 12.89 6.67

HO-SD35Aa-4 78453 0.06 1.18 25497 31359 J NA JF NA NA NA

HO-SD35Aa-7 78453 0.05 1.18 24615 30186 J NA JF NA NA NA

HO-SD35Aa-8 156906 0.10 2.35 25497 30186 J NA JF NA NA NA

HO-LSD35Aa-1 78453 0.05 1.18 24811 30211 J 9.00 JF NA NA NA

HO-LSD35Aa-2 156906 0.10 2.35 23732 30237 J NA JF NA NA NA

HO-LSD35Ab-1 78453 0.05 1.18 24468 30237 J NA JF NA NA NA

HO-LSD35Ab-2 156906 0.10 2.35 22800 30237 J NA JF NA NA NA

B-U11 311000 0.04 3.81 181223 116981 B NA BY NA NA NA

B-U12 311000 0.04 3.81 180706 165556 B NA BY NA NA NA

AA-SHC1 58000 0.05 NA 17000 40021 J NA JF NA NA NA

AA-SHC2 58000 0.04 NA 16800 38998 J NA JF NA NA NA

AA-SOC3 58000 0.05 NA 16000 39015 J NA JF NA NA NA

BPP-B1 311000 0.05 1.91 242000 229428 B 6.44 BY 3.60 6.44 3.60

BPP-B2 2890000 0.44 1.69 242500 229767 B 12.86 BY 3.18 12.86 3.18

TKHS-HJ1 1725970 0.20 4.00 197114 166820 B 2.98 BY 7.50 2.98 7.50

TKHS-HJ2 1725970 0.20 4.00 219669 196137 B 19.64 BY 7.50 19.64 7.50

TKHS-HJ3 1725970 0.20 2.00 197114 190573 B 5.47 BY 7.50 5.47 7.50

TKHS-HJ4 1725970 0.20 2.00 253012 235735 B 37.98 BYJF 4.00 18.58 7.50

TKHS-HJ5 1725970 0.20 3.00 296161 284383 B 8.83 BY 7.50 8.83 7.50

TKHS-HJ6 1725970 0.20 3.00 286354 283042 B 29.81 BYJF 4.00 10.00 7.50

continued on next page
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P p Dmx Vmx Vyld Fint Slmx Fmch Dcap Sldcap Dlst

TKHS-HJ7 2824315 0.20 2.00 375595 351568 B 14.80 BY 7.50 14.80 7.50

TKHS-HJ8 2824315 0.20 4.00 395208 354580 B 10.68 BY 7.50 10.68 7.50

TKHS-HJ9 2824315 0.20 2.00 382459 380483 B 24.18 BYJF 5.00 14.20 8.00

TKHS-HJ10 2824315 0.20 2.00 444241 356161 B 5.46 BY 8.00 5.46 8.00

TKHS-HJ11 2824315 0.20 2.00 580554 470316 B 20.76 BYJF 4.00 12.30 8.00

TKHS-HJ12 2824315 0.20 3.00 680582 641715 B 30.94 BYJF 4.00 12.20 8.00

TKHS-HJ13 3765754 0.20 4.00 541327 437466 B 11.33 BY 8.00 11.33 8.00

TKHS-HJ14 3765754 0.20 3.00 713924 672078 B 34.17 BYJF 4.00 20.00 8.00

HTMK-NO43 1600000 0.18 4.00 197114 162138 B 5.13 BY 7.00 5.13 7.00

HTMK-NO44 1600000 0.18 NA 219914 188208 B NA NA NA NA NA

HTMK-NO45 1600000 0.18 NA 261838 331618 J NA JF NA NA NA

HTMK-NO46 1600000 0.18 2.00 197114 184035 B 19.84 BY 7.00 19.84 7.00

HTMK-NO47 1600000 0.18 2.00 253012 225833 B 33.57 BYJF 4.00 10.78 7.00

HTMK-NO48 1600000 0.18 NA 295671 271719 B NA NA NA NA NA

HTMK-NO49 1600000 0.18 4.00 373633 381483 B 31.86 BYJF 4.00 0.00 7.00

HTMK-NO50 1600000 0.18 NA 286109 272340 B NA NA NA NA NA

HTMK-HNO8 2824315 0.20 NA 375104 335413 B NA NA NA NA NA

HTMK-HNO9 2824315 0.20 NA 394963 339503 B NA NA NA NA NA

HTMK-HNO10 2824315 0.20 NA 382459 363721 B NA NA NA NA NA

TKTH-HNO1 2353596 0.17 2.00 448262 386072 J 12.49 JF 8.00 12.49 8.00

TKTH-HNO2 2353596 0.17 3.00 644395 386072 B 8.69 BY 8.00 8.69 8.00

TKTH-HNO3 2353596 0.17 2.00 588399 501934 J 23.82 JF 4.00 19.10 8.00

TKTH-HNO4 2353596 0.17 3.00 672442 680576 J 33.34 JF 4.00 8.00 8.00

TKTH-HNO5 2353596 0.13 3.00 560352 481759 J 9.99 JF 8.00 9.99 8.00

TKTH-HNO6 2353596 0.13 3.00 728536 697384 J 38.47 JF 4.00 15.40 8.00

Z-S1 100000 0.05 3.00 73000 80935 J 17.81 JF 4.00 17.81 4.00

Z-S2 100000 0.05 3.00 79000 209837 J 4.00 JF 4.00 4.00 4.00

Z-S3 100000 0.05 2.00 131000 223265 J 15.30 JF 4.00 15.30 4.00

JGS-B1 308909 0.16 3.00 59821 53367 B 9.83 BYJF 5.00 9.83 5.00

JGS-B2 308909 0.15 2.00 64724 55045 B 0.00 BYJF 5.00 0.00 5.00

JGS-B8HH 353000 0.15 3.00 65000 58439 B 38.46 BYJF 5.00 4.60 5.50

JGS-B8HL 353000 0.14 2.50 68000 58615 B 30.88 BYJF 4.00 11.76 5.50

JGS-B8LH 353000 0.15 3.00 68000 58565 B 26.47 BYJF 5.00 11.76 5.50

JGS-B8MH 353000 0.14 2.50 65000 58683 B 23.07 BYJF 4.00 7.70 5.50

JGS-B9 353000 0.15 5.00 75750 58439 B 0.00 BY 5.50 0.00 5.50

JGS-B10 353000 0.16 5.00 84000 58371 B 6.67 BY 5.50 6.67 5.50

JGS-B11 353000 0.15 5.00 85700 58468 B 5.40 BY 5.50 0.00 5.50

FM-A1 147150 0.08 2.00 48069 162139 J 12.30 JF 3.33 12.30 3.33

FM-A2 147150 0.08 3.33 44636 63546 J 0.00 JF 3.33 0.00 3.33

continued on next page
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P p Dmx Vmx Vyld Fint Slmx Fmch Dcap Sldcap Dlst

FM-A3 441450 0.23 2.00 48069 162139 J 18.39 JF 3.33 18.39 3.33

FM-A4 441450 0.23 2.00 49050 162139 J 16.02 JF 3.33 16.02 3.33

where P represents the total axial load applied to the specimen, p (as described in chapter

2) the axial load ratio, Dmx represents the observed drift at maximum applied lateral load,

Vmx the observed maximum lateral load, Vyld the lateral load at nominal yield of the beam

section, Fint the failure initiation mechanism (explained in chapter 2), Slmax the observed

strength loss from the maximum strength at the last cycle, Fmch the mechanism of failure in

the joint (explained in chapter 2), Dcap the drift capacity (explained in chapter 2), Sldcap the

strength loss at drift capacity, and Dlst the drift at the last cycle. The term NA represents

data not available.
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Table A.5: Specimen demand parameters

Specimen Joint shear stress Bond demands Hoop steel Int. col. steel

τmax ACI τmax τnom τ ξ µ ρj φ ϕ ϕc

MPa MPa MPa
√

MPa

DW-X1 6.40 5.22 4.07 0.70 19 1.73 0.798 0.40 0.51 0.68

DW-X2 6.70 5.47 3.95 0.68 19 1.75 1.597 0.57 0.79 0.70

DW-X3 5.36 4.37 3.00 0.54 19 1.82 0.798 0.47 0.69 0.56

OKA-J1 4.32 3.49 2.76 0.54 24 1.67 0.281 0.22 0.28 1.22

OKA-J2 4.48 3.61 2.73 0.56 24 1.73 0.562 0.43 0.57 1.24

OKA-J3 4.97 4.01 2.73 0.56 24 1.73 1.693 0.90 1.33 1.24

OKA-J4 4.22 3.40 2.76 0.54 24 1.67 0.281 0.23 0.28 1.22

OKA-J5 5.04 4.06 2.82 0.53 24 1.58 0.281 0.19 0.28 0.00

OKA-J6 3.70 2.98 1.84 0.34 24 1.37 0.422 0.43 0.70 0.62

MJ-U1 5.38 4.47 6.63 1.30 18 4.28 0.503 0.31 0.21 0.71

MJ-U2 7.87 6.53 6.73 1.04 18 3.39 0.503 0.21 0.20 1.44

MJ-U3 6.03 5.00 6.63 1.29 18 4.25 0.503 0.27 0.21 2.43

MJ-U5 7.57 6.28 6.69 1.12 18 3.66 0.503 0.22 0.21 1.45

MJ-U6 8.15 6.76 6.70 1.10 18 3.62 0.503 0.20 0.20 1.45

MJ-U12 9.58 7.95 6.69 1.13 18 3.70 2.359 0.84 0.99 1.45

MJ-U13 7.66 6.36 6.72 1.05 18 3.41 1.510 0.65 0.61 1.45

W-PEER14 4.97 4.01 4.07 0.72 29 2.05 0.000 0.00 0.00 0.39

W-PEER22 6.69 5.39 6.36 1.03 21 2.33 0.000 0.00 0.00 0.53

A-PEER0850 3.89 3.14 4.46 0.75 21 2.33 0.000 0.00 0.00 0.15

A-PEER0995 7.73 6.24 6.24 0.80 21 1.77 0.000 0.00 0.00 0.22

A-PEER4150 10.43 8.41 13.32 2.32 16 3.33 0.000 0.00 0.00 0.25

PR-U1 3.08 2.52 1.55 0.23 25 1.14 1.298 1.33 2.17 0.93

PR-U2 4.29 3.51 2.25 0.37 20 2.40 1.580 1.10 1.73 0.95

PR-U3 3.05 2.50 1.52 0.25 25 1.28 0.557 0.56 0.92 0.94

PR-U4 4.09 3.35 2.26 0.36 20 2.28 0.807 0.70 1.03 0.95

NK-J1 10.84 8.82 9.20 1.10 23 1.86 0.754 0.41 0.39 0.92

NK-J3 13.75 11.19 12.41 1.20 23 1.50 0.754 0.32 0.29 0.68

NK-J4 11.44 9.31 9.20 1.10 23 1.86 0.754 0.39 0.39 0.92

NK-J5 11.26 9.16 12.11 1.45 23 1.86 0.754 0.39 0.30 0.70

NK-J6 9.98 8.12 8.98 1.23 23 2.13 0.754 0.44 0.40 0.94

OS-J1 11.58 9.41 8.05 0.89 24 1.50 0.377 0.46 0.54 0.89

OS-J2 12.43 10.11 18.57 2.06 23 3.50 0.377 0.43 0.23 0.92

continued on next page
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τmax ACI τmax τnom τ ξ µ ρj φ ϕ ϕc

OS-J4 11.94 9.71 8.98 1.05 24 1.28 0.377 0.44 0.48 0.65

OS-J5 13.38 10.88 10.01 1.17 24 2.08 0.377 0.40 0.43 0.94

OS-J6 12.34 10.04 8.36 0.94 24 1.61 0.188 0.15 0.17 0.91

OS-J7 9.87 8.02 6.67 0.75 24 1.61 0.377 0.34 0.40 1.14

OS-J8 14.01 11.39 10.85 1.22 16 1.32 0.377 0.21 0.22 0.87

OS-J10 8.83 7.18 8.16 1.30 24 2.37 0.377 0.26 0.23 0.97

OS-J11 10.45 8.50 10.25 1.64 16 1.89 0.377 0.15 0.12 0.92

KOA-J1 5.26 4.28 3.47 0.68 23 1.71 0.269 0.16 0.20 1.02

KOA-J6 3.76 3.06 2.17 0.43 23 1.48 0.377 0.33 0.47 0.51

KOA-C1 4.58 3.73 2.58 0.51 30 1.05 0.269 0.16 0.24 1.44

KOA-C3 4.49 3.66 2.58 0.51 30 1.05 2.326 1.54 2.18 1.44

PM-U1 6.96 5.76 6.06 0.94 25 1.29 3.801 2.16 2.06 0.51

PM-U2 7.57 6.27 5.20 0.76 20 1.47 3.041 1.49 1.80 0.59

EKOA-HC 5.81 4.72 4.45 0.69 31 0.92 0.314 0.08 0.08 0.74

EKOA-HLC 5.81 4.72 4.38 0.69 31 0.92 0.314 0.08 0.08 0.73

EKOA-LA1 7.32 5.96 5.60 0.95 24 2.87 0.462 0.10 0.11 1.32

EKOA-A1 6.88 5.59 5.41 0.98 24 2.98 0.419 0.11 0.11 1.34

HO-SD35Aa-4 3.19 2.61 3.49 0.63 20 1.90 0.220 0.44 0.33 0.31

HO-SD35Aa-7 3.08 2.52 3.41 0.55 20 1.62 0.220 0.46 0.34 0.31

HO-SD35Aa-8 3.19 2.61 3.41 0.55 20 1.62 0.220 0.44 0.34 0.31

HO-LSD35Aa-1 3.10 2.54 3.30 0.52 20 1.56 0.220 0.45 0.35 0.32

HO-LSD35Aa-2 2.97 2.43 3.43 0.53 20 1.56 0.220 0.47 0.34 0.31

HO-LSD35Ab-1 3.06 2.51 3.43 0.53 20 1.56 0.220 0.46 0.34 0.31

HO-LSD35Ab-2 2.85 2.34 3.43 0.53 20 1.56 0.220 0.49 0.34 0.31

B-U11 4.22 3.46 2.65 0.44 24 1.03 1.635 1.89 2.46 0.87

B-U12 4.21 3.45 3.70 0.63 24 1.05 1.635 1.89 1.76 0.62

AA-SHC1 2.57 2.07 5.34 0.71 19 2.06 0.506 0.76 0.29 0.00

AA-SHC2 2.54 2.04 5.16 0.67 19 2.01 1.013 1.53 0.61 0.00

AA-SOC3 2.42 1.95 5.17 0.75 19 2.26 1.013 1.61 0.61 0.00

BPP-B1 5.83 4.78 5.07 0.96 23 1.20 0.727 0.70 0.66 0.55

BPP-B2 5.84 4.79 5.11 0.91 23 1.12 0.190 0.21 0.20 0.54

TKHS-HJ1 5.05 4.11 3.82 0.52 21 1.24 0.710 0.60 0.64 0.71

TKHS-HJ2 5.63 4.58 4.29 0.58 25 1.70 0.710 0.54 0.58 0.63

TKHS-HJ3 5.05 4.11 4.10 0.56 21 2.77 0.710 0.60 0.60 0.66

TKHS-HJ4 6.48 5.27 5.42 0.74 21 1.24 0.710 0.47 0.46 0.84

TKHS-HJ5 7.59 6.17 6.20 0.84 21 2.09 0.710 0.40 0.40 0.74

TKHS-HJ6 7.33 5.97 6.02 0.82 21 2.77 0.710 0.41 0.41 0.76

TKHS-HJ7 9.62 7.82 8.00 0.85 18 1.23 0.852 0.65 0.64 0.57

TKHS-HJ8 10.12 8.23 7.72 0.82 18 1.75 0.852 0.62 0.66 0.59

continued on next page
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τmax ACI τmax τnom τ ξ µ ρj φ ϕ ϕc

TKHS-HJ9 9.80 7.97 8.10 0.86 21 2.17 0.852 0.64 0.63 0.56

TKHS-HJ10 11.38 9.26 7.80 0.83 25 1.30 0.852 0.55 0.65 0.68

TKHS-HJ11 14.87 12.09 10.57 1.13 18 1.29 0.852 0.42 0.48 0.36

TKHS-HJ12 17.43 14.18 13.95 1.48 18 1.77 0.852 0.36 0.37 0.38

TKHS-HJ13 13.86 11.28 9.56 0.88 23 1.26 0.852 0.45 0.53 0.56

TKHS-HJ14 18.29 14.87 14.15 1.30 18 1.53 0.852 0.34 0.36 0.38

HTMK-NO43 5.05 4.11 3.64 0.49 21 1.23 0.785 0.66 0.75 0.75

HTMK-NO44 5.63 4.58 4.07 0.55 25 1.69 0.785 0.59 0.67 0.67

HTMK-NO45 6.71 5.45 7.17 0.97 18 2.24 0.785 0.50 0.38 0.38

HTMK-NO46 5.05 4.11 3.94 0.54 21 2.77 0.785 0.66 0.69 0.69

HTMK-NO47 6.48 5.27 5.19 0.71 21 1.23 0.785 0.52 0.52 0.88

HTMK-NO48 7.57 6.16 5.82 0.79 21 2.08 0.785 0.44 0.47 0.79

HTMK-NO49 9.57 7.78 8.40 1.14 18 2.24 0.785 0.35 0.32 0.54

HTMK-NO50 7.33 5.96 5.76 0.78 21 2.77 0.785 0.46 0.47 0.79

HTMK-HNO8 9.61 7.81 7.75 0.83 18 1.24 0.857 0.77 0.78 0.59

HTMK-HNO9 10.12 8.23 7.35 0.78 18 1.76 0.857 0.73 0.82 0.62

HTMK-HNO10 9.80 7.97 7.73 0.82 21 2.17 0.857 0.75 0.78 0.59

TKTH-HNO1 9.91 8.00 7.27 0.77 25 1.30 0.857 1.00 0.71 0.80

TKTH-HNO2 14.25 11.51 7.27 0.77 25 1.30 0.857 0.69 0.71 0.80

TKTH-HNO3 13.01 10.51 9.80 1.04 18 1.29 0.857 0.77 0.52 0.43

TKTH-HNO4 14.87 12.01 12.73 1.35 18 1.77 0.857 0.66 0.40 0.46

TKTH-HNO5 12.39 10.01 9.08 0.84 23 1.26 0.857 0.83 0.57 0.64

TKTH-HNO6 16.11 13.01 13.11 1.21 18 1.54 0.857 0.63 0.39 0.44

Z-S1 2.03 1.60 1.89 0.39 30 1.33 0.355 0.69 0.59 3.00

Z-S2 2.19 1.73 4.84 0.99 26 1.42 0.355 0.64 0.23 1.17

Z-S3 3.64 2.87 5.04 1.03 19 2.53 0.355 0.39 0.22 1.13

JGS-B1 2.85 2.33 2.26 0.49 23 1.74 0.215 0.25 0.26 0.41

JGS-B2 3.09 2.52 2.37 0.50 23 1.69 0.431 0.92 0.97 0.39

JGS-B8HH 3.14 2.56 2.51 0.50 23 1.73 0.609 2.70 2.76 1.22

JGS-B8HL 3.28 2.68 2.52 0.48 23 1.67 0.609 2.58 2.74 1.22

JGS-B8LH 3.28 2.68 2.52 0.49 23 1.69 0.215 0.27 0.28 1.22

JGS-B8MH 3.14 2.56 2.52 0.48 23 1.65 0.419 0.46 0.47 1.21

JGS-B9 3.66 2.98 2.51 0.50 23 1.73 0.609 2.31 2.76 1.22

JGS-B10 4.06 3.31 2.50 0.50 23 1.75 0.609 2.09 2.76 1.22

JGS-B11 4.14 3.38 2.51 0.49 23 1.72 0.609 2.05 2.76 1.22

FM-A1 5.25 4.31 14.21 2.24 23 3.65 0.428 0.24 0.07 0.63

FM-A2 4.87 4.00 6.22 0.98 23 1.40 0.428 0.25 0.16 0.86

FM-A3 5.25 4.31 14.21 2.24 23 3.65 0.428 0.24 0.07 0.63

FM-A4 5.35 4.40 14.21 2.24 23 3.65 1.142 0.62 0.19 0.63

where all the specimen demand parameters have been defined in chapter 2.
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Appendix B

RESULTS OBTAINED FROM STM AND COMPONENT BASED

SIMULATION

Table B.1: Results of strut-and-tie simulation
Specimen φ strength loss drift capacity SSM Combined mechanism

at last cycle βs Main diag. contrib. βc Max. bond stress

Slmax Dcap Diagctrb Bc max

DW-X1 0.40 24.36 5.08 0.99 0.51 0.53 24.20

DW-X2 0.57 19.45 5.86 1.03 0.39 0.51 33.52

DW-X3 0.47 13.89 5.88 0.97 0.46 0.45 31.70

OKA-J1 0.22 18.19 7.50 0.94 0.79 0.92 61.89

OKA-J2 0.43 17.20 7.50 1.03 0.61 0.95 44.44

OKA-J3 0.90 15.77 7.50 1.14 0.43 0.90 34.36

OKA-J4 0.23 39.00 5.00 0.51 0.79 0.54 60.16

OKA-J5 0.19 36.41 5.00 1.13 1.00 0.82 57.18

MJ-U1 0.31 NA NA 0.51 0.59 0.51 15.08

MJ-U2 0.21 NA NA 0.47 0.63 0.49 20.72

MJ-U3 0.27 NA NA 0.55 0.65 0.56 18.15

MJ-U5 0.22 NA NA 0.81 0.68 0.83 25.77

MJ-U6 0.20 NA NA 0.40 0.70 0.41 29.42

MJ-U12 0.84 NA NA 0.66 0.26 0.58 32.43

MJ-U13 0.65 NA NA 0.46 0.30 0.42 23.47

W-PEER14 0.00 33.38 4.00 0.88 1.00 0.53 22.41

W-PEER22 0.00 38.13 4.00 0.89 1.00 0.61 20.28

A-PEER0850 0.00 4.34 5.00 0.77 1.00 0.37 24.93

A-PEER0995 0.00 25.08 4.00 0.85 1.00 0.43 23.73

A-PEER4150 0.00 40.48 3.00 1.35 1.00 1.06 14.09

NK-J1 0.41 31.23 4.08 0.73 0.51 0.61 29.40

NK-J3 0.32 15.15 5.10 0.64 0.63 0.59 34.35

NK-J4 0.39 21.29 4.08 0.77 0.52 0.65 32.07

NK-J5 0.39 36.04 4.08 0.79 0.57 0.72 29.37

continued on next page
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φ Slmax Dcap βs Diagctrb βc Bc max

NK-J6 0.44 28.42 4.08 0.84 0.48 0.71 27.03

OS-J1 0.46 23.68 4.00 0.58 0.49 0.47 27.55

OS-J2 0.43 8.63 5.00 0.65 0.57 0.55 49.20

OS-J4 0.44 18.58 5.00 0.70 0.56 0.59 34.00

OS-J5 0.40 24.06 4.00 0.75 0.51 0.60 36.04

OS-J6 0.15 24.84 4.00 0.63 0.76 0.59 40.21

OS-J8 0.21 36.94 3.00 0.66 0.69 0.59 40.12

OS-J10 0.26 28.55 4.00 0.88 0.65 0.77 48.49

OS-J11 0.15 40.82 3.00 0.96 0.75 0.89 50.58

EKOA-HC 0.08 3.56 6.53 0.73 0.86 0.67 19.96

EKOA-HLC 0.08 27.40 4.35 0.74 0.87 0.68 20.47

EKOA-LA1 0.10 18.24 6.67 0.88 0.76 0.82 82.72

EKOA-A1 0.11 12.89 6.67 0.89 0.73 0.83 79.82

HO-SD35Aa-4 0.44 NA NA 0.82 0.57 0.59 14.99

HO-SD35Aa-7 0.46 NA NA 0.70 0.57 0.46 12.93

HO-SD35Aa-8 0.44 NA NA 0.51 0.56 0.47 13.14

HO-LSD35Aa-1 0.45 9.00 NA 0.59 0.57 0.43 12.56

HO-LSD35Aa-2 0.47 NA NA 0.45 0.56 0.41 11.73

HO-LSD35Ab-1 0.46 NA NA 0.69 0.57 0.42 12.38

HO-LSD35Ab-2 0.49 NA NA 0.44 0.56 0.40 11.25

TKHS-HJ1 0.60 2.98 7.50 0.34 0.46 0.34 42.17

TKHS-HJ2 0.54 19.64 7.50 0.38 0.47 0.38 56.40

TKHS-HJ3 0.60 5.47 7.50 0.34 0.46 0.34 84.33

TKHS-HJ4 0.47 37.98 4.00 0.41 0.62 0.39 55.86

TKHS-HJ5 0.40 8.83 7.50 0.48 0.62 0.49 98.60

TKHS-HJ6 0.41 29.81 4.00 0.46 0.62 0.47 126.99

TKHS-HJ7 0.65 14.80 7.50 0.37 0.46 0.38 36.18

TKHS-HJ8 0.62 10.68 7.50 0.39 0.38 0.40 53.00

TKHS-HJ9 0.64 24.18 5.00 0.38 0.38 0.39 59.51

TKHS-HJ10 0.55 5.46 8.00 0.43 0.40 0.44 39.55

TKHS-HJ11 0.42 20.76 4.00 0.58 0.52 0.58 50.38

TKHS-HJ12 0.36 30.94 4.00 0.65 0.61 0.65 74.96

TKHS-HJ13 0.45 11.33 8.00 0.40 0.51 0.40 47.94

TKHS-HJ14 0.34 34.17 4.00 0.52 0.61 0.52 67.31

HTMK-NO43 0.66 5.13 7.00 0.37 0.38 0.36 12.94

HTMK-NO44 0.59 NA NA 0.41 0.42 0.40 15.49

HTMK-NO45 0.50 NA NA 0.48 0.53 0.47 19.96

HTMK-NO46 0.66 19.84 7.00 0.37 0.38 0.36 25.67

HTMK-NO47 0.52 33.57 4.00 0.42 0.53 0.43 14.92
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φ Slmax Dcap βs Diagctrb βc Bc max

HTMK-NO48 0.44 NA NA 0.51 0.54 0.51 26.40

HTMK-NO49 0.35 31.86 4.00 0.61 0.63 0.61 28.49

HTMK-NO50 0.46 NA NA 0.48 0.54 0.49 33.84

HTMK-HNO8 0.77 NA NA 0.38 0.28 0.39 13.96

HTMK-HNO9 0.73 NA NA 0.41 0.33 0.42 19.68

HTMK-HNO10 0.75 NA NA 0.39 0.29 0.40 23.94

TKTH-HNO1 1.00 12.49 8.00 0.54 0.47 0.54 17.01

TKTH-HNO2 0.69 8.69 8.00 0.77 0.59 0.77 35.56

TKTH-HNO3 0.77 23.82 4.00 0.73 0.59 0.69 23.54

TKTH-HNO4 0.66 33.34 4.00 0.76 0.59 0.76 27.02

TKTH-HNO5 0.83 9.99 8.00 0.60 0.55 0.55 21.42

TKTH-HNO6 0.63 38.47 4.00 0.76 0.64 0.69 28.42

where βs represents the strength reduction factors obtained from using the single strut

mechanism, βc represents the strength reduction factor obtained from the combined strut-

truss mechanism, Diagctrb represents the contribution of the main diagonal strut force to

the total strut force within the joint in the combined strut-truss mechanism. The definition

and explanation of these parameters can be found in chapter 5 and term NA represents

data not available.
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Table B.2: Results of maximum joint shear stress prediction

Specimen Failure τmax τMCF T mono τMCF T cyc τstrut

mechanism MPa MPa MPa MPa

Obsfm ObsTm SimMm (Sim
Obs

)Mm SimMc (Sim
Obs

)Mc Simstr (Sim
Obs

)str

DW-X1 BYJF 5.22 6.37 1.22 5.03 0.96 4.41 0.84

DW-X2 BY 5.47 8.76 1.60 7.20 1.32 4.65 0.85

DW-X3 BY 4.37 5.83 1.33 4.62 1.06 4.02 0.92

OKA-J1 BY 3.49 3.60 1.03 2.56 0.73 3.97 1.14

OKA-J2 BY 3.61 4.73 1.31 3.67 1.02 4.31 1.19

OKA-J3 BY 4.01 7.80 1.95 5.77 1.44 5.19 1.30

OKA-J4 BYJF 3.40 3.60 1.06 2.56 0.75 3.96 1.16

OKA-J5 BYJF 4.06 3.54 0.87 2.47 0.61 3.75 0.92

MJ-U1 JF 4.47 4.72 1.06 3.64 0.81 4.39 0.98

MJ-U2 JF 6.53 5.94 0.91 4.49 0.69 6.48 0.99

MJ-U3 JF 5.00 5.24 1.05 4.08 0.82 4.81 0.96

MJ-U5 JF 6.28 5.19 0.83 3.97 0.63 5.22 0.83

MJ-U6 JF 6.76 5.23 0.77 4.00 0.59 3.72 0.55

MJ-U12 BYJF 7.95 10.30 1.30 7.68 0.97 7.49 0.94

MJ-U13 JF 6.36 9.17 1.44 7.55 1.19 7.63 1.20

W-PEER14 BYJF 4.00 1.86 0.46 1.82 0.45 4.18 1.04

W-PEER22 BYJF 5.39 2.29 0.43 2.10 0.39 6.20 1.15

A-PEER0850 BY 3.13 1.93 0.62 0.00 0.00 3.60 1.15

A-PEER0995 BYJF 6.23 2.37 0.38 2.54 0.41 6.40 1.03

A-PEER4150 JF 8.40 2.24 0.27 2.02 0.24 6.21 0.74

PR-U1 BY 2.52 6.98 2.76 5.87 2.33 4.34 1.72

PR-U2 BY 3.51 7.64 2.18 6.22 1.77 4.22 1.20

PR-U3 BY 2.50 4.65 1.86 3.52 1.41 3.26 1.31

PR-U4 BYJF 3.35 5.95 1.78 4.64 1.39 4.10 1.22

NK-J1 BYJF 8.82 12.30 1.40 10.16 1.15 10.41 1.18

NK-J3 JF 11.19 14.15 1.27 11.76 1.05 15.14 1.35

NK-J4 BYJF 9.31 12.30 1.32 10.16 1.09 10.41 1.12

NK-J5 JF 9.16 12.61 1.38 10.31 1.13 11.50 1.26

NK-J6 JF 8.12 11.29 1.39 8.52 1.05 8.96 1.10

OS-J1 BYJF 9.41 11.13 1.18 9.10 0.97 12.87 1.37

OS-J2 JF 10.11 11.20 1.11 9.15 0.91 16.10 1.59

OS-J4 BY 9.71 10.78 1.11 8.81 0.91 11.64 1.20
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Obsfm ObsTm SimMm (Sim
Obs

)Mm SimMc (Sim
Obs

)Mc Simstr (Sim
Obs

)str

OS-J5 BYJF 10.88 10.78 0.99 8.81 0.81 12.27 1.13

OS-J6 BYJF 10.04 6.13 0.61 4.32 0.43 11.03 1.10

OS-J7 BY 8.02 8.76 1.09 6.88 0.86 10.89 1.36

OS-J8 BYJF 11.39 9.19 0.81 7.07 0.62 12.33 1.08

OS-J10 JF 7.18 5.94 0.83 4.57 0.64 7.21 1.00

OS-J11 JF 8.50 5.40 0.64 3.99 0.47 7.09 0.83

KOA-J1 BYJF 4.28 3.48 0.81 2.43 0.57 3.72 0.87

KOA-J6 BYJF 3.06 3.16 1.03 2.41 0.79 3.17 1.04

KOA-C1 BY 3.73 3.31 0.89 2.32 0.62 3.66 0.98

KOA-C3 BY 3.66 8.37 2.29 6.19 1.69 4.39 1.20

PM-U1 BY 5.76 12.63 2.19 9.44 1.64 8.17 1.42

PM-U2 BYJF 6.27 12.14 1.94 10.05 1.60 8.16 1.30

EKOA-HC BY 4.72 4.03 0.85 2.79 0.59 4.99 1.06

EKOA-HLC BYJF 4.72 4.03 0.85 2.79 0.59 5.00 1.06

EKOA-LA1 JF 5.96 4.58 0.77 3.27 0.55 6.35 1.07

EKOA-A1 JF 5.59 4.41 0.79 3.19 0.57 6.06 1.08

HO-SD35Aa-4 JF 2.61 3.24 1.24 2.18 0.83 2.43 0.93

HO-SD35Aa-7 JF 2.52 3.49 1.38 2.30 0.91 2.68 1.06

HO-SD35Aa-8 JF 2.61 3.49 1.34 2.30 0.88 3.31 1.27

HO-LSD35Aa-1 JF 2.54 3.58 1.41 2.34 0.92 2.96 1.16

HO-LSD35Aa-2 JF 2.43 3.58 1.47 2.34 0.96 3.43 1.41

HO-LSD35Ab-1 JF 2.51 3.58 1.43 2.34 0.93 2.69 1.07

HO-LSD35Ab-2 JF 2.34 3.58 1.53 2.34 1.00 3.43 1.47

B-U11 BY 3.46 8.36 2.42 6.86 1.98 5.09 1.47

B-U12 BY 3.45 8.25 2.39 6.77 1.96 4.81 1.40

Mean JF 1.10 (0.31) 0.81 (0.29) 1.09 (0.23)

(C.O.V.) BYJF 1.02 (0.42) 0.81 (0.43) 1.09 (0.13)

BY 1.64 (0.40) 1.25 (0.48) 1.23 (0.18)

where the explanation of each of these terms are provided in chapter 4. The term NA

represents data not available.
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Table B.3: Results of simulated and experimental comparison (failure mechanism and stiff-

ness values)

Specimen Failure mechanism Initial stiffness Post-yield Unloading stiffness

kN/mm stiffness kN/mm at max. strength kN/mm

Obsfm Simfm Obsis (Sim
Obs

)is Obsps (Sim
Obs

)ps Obsus (Sim
Obs

)us

DW-X1 BYJF BYJF 4.90 0.83 0.00 NA 6.54 1.14

DW-X2 BY BYJF 5.44 0.80 0.17 1.18 6.56 1.04

DW-X3 BY BY 4.71 0.77 0.05 3.80 5.25 0.99

OKA-J1 BY BY 5.31 1.04 0.45 1.18 7.63 1.05

OKA-J2 BY BY 5.98 0.98 0.31 1.45 8.47 0.90

OKA-J3 BY BY 5.88 0.98 0.31 2.00 6.58 1.03

OKA-J4 BYJF BYJF 6.14 0.97 ≤ 0.00 NA 13.98 0.77

OKA-J5 BYJF BYJF 5.31 1.10 0.68 0.93 6.67 1.03

MJ-U1 JF JF NA NA NA NA NA NA

MJ-U2 JF JF NA NA NA NA NA NA

MJ-U3 JF JF NA NA NA NA NA NA

MJ-U5 JF JF NA NA NA NA NA NA

MJ-U6 JF JF NA NA NA NA NA NA

MJ-U12 BYJF BYJF NA NA NA NA NA NA

MJ-U13 JF JF NA NA NA NA NA NA

PR-U1 BY BY 2.42 0.99 0.22 0.86 2.43 1.08

PR-U2 BY BY 3.26 0.98 0.39 1.08 3.72 0.98

PR-U3 BY BY 2.36 1.02 0.17 0.82 3.70 0.86

PR-U4 BYJF BYJF 3.10 1.03 0.17 1.18 7.00 0.86

NK-J1 BYJF BYJF 10.83 1.23 0.00 NA 9.46 1.00

NK-J3 JF BY 10.61 1.29 ≤ 0.00 NA 8.57 1.33

NK-J4 BYJF BYJF 10.34 1.29 0.00 NA 8.33 1.08

NK-J5 JF JF 10.95 1.22 ≤ 0.00 NA 10.20 1.32

NK-J6 JF JF 10.39 1.24 ≤ 0.00 NA 12.00 1.25

OS-J1 BYJF BY 10.21 1.36 0.69 0.72 8.56 1.05

OS-J2 JF JF 11.11 1.28 ≤ 0.00 NA 9.20 1.14

OS-J4 BY BY 12.26 1.27 0.70 0.64 10.60 1.03

OS-J5 BYJF BYJF 11.92 1.28 0.00 ≥ 10 8.49 1.12

OS-J6 BYJF BYJF 12.26 1.16 0.68 0.62 7.82 1.03

OS-J7 BY BY 10.21 1.12 0.43 1.07 7.30 0.90

OS-J8 BYJF BYJF 17.03 1.06 0.00 1.00 15.55 1.07

OS-J10 JF JF 7.78 1.16 ≤ 0.00 NA 9.30 1.00

continued on next page
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continued from previous page

Obsfm Simfm Obsis (Sim
Obs

)is Obsps (Sim
Obs

)ps Obsus (Sim
Obs

)us

OS-J11 JF JF 12.26 0.97 ≤ 0.00 NA 11.60 1.29

KOA-J1 BYJF BYJF 5.52 0.94 ≤ 0.00 ≤ 0.00 5.74 1.08

KOA-J6 BYJF BYJF 4.73 0.82 1.20 0.88 11.50 0.87

KOA-C1 BY BY 5.52 0.82 0.31 1.35 7.10 0.99

KOA-C3 BY BY 5.63 0.81 0.67 1.04 7.00 0.96

PM-U1 BY BY 3.54 1.18 NA NA NA NA

PM-U2 BYJF BY 3.53 1.11 NA NA NA NA

EKOA-HC BY BY 5.75 1.22 0.33 1.00 6.33 1.26

EKOA-HLC BYJF BYJF 5.75 1.20 0.80 0.94 7.92 1.06

EKOA-LA1 JF JF 4.36 1.14 ≤ 0.00 NA 8.88 0.81

EKOA-A1 JF JF 4.36 1.08 ≤ 0.00 NA 8.33 0.82

HO-SD35Aa-4 JF JF NA NA NA NA NA NA

HO-SD35Aa-7 JF JF NA NA NA NA NA NA

HO-SD35Aa-8 JF BYJF NA NA NA NA NA NA

HO-LSD35Aa-1 JF JF 1.24 1.16 NA NA 2.48 0.97

HO-LSD35Aa-2 JF BYJF NA NA NA NA NA NA

HO-LSD35Ab-1 JF JF NA NA NA NA NA NA

HO-LSD35Ab-2 JF BYJF NA NA NA NA NA NA

B-U11 BY BY 7.81 0.99 0.29 1.14 4.18 0.97

B-U12 BY BY 7.81 1.08 0.27 1.04 4.29 0.91

W-PEER14 BYJF BYJF 11.67 0.95 0.65 1.23 10.28 1.02

W-PEER22 BYJF BYJF 13.12 1.00 0.60 1.20 14.40 1.04

A-PEER0850 BY BY 14.58 0.97 0.30 0.83 9.50 1.02

A-PEER0995 BYJF BYJF 18.47 0.89 0.35 1.29 14.50 1.12

A-PEER4150 JF JF 23.82 0.81 ≤ 0.00 NA 26.70 0.94

Mean (C.O.V) All 1.06 (0.15) 1.07 (0.27) 1.03 (0.13)

JF 1.14 (0.13) 1.09 (0.19)

BYJF 1.07 (0.15) 1.00 (0.22) 1.02 (0.10)

BY 1.00 (0.15) 1.11 (0.29) 1.00 (0.09)

where the explanation of each of these terms are provided in chapter 4. The term NA

represents data not available.
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Table B.4: Results of simulated and experimental comparison (strength and drift values)

Specimen Max. Column Drift at Strength loss at average pinching

load kN max. last cycle / max. strength ratio

Obsmld (Sim
Obs

)mld Obsdmax (Sim
Obs

)dmax Obssls (Sim
Obs

)sls Obspr (Sim
Obs

)pr

DW-X1 191 0.86 2.54 1.00 0.76 0.97 0.23 1.05

DW-X2 200 0.85 2.99 1.00 0.81 0.98 0.23 1.01

DW-X3 160 0.85 3.67 1.38 0.86 1.12 0.31 1.02

OKA-J1 115 1.12 5.00 1.00 0.82 1.12 0.19 1.00

OKA-J2 119 1.09 5.00 1.00 0.83 1.04 0.19 0.95

OKA-J3 132 1.02 5.00 1.00 0.84 1.14 0.17 1.13

OKA-J4 112 1.11 2.50 1.93 0.61 1.26 0.20 0.92

OKA-J5 133 0.88 3.78 1.00 0.64 1.24 0.15 1.03

MJ-U1 108 0.98 NA NA NA NA NA NA

MJ-U2 158 0.99 NA NA NA NA NA NA

MJ-U3 121 0.96 NA NA NA NA NA NA

MJ-U5 152 0.83 NA NA NA NA NA NA

MJ-U6 164 0.56 NA NA NA NA NA NA

MJ-U12 193 0.94 NA NA NA NA NA NA

MJ-U13 154 1.18 NA NA NA NA NA NA

PR-U1 80 0.98 4.25 1.00 1.00 1.00 0.56 1.02

PR-U2 112 0.98 3.03 1.40 0.85 1.19 0.36 1.17

PR-U3 79 0.99 2.43 1.25 0.88 1.13 0.50 1.01

PR-U4 107 1.13 3.03 1.00 0.75 1.18 0.33 0.94

NK-J1 236 1.10 2.04 1.50 0.69 0.53 0.36 0.70

NK-J3 300 1.33 3.06 1.67 0.85 1.27 0.27 1.27

NK-J4 250 1.12 3.06 1.00 0.79 0.55 0.28 1.02

NK-J5 246 1.26 3.06 0.73 0.64 1.24 0.18 0.94

NK-J6 218 1.10 3.06 0.67 0.72 1.17 0.20 1.02

OS-J1 257 1.03 3.00 1.00 0.76 1.26 0.25 1.12

OS-J2 276 1.58 3.00 0.97 0.92 1.00 0.22 0.82

OS-J4 265 1.02 3.00 1.00 0.81 1.18 0.23 1.34

OS-J5 297 1.08 3.00 1.00 0.76 1.07 0.24 1.19

OS-J6 274 1.02 3.00 1.00 0.75 1.05 0.27 0.98

OS-J7 219 0.93 3.00 1.67 0.90 1.18 0.32 1.02

OS-J8 311 1.01 2.00 1.04 0.63 0.98 0.16 1.13

OS-J10 196 1.01 2.00 1.00 0.71 1.16 0.20 0.99

OS-J11 232 0.83 2.00 0.76 0.59 1.27 0.14 1.09

KOA-J1 115 0.91 4.35 1.00 0.85 0.97 0.24 0.95

continued on next page
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Obsmld (Sim
Obs

)mld Obsdmax (Sim
Obs

)dmax Obssls (Sim
Obs

)sls Obspr (Sim
Obs

)pr

KOA-J6 82 0.96 2.18 1.00 0.68 1.11 0.24 1.04

KOA-C1 100 0.99 4.35 1.00 0.97 0.96 0.35 1.01

KOA-C3 98 1.05 4.35 1.00 0.98 0.48 0.36 0.95

PM-U1 129 1.16 4.18 1.50 0.90 1.14 NA NA

PM-U2 140 0.94 4.18 2.00 0.69 1.64 NA NA

EKOA-HC 127 1.03 4.35 1.00 0.96 0.96 0.30 1.15

EKOA-HLC 127 1.06 2.18 2.00 0.73 0.99 0.30 1.12

EKOA-LA1 160 1.06 4.08 1.00 0.82 0.72 0.21 0.97

EKOA-A1 150 1.08 4.08 1.00 0.87 0.85 0.23 0.95

HO-SD35Aa-4 25 0.93 1.18 1.00 NA NA NA NA

HO-SD35Aa-7 25 1.06 1.18 1.00 NA NA NA NA

HO-SD35Aa-8 25 1.38 2.35 1.50 NA NA NA NA

HO-LSD35Aa-1 25 1.16 1.18 1.00 0.91 0.80 0.20 0.86

HO-LSD35Aa-2 24 1.41 2.35 1.00 NA NA NA NA

HO-LSD35Ab-1 24 1.07 1.18 1.00 NA NA NA NA

HO-LSD35Ab-2 23 1.46 2.35 1.05 NA NA NA NA

B-U11 200 0.97 3.81 1.00 1.00 1.00 0.38 0.96

B-U12 205 0.99 3.81 1.00 1.00 1.00 0.37 1.21

W-PEER14 267 0.93 2.83 1.00 0.67 0.94 0.12 1.03

W-PEER22 360 0.99 1.89 1.00 0.62 0.81 0.12 1.03

A-PEER0850 209 0.98 2.83 1.00 0.96 1.05 0.17 1.15

A-PEER0995 416 0.86 2.53 1.13 0.75 1.00 0.17 1.31

A-PEER4150 561 0.74 1.69 0.75 0.60 1.01 0.14 0.98

Mean All 1.03 (0.17) 1.12 (0.27) 1.04 (0.20) 1.04 (0.12)

(C.O.V.) JF 1.09 (0.23) 1.01 (0.26) 1.05 (0.20) 0.99 (0.14)

BYJF 1.00 (0.09) 1.21 (0.32) 1.03 (0.25) 1.03 (0.13)

BY 1.00 (0.08) 1.14 (0.20) 1.04 (0.16) 1.07 (0.10)

where the explanation of each of these terms are provided in chapter 4. The term NA

represents data not available.
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Appendix C

MODELING OF CRACKS IN A CONTINUUM FRAMEWORK

The phenomena of crack formation is associated with tension along the direction per-

pendicular to that of the crack and compression parallel to the direction of crack. Within

the context of numerical modeling, crack has been modeled by various means and can be

classified into three different categories:

C.1 Discrete Crack models

This modeling technique was first proposed by Ngo and Scordelis (1967) who used a zero-

thickness interface element between elastic solid elements at potential crack locations. The

discrete crack model represents exactly strong displacement continuity that develops at the

crack. However, in the most basic form the model suffers from two major disadvantage: the

orientation and location of the crack must be known apriori and the cracks are constrained

to occur along element edges. To mitigate these disadvantages, more recent research has

resulted in

• advanced re-meshing techniques (Ingraffea and Saouma 1985, Cervenka 1994) and

adaptive boundary/finite element methods for crack growth. (Carter et al. 1998,

Spievak et al. 2001).

• techniques to permit discrete cracks through finite elements (Blaauwendraad and

Grootenboer 1981, Blaauwendraad 1985).

• lattice methods (van Mier 1997, Bolander and Berton 2004).

C.2 Smeared Crack models

The concept of a smeared crack was first introduced by Rashid (1968). The primary concept

is to smear the crack over a region of concrete and thereby apply continuum mechanics

approach to solve the problem. Thus cracking is simulated using a fictitious constitutive
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model that avoids the need for change in geometry and remeshing. Smearing out of cracks

in a continua has been incorporated by a number of researchers utilizing various different

techniques:

Empirical global models: These models typically consider the global effect of cracks on

a reinforced concrete section. These models represent the effect of cracks by reduction

of compressive strength envelope through empirical equations. Notable contribution

in this category of modeling cracks at a global level for reinforced concrete sections are

by Vecchio and Collins (1986), Shirai and Noguchi (1989), Hsu (1988), Stevens et al.

(1991a), Belarbi and Hsu (1995), Pang and Hsu (1996), Kaufmann and Marti (1998),

Vecchio (2000), Hsu and Zhu (2002), Palermo and Vecchio (2003). Even though these

models are widely used to define the global behavior of reinforced cracked concrete,

they are not derived from the underlying local physical phenomena governing cracks

in concrete and hence cannot be classified as locally and physically sound models for

crack. These models can also be classified as ‘total strain models’ in which the total

strain in an gauss quadrature point is utilized to obtain the stress at that point.

Phenomenological models: The primary difference of these models with the previous set

of model is that these consider a decomposition of concrete strain into concrete strain

and crack strain. From a phenomenological perspective the concept of smeared crack-

ing can be divided into three different categories (Rots and Blaauwendraad 1989):

Fixed crack model in which the orientation of the major crack is kept constant once

formed, Coaxial rotating crack model in which the orientation of the major crack is

updated continuously as the crack progresses, Multi-directional fixed crack in which

multiple cracks can originate once the cracking criterion is satisfied (i.e. user speci-

fied threshold angle is exceeded and also the maximum tensile strength is exceeded)

(de Borst and Nauta 1986). Even though these models are physically and locally

sound, they are not entirely devoid of some numerical problems. (Willam et al. 1987,

Rots et al. 1985) have shown that fixed smeared crack models can lead to unreasonably

high shear strength prediction in shear loading situations. The axes of orthotropy are

fixed at their initial orientation. If the axes of principal stress shift away from the axes



230

of orthotropy due to non-proportional loading or a shift in the load resisting mecha-

nism of the structure, the response of the fixed crack becomes dominated by its shear

retention model. Since the shear retention model reduces only the shear stiffness, the

material does not soften under continued loading. Fixed crack models also exhibit

stiff behavior in post-peak regime as observed in Rots and Blaauwendraad (1989) in

comparison to experimentally observed results. For the multi-directional fixed crack

models, the disadvantage lies in the need to store information about many cracks,

thereby alleviating the complexity in implementation considerably. Moreover, even

though the excess in shear strength is reduced in multi-directional fixed crack model

from the fixed crack models, the problem is not completely eliminated. The original

rotating smeared crack model (Cope et al. 1980) forces the axes of orthotropy to coin-

cide with the principle strain direction. The concept of rotating crack does not mean

that the cracks would actually rotate. Rather it means that cracks of many orienta-

tion exists; in which cracks of some orientation close and some orientation open with

the effect that the orientation of the dominant crack rotates. The major shortcoming

of this approach is that since the crack is not aligned with the principle stress axes,

the principle stress axes can deviate from the axes of orthotropy thereby resulting

in excessive stiffness. Bažant (1983) laid the foundation for coaxial rotating crack

model in which both the principle stress and strain direction are aligned with the axes

of orthotropy. Later this was individually developed by Gupta and Akbar (1984),

Willam et al. (1986), Crisfield and Wills (1989). Coaxial rotating smeared cracks also

exhibit some drawbacks: the shear response of these crack models are governed by

the response of the material under tension rather than by a mixed mode constitutive

model (Spencer 2002). Since stresses and strains are forced to share the same principal

direction, loading an existing crack in shear results in a rotation of the crack rather

than in a sliding behavior.

Damage plasticity models: In order to obtain an unified and elegant concept, whose spe-

cial cases would result in fixed and rotating smeared cracks, an anisotropic damage

mechanics framework coupled with plasticity rules was evolved to explain the mecha-

nism of cracks in concrete (de Borst 2002). Even though with classical plasticity it was
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possible to model cracks at macroscopic level (Pramono and Willam 1989), but it was

not possible to model stiffness degradation which is a result of micro-cracking process

when a concrete sample is subjected to cyclic loading. Isotropic damage model with

a scalar damage variable acting on the elastic stiffness were developed with different

damage evolution rules (Simo and Ju 1987, Frantziskonis and Desai 1987, Mazars and

Pijaudier-Cabot 1989, Lubliner et al. 1989, Yazdani and Schreyer 1990, Cervera and

Oliver 1995, de Vree et al. 1995). The primary disadvantage of using these isotropic

damage models is that the possibility of compressive strut action, which is a prevalent

mechanism of load transfer for reinforced concrete members, is eliminated (de Borst

2002). To overcome this disadvantage, anisotropic damage models were proposed.

Resende and Martin (1984) proposed an anisotropic model in which different damage

rules were proposed to characterize damage in the deviatoric and volumetric modes of

response. Such a model, which suggests that the orientation of damage is a function

of load-history, is attractive given the effect of hydrostatic pressure on concrete re-

sponse. Lee and Fenves (1998) proposed an anisotropic model as an extension to the

model by Lubliner et al. (1989) in which two different damage variables were utilized

to represent separate damage behavior in tension and compression. A fully general-

ized anisotropic (fourth order damage tensor) model was proposed by Govindjee et al.

(1995) in which the orientation of the material damage is a function of the direction of

loading. This model was implemented in FEAP software for applications to concrete

with 3 defined surfaces by Lowes (1999). Even though these are fully generalized el-

egant models, the problem associated with these models is in calibrating the models,

since input variables are not directly obtained from experimental results.

Microplane models: The background of the microplane modeling approach, described in

more detail in Bažant et al. (1996), is primarily based upon the novel idea of Taylor

(1938) and Batdorf and Budianski (1949). The first in the series of microplane models,

termed as M1, was proposed by Bažant (1984) with successive refinements to M2 in

Bažant and Prat (1988), Bažant and Ožbolt (1990), M3 in Bažant et al. (1996), M4

in Bažant et al. (2000) and finally M5 in Bažant and Caner (2005). A detailed review

of the models (till M4) can be obtained in Bažant et al. (2000). The main concept
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in the formulation of the microplane models is to define stress-strain relationship

independently on planes of all possible orientations in the microstructure and then

to constrain these microplane stresses or strains either kinematically or statically to

the macroscopic stress or strain tensor. Even though mathematically these models

can be derived from the general formulation of anisotropic damage plasticity but

conceptually these models present a different perspective from the damage plastic

models. Damage plasticity models are based upon the concept of continuum whereas

these models consider a structure to be composed of several micro-structures and

thereby the definition of a continuum is relaxed. Conceptually these models are much

more appealing in defining the response of quasi-brittle materials like concrete. The

microplane models are in a way similar to the multi-directional fixed crack models

and this similarity has been explored in details in de Borst (2002).

A variety of smeared models exist in the literature, all of which are primarily based

on changing the constitutive relation of the materials (at a global or local level) so as

to capture the material response behavior. Most of the smeared crack models rely upon

two variables: the fracture energy of the material Gf and also the characteristic length

h over which the crack is assumed to be smeared. The fracture energy is described as a

material parameter and will be discussed in details later in the chapter. The concept of

characteristic length is important since without it would result in mesh-dependent results.

Bažant and Oh (1983) introduced the concept of crack-band width which is a function of

the element area and the direction of the crack advancement. Crisfield (1986) proposed the

characteristic length to be the jacobian at an individual gauss point. Rots (1988) suggested

the characteristic length to be dependent upon the element type, number of integration

points in an element and orientation of crack in an element. Oliver (1989) calculated the

element characteristic length as a function of element size and elastic stress state. Feenstra

(1993) assumed that the characteristic length in an element is related to the area of the

element. Lee and Willam (1997) proposed a crack density, hc, that maps the area of the

crack surface under compression failure into continuum volume. This crack density can also

be considered as a element characteristic length and is defined on the basis of experimental
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data as a function of the continuum element geometry. Even though various proposition

was made as regards to the characteristic length in an element, the underlying idea is that

in finite element calculations this length should correspond to a representative dimension of

the mesh size. For our evaluation later the definition as suggested by Rots (1988) has been

considered because of its simplicity.

C.3 Enriched Continua methods

The principle idea of the enriched continua methods is to model cracks utilizing a local

enrichment of the stress and/or displacement and/or strain relations in a finite element

formulation. Various set of enriched continua methods have emerged in the literature over

the years.

Cosserat continuum: The primary concept behind the Cosserat continuum approach

(Cosserat and Cosserat 1909) is the augmentation of three translational degrees of

freedom in a continuum by three rotational degrees of freedom. Several variations of

the original Cosserat theory led to the formulations of couple stress elasticity (Mindlin

and Tiersten 1962, Toupin 1962; 1964), theory of elasticity with micro-structure

(Mindlin 1964), micro-polar and micromorphic theories (Eringen 1964), multipolar

theory (Green and Rivlin 1964a, Green 1965). Nonlinear extensions to the Cosserat

theory was also proposed in Lippmann (1969), Besdo (1974). The first application

of micro-polar continuum theories in non-linear computational solid-mechanics frame-

work was done in Vardoulakis (1989), Mühlhaus (1989), de Borst (1991) who analyzed

the potentials of the elastoplastic micro polar constitutive theory to regularize the pre-

dictions of post-peak response behaviors of structural systems within the theoretical

framework of the smeared-crack approach. On a contemporary line, Willam and Di-

etsche (1992), Sluys (1992), Willam et al. (1995) analyzed the localization indicators

and localization properties of nonlinear micro polar continua. Later a thermody-

namically consistent micro-polar micro-plane constitutive law satisfying the classical

Clausius-Duhem inequality for isothermal process was developed in Etse et al. (2003),

Etse and Nieto (2004). Even though these models are quite elegant but the applica-
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bility of the Cosserat theories are limited to cases where rotational degrees of freedom

are activated upon deformation, thus it is a proper regularization method for shear

dominated problems but fails for pure tension.

Higher order gradient methods: These type of enriched continua methods differ from

the Cosserat theories in that they retain the displacement field as the only independent

kinematic field but improves the resolution by incorporating gradients of strain (Green

and Rivlin 1964b, Mindlin 1965). These first generation of higher order gradient

methods were limited to elastic materials. Later gradient dependent plasticity models

were developed (Zbib and Aifantis 1989, Vardoulakis and Aifantis 1991, Mühlhaus

and Aifantis 1991, de Borst and Mühlhaus 1992) to develop a gradient approach to

address various material instability problems such as metal fatigue, polycrystal/soil

shear banding, failure in concrete and liquefaction. These later gradient models were

not only limited in incorporation of gradients of strain (as the first generation models)

but also incorporated gradients in the plasticity yield criteria (Bažant and Jirásek

2002). Computational issues of gradient theory for both damage and plasticity was

discussed extensively in Pamin (1994), de Borst et al. (1995), Peerlings et al. (1996)

in which a series of finite elements have been formulated considering higher order de-

formation gradients. Using consistent thermodynamics, Voyiadjis and Dorgan (2001)

proposed gradient dependent theories of plasticity and damage over multiple scales

that incorporated internal variables and corresponding gradients at both the macro

and meso-scales in plasticity and damage potential function as well as the yield and

damage criteria. Even though these models represent the physical continua but they

are hard to implement and are computationally intensive. The robustness and ease of

applicability of these methods are yet to be tested by other researchers.

Embedded discontinuity methods: These can also be referred to as solid finite elements

with embedded displacement discontinuities. Discontinuous shape functions are used

to describe an enhanced displacement field within a cracked finite element. This proce-

dure allows discrete cracks to be introduced into the finite elements during the analysis

without altering the mesh. There is no need to define the location of potential cracks
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prior to the analysis since cracks can be introduced into the elements at any time.

In a comprehensive review of various embedded crack models, Jirásek (2000) grouped

the formulation in literature into three categories: kinematically optimal symmetric

(KOS), statically optimal symmetric (SOS), and statically and kinematically optimal

symmetric (SKON).

KOS formulation: The KOS approach uses strong kinematics in the representa-

tion of both the enhanced displacement field and the traction on the embedded

surface. Even though the KOS elements can give an excellent kinematic repre-

sentation of cracking, the interface traction can be very unrealistic. The models

developed utilizing this approach are by Lotfi (1992), Lotfi and Shing (1995),

Spencer (2002).

SOS formulation: The SOS approach uses statics to represent the displacement

field and interface traction. Even though the SOS formulation can realistically

model interface traction, but the weak kinematic representation of cracking leads

to severe locking problems. The models developed utilizing this approach are by

Belytschko et al. (1988), Larsson and Runesson (1996), Larsson et al. (1996),

Sluys (1997), Sluys and Berends (1998).

SKON formulation: The SKON approach takes on the pros of the both the above

two methods. The resulting element represents the crack displacement with

strong kinematics and also provides a good representation of the interface trac-

tion. The problem associated with these models are that they are generally

nonsymmetric and are sometimes difficult to solve using existing solution tech-

niques. The models developed utilizing this approach are by Dvorkin et al.

(1990), Klisinski et al. (1991), Olofsson et al. (1994), Simo and Oliver (1994),

Armero and Garikipati (1995), Oliver (1996a;b), Ohlsson and Olofsson (1997),

Oliver et al. (1998), Tano et al. (1998), Oliver and Pulido (1998), Spencer (2002).
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Appendix D

SPECIMEN LOAD DEFLECTION PLOTS USING COMPONENT

BASED MODEL
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Figure D.1: Load deformation response of DW X1 specimen
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Figure D.2: Load deformation response of DW X2 specimen
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Figure D.3: Load deformation response of DW X3 specimen
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Figure D.4: Load deformation response of KOA C1 specimen
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Figure D.5: Load deformation response of KOA C3 specimen
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Figure D.6: Load deformation response of KOA J1 specimen
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Figure D.7: Load deformation response of KOA J6 specimen
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Figure D.8: Load deformation response of OKA J1 specimen
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Figure D.9: Load deformation response of OKA J2 specimen
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Figure D.10: Load deformation response of OKA J3 specimen
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Figure D.11: Load deformation response of OKA J4 specimen
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Figure D.12: Load deformation response of OKA J5 specimen
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NKOKJ4
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Figure D.13: Load deformation response of NK OKJ4 specimen
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Figure D.14: Load deformation response of NK OKJ5 specimen
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Figure D.15: Load deformation response of NK OKJ6 specimen
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Figure D.16: Load deformation response of OS J4 specimen
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Figure D.17: Load deformation response of OS J7 specimen
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(a) Experimental
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Figure D.18: Load deformation response of OS J8 specimen
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Appendix E

SPECIMEN STRUT-AND-TIE MODELS

Figure E.1: Typical combined strut-truss model for Specimen EKOA HC
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Figure E.2: Typical single strut model for Specimen EKOA HC

(a) Specimen EKOA HLC (b) Specimen EKOA LA1

Figure E.3: Combined strut-truss model for EKOA specimens
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(a) Specimen DW X1 and DW X3 (b) Specimen DWX X2

Figure E.4: Combined strut-truss model for DWX specimens

(a) Specimen TKHS HJ1 (b) Specimen TKHS HJ12

Figure E.5: Combined strut-truss model for TKHS specimens
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(a) Specimen TKTH HNO1 (b) Specimen TKTH HNO3

(c) Specimen TKTH HNO4 (d) Specimen TKTH HNO5

Figure E.6: Combined strut-truss model for TKTH specimens
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(a) Specimen TKTH HNO6 (b) Specimen TKTH HNO8

Figure E.7: Combined strut-truss model for more TKTH specimens

(a) Specimen HO SD35Aa4 (b) Specimen HO LSD35Aa1

Figure E.8: Combined strut-truss model for HO specimens
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(a) Specimen NK OKJ1 (b) Specimen NK OKJ3

Figure E.9: Combined strut-truss model for NKOKJ specimens
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(a) Specimen HTMK NO44 (b) Specimen HTMK NO49

Figure E.10: Combined strut-truss model for HTMK specimens
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(a) Specimen OKA J1 (b) Specimen OKA J3

(c) Specimen OKA J5

Figure E.11: Combined strut-truss model for OKA specimens
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(a) Specimen OS J1 (b) Specimen OS J4

(c) Specimen OS J8

Figure E.12: Combined strut-truss model for OS specimens
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(a) Specimen PEER14 (b) Specimen PEER22

(c) Specimen PEER4150

Figure E.13: Combined strut-truss model for PEER specimens
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