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CHAPTER 2: 
CONCRETE MATERIAL MODEL

2.1  Introduction

The response of a reinforced concrete structure is determined in part by the material

response of the plain concrete of which it is composed. Thus, analysis and prediction of

structural response to static or dynamic loading requires prediction of concrete response to

variable load histories. The fundamental characteristics of concrete behavior are estab-

lished through experimental testing of plain concrete specimens subjected to specific, rel-

atively simple load histories. Continuum mechanics provides a framework for developing

an analytical model that describe these fundamental characteristics. Experimental data

provide additional information for refinement and calibration of the analytical model.

The following sections present the concrete material model used in this investigation

for finite element analysis of reinforced concrete beam-column connections. Section 2.2

presents the experimental data considered in model development and calibration. Section

2.3 presents several concrete material models that are typical of those proposed in previ-

ous investigations. Section 2.4 discusses the material model implemented in this study.

Section 2.5 presents a comparison of observed and predicted concrete behavior for plain

concrete laboratory specimens subjected to several different load histories.

2.2  Concrete Material Properties Defined by Experimental Investigation

In developing an analytical model to predict material response, consideration of the

physical mechanism of behavior may facilitate the development process and simplify the

model formulation. The physical mechanisms of response are most evident in the qualita-

tive and quantitative data collected during material testing with simple load histories.

However, given the concrete composition and mechanisms of response, there are particu-

lar issues that must be considered in assessing the results of an experimental investigation. 
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Standardized tests may be used to define material parameters such as compressive

strength, elastic modulus, tensile strength, and fracture energy. Available experimental

data describe the response of concrete subjected uniaxial cyclic compression and tensile

loading as well as uniaxial reversed-cyclic loading. Experimental testing of plain and rein-

forced concrete elements may be used to characterize the response of plain concrete sub-

jected to loading in shear. Additionally, data define the stiffness and strength of concrete

subjected to multi-dimensional loading. The results of these experimental investigations

define a data set that may be used in model development and calibration.

2.2.1  The Composition and Behavior of Plain Concrete

Plain concrete is a non-homogeneous

mixture of coarse aggregate, sand and

hydrated cement paste (see Figure 2.1).

For normal-weight, normal-scale con-

crete mixes, coarse aggregate is usually

gravel or crushed rock that is larger

than 4.75 mm (0.187 in.) in diameter

while sand is aggregate particles with

diameters between 4.75 mm and 0.75

mm (0.187 in. and 0.029 in). Hydrated

cement paste (hcp) refers to the hydration product of portland cement and water. The tran-

sition zone refers to the hcp located in the immediate vicinity of the coarse aggregate par-

ticles. Because the transition zone typically has a slightly higher water to cement ratio than

is observed in the entire hcp and because of the physical boundary between the different

materials, the transition zone is weaker than the remainder of the hcp.

Figure 2.1: The Concrete Composite (from 
Mehta and Monteiro, 1993)
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The initiation and propagation of cracks is the dominant mechanism of concrete

material response. Under moderate general loading, the response of the concrete mixture

is controlled by microcracking in the transition zone between the aggregate and the hcp.

Under increased loading, microcracks in the transition zone grow and merge and microc-

racks initiate in the hcp. Eventually, a continuous crack system forms that traverses the

transition zone and the hcp, resulting in the loss of load capacity. Under compression type

loading, the continuous crack system may include cracks that transverse the coarse aggre-

gate. Under tensile loading, increased load acts directly to increase the stress at the crack

tip and drive crack propagation. As a result, for tensile loading, the sequence of cracking

leading up to the development of a continuous crack system and loss of strength occurs

very rapidly. Increased compressive loading indirectly increases stress at the crack tip,

driving crack propagation at a much slower rate. For compressive loading, the stages of

crack initiation and propagation are readily identified in the observed concrete response,

and loss of load capacity occurs more slowly. 

2.2.2  Criteria for Experimental Investigation of Concrete Behavior

The composition of concrete and the mechanisms of concrete response, require par-

ticular consideration in assessing the experimental investigation of plain concrete behav-

ior.

2.2.2.1  Consideration of the Analytical Model

Given that concrete is a non-homogeneous composite and that the primary mecha-

nism of response is the development and propogation of discrete cracks, it is necessary to

consider the general framework of the model in establishing the experimental data set.

The response of plain concrete can be modeled at the scale of the coarse aggregate

with the model explicitly accounting for the response of the aggregate, the hcp and the
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transition zone material as independent elements or as components of a composite [see

Ortiz and Popov, 1982]. However, while there may be available experimental data that

defines the response of aggregate and hcp to general loading, characterization of the tran-

sition zone must be accomplished indirectly. Further, the random nature of the component

material properties and distribution adds complexity to models that are developed at this

scale. In modeling the response of a reinforced concrete structural element, it is reasonable

to incorporate both the microscopic response as well as the random nature of the concrete

into a macromodel. The macromodel describes the response of a body of concrete that is

many times the size of individual pieces of aggregate or of continuous zones of hcp. It is

assumed that initially the concrete within the body is homogenous and that the material

response of the components is represented in the global response of the concrete compos-

ite. For this investigation, plain concrete is idealized as an initially homogenous material. 

The idealization of concrete as a homogeneous body requires additional consider-

ation for the case of concrete subjected to moderate through severe loading. At these load

levels, the response of concrete is determined by the formation of continuous crack sys-

tems. Some researchers have proposed models in which the idealization of concrete as a

continuum is abandoned in the vicinity of a the crack, and crack systems are modeled dis-

cretely [e.g., Ayari and Saouma, 1990; Yao and Murray, 1993]. Development and calibra-

tion of such a model requires experimental data defining the rate of crack propagation

under variable stress states and load histories. Currently, there are few data available char-

acterizing the concrete fracture process under multi-dimensional stress states. Addition-

ally, such a model requires special consideration within the framework of a finite element

program. Other researchers have shown that it is possible to maintain the idealization of

concrete as a continuum in the presence of discrete cracks. In these models, the material

damage (evident in reduced material strength and stiffness) associated with discrete crack-
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ing is distributed over a continuous volume of the material. Such models include the ficti-

tious-crack model [Hillerborg et al., 1976], smeared-crack models [de Borst and Nauta,

1984], and the crack-band model [Bazant and Oh, 1983]. Modeling of concrete as a con-

tinuum results in a model that is compatible with many existing computer codes as well as

provides a basis for application of existing continuum constitutive theory in developing

models. For these reasons, in this investigation concrete is considered to be a continuum.

Modeling concrete as an initially homogeneous material and assuming that the dis-

crete cracking is incorporated into a continuum model of concrete, it is necessary that the

experimental data set on which the analytical model will be developed and calibrated be

compiled from investigations that meet several criteria. The concrete specimens must have

critical zones that are sufficiently large that the concrete composite in the vicinity is

approximately a homogenous mixture. For load cases in which the material response is

determined by a global mechanism (e.g., microcracking) experimental measurement must

define the deformation of the entire concrete body to ensure that the deformation is repre-

sentative of the composite. For load cases in which the material response is determined by

a local mechanism (e.g., formation of a continuous crack surface), it is necessary that

experimental measurement define the global deformation of the concrete body as well as

the deformation associated with the localized mechanism. This allows for appropriate cal-

ibration of the continuum model.

2.2.2.2  Consideration of Experimental Methods

Under severe loading, concrete exhibits a softening response. In order to characterize

concrete response through experimental testing, it is necessary that the experimental

equipment and procedure meet particular criteria. These criteria are more complete than

those required for testing of hardening materials. Specifically, it is necessary that the fol-

lowing requirements by satisfied:
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1. Loading must be conducted using displacement control with a closed-loop system

in order to maintain a uniform rate of loading.

2. The applied rate of loading must be representative of that which the actual speci-

men will experience in the field, or results must be adjusted to account for the

effects of load rate.

3. The reaction frame must be sufficiently stiff that the frame deformation does not

contribute to the prescribed deformation path of the material specimen.

4. It is necessary that the testing apparatus not contribute to undesirable loading of the

specimens. For the tests introduced here, it may be sufficient to increase specimen

size so that boundary conditions do not contribute to the stress state at the critical

section. However, for some tests, it may be necessary to apply loads using brushes

or to lubricate the contact surface of the specimens in order to reduce the undesir-

able stresses introduced at the specimen-load frame interface. 

2.2.3  Concrete Material Parameters Defined through Standardized Testing

The prolific use of concrete in the construction industry has led to the development

of a series of standardized testing procedures for determining concrete material properties.

A concrete material model may be calibrated on the basis of material parameters deter-

mined using these standard procedures. 

The response of a reinforced concrete structural element is determined in part by the

response of plain concrete in compression. As a result, standard practice in the United

States [ACI, 1992] recommends characterizing the response of concrete on the basis of the

compressive strength of a 6 inch diameter by 12 inch long (150 mm by 310 mm) concrete

cylinder. For typical concrete mixes, the standard cylinder is sufficiently large that the

material is essentially homogeneous over the critical zone. Additionally, while the stan-

dard procedure (ASTM C39) does not require efforts to reduce frictional confinement

induced during testing at the ends of the specimen, the specimen is considered to suffi-

ciently long that approximately the middle third of the cylinder experiences pure compres-
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sion. Thus, this method is appropriate for determining the uniaxial, compressive strength

of concrete.

Following from the test for compressive strength, ASTM C469 establishes a proce-

dure for determining concrete elastic modulus. This method requires loading of the stan-

dard cylinder in uniaxial, cyclic compression at relatively low load levels. Some

researchers have suggested that the elastic modulus for concrete may be different under

compression and tension type loading. While it is possible that differences in microcrack

patterns and distribution may affect material stiffness under compression and tension load-

ing, it is likely that some difference in concrete response under compression and tension

loading is due to the difference in boundary conditions under variable loading. For this

investigation, concrete elastic material response, in tension and compression, is defined by

a single set of material parameters established by standard material testing. In the absence

of experimental data, the concrete elastic modulus may be estimated on the basis of the

compression strength: 

 (2-1)

where Ec is the elastic modulus (psi), wc is the weight density of the concrete (lb/ft3) and fc

is the compressive strength (psi) [ACI, 1992]. 

Poisson’s ratio characterizes the elastic response of concrete. Poisson’s ratio can be

determined experimentally by measuring the radial or circumferential expansion of a stan-

dard concrete cylinder subjected to compression loading. ASTM C469 establishes a stan-

dardize procedure for determination of Poisson’s ratio from compression testing of

standard cylinders. Most research suggests that Poisson’s ratio for concrete is between

0.15 and 0.20 [e.g., Mehta and Monteiro, 1993] and that there is little correlation between

Poisson’s ratio and other material properties. Mehta and Monteiro [1993] suggest that

Poisson’s ratio is generally lower with high strength concrete and lower for saturated and

Ec 33w c
1.5fc

0.5=
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dynamically tested concrete. However, Klink [1985] proposes, on the basis of extensive

experimental testing, that an average value of Poisson’s ratio appropriately is estimated on

the basis of concrete compressive strength: 

(2-2)

where νc is the elastic Poisson’s ratio, wc is the unit weight of the concrete (lb/ft3) and fc is

the compressive strength (psi). The value of Poisson’s ratio predicted by Equation (2-2)

varies between 0.16 and 0.20 for normal-weight, average-strength concrete. Given the

observed variation in concrete composition and in experimental data, in the absence of

experimental data a value of Poisson’s ratio between 0.15 and 0.20 is appropriate for char-

acterizing elastic material response.

Direct tension testing of concrete requires specialized equipment, procedures and

consideration of boundary conditions. As a result, it is rarely performed. Instead, either the

third-point flexural test (ASTM C78) or the splitting tension test (ASTM C496) is used to

estimate concrete tensile strength. The flexural test consists of loading a plain concrete

beam (150 by 150 by 500 mm) at the third points in flexural. The concrete tensile strength

determined from this test, fctfl, is known to overestimate the direct tensile strength, fct, and

is not appropriate for model calibration. However, the CEB-FIP Model Code (1993) rec-

ommends the following relationship for use in estimating the direct tensile strength, fct, on

the basis of the flexural tensile strength, fctfl:

(2-3)

where h is the depth of the beam in mm and ho is 100 mm. The splitting cylinder test con-

sists of applying a distributed line load to opposite long sides of a standard cylinder. The

result of this loading is the development of an approximately uniform tensile stress distri-

bution along the diameter of the cylinder between the applied loads. The tensile strength

νc 4.5 7–×10 w1.75fc
0.5=

fct fctfl
2.0 h ho⁄( )0.7

1 2.0 h ho⁄( )0.7+
----------------------------------------=
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as computed from this test has been found to overestimate the results of direct tensile test-

ing by about 10 to 15 percent [Mehta and Monteiro, 1993]. This discrepancy may be cor-

rected by reducing the tensile strength as defined by the splitting tensile test for use in

model calibration. In the absence of experimental data, concrete splitting tensile strength

may be predicted from the concrete compressive strength using the following relationship:

 [Oluokun, 1991] (2-4)

where fctsp is the concrete splitting tensile strength (psi) and fc is the concrete compressive

strength (psi). Also, direct concrete tensile strength may be estimated on the basis of the

concrete compressive strength using the following relationship:

 [CEB-FIP Model Code, 1993] (2-5)

where fct is the concrete direct tensile strength in MPa, fc is the concrete compressive

strength in MPa and fco is 10 MPa. Energy dissipated during the brittle failure of concrete

may be considered a material property and used in the calibration of material models. This

energy, referred to as the concrete fracture energy, defines the energy required generate a

unit area of crack surface. A commonly accepted procedure for experimental determina-

tion of concrete fracture energy is that proposed by RILEM 50-FMC Committee [1985].

In this procedure a notched concrete beam is subjected to three-point bending to failure

and the applied load is controlled to produce a constant rate of crack width opening. It is

assumed that all deformation of the beam in excess of that at the maximum load results

from crack opening. Thus, the concrete fracture energy is defined as the integral of the

stress versus deformation history for deformation is excess of that corresponding to the

strength. For normal-weight, normal-sized concrete mixes, fracture energy as determined

in accordance with the standard procedures varies from 0.090 MPa-mm to 0.230 MPa-mm

[Monteiro et al., 1993; Kozul and Darwin, 1997]. There is no apparent correlation

fctsp 1.38 fc( )0.69 =

0.95
fc
fco
------ 

 2 3⁄
fct 1.85

fc
fco
------ 

 2 3⁄
≤ ≤
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between fracture energy and compression or tension strength, although the data presented

by Kozul and Darwin shows concrete mixtures with basalt coarse aggregate to have sig-

nificantly higher fracture energy than those with limestone. 

2.2.4  Concrete Subjected to Uniaxial Compression

The complete stress-strain history for concrete subjected to uniaxial compression

provides data for use in characterizing the response of concrete to general loading. Figure

2.2 shows a plot of the stress-strain response of a typical concrete mix subjected to mono-

tonically increasing compressive strain. Important characteristics of this response include

the following outlined by Mehta and Monteiro [1993] (see Figure 2.2):

1. The response of the plain concrete under increasing strain is essentially linear-elas-

tic until the load reaches approximately 30 percent of the peak compressive

strength (Zone A). This linear-elastic response corresponds to minimal, stable

crack growth within the transition zone. Note that a stable crack does not continue

to grow under constant load.

2. Loading to compressive stress between 30 and 50 percent of peak compressive

stress, results in some reduced material stiffness (Zone B). Reduction in the mate-

Zone  C

Zone  D

B

Zone  E

A

Figure 2.2: Concrete Response to Monotonic and Cyclic Compression Load (Data 
from Bahn and Hsu, 1998)
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rial stiffness results from a significant increase in crack initiation and growth in the

transition zone. Crack growth is stable.

3. Loading to compressive stress between 50 and 75 percent of peak compressive

stress results in further reduction in material stiffness (Zone C). Here the reduced

stiffness is partly a result of crack initiation and growth in the hcp. Additionally,

reduced material stiffness results from the development of unstable cracks that

continue to grow when subjected to a constant load.

4. Concrete loaded to more that 75 percent of the peak compressive load responds

with increased compressive strain under constant loading (Zone D). This results

from spontaneous crack growth in the transition zone and hcp and well as from the

consolidation of microcracks into continuous crack systems.

5. Loading to compressive strains beyond that corresponding to the compressive

strength results in reduced compressive strength (Zone E). This response is a result

of the development of multiple continuous crack systems.

For model development, this behavior may be simplified into three levels of response.

Concrete initially responds as an elastic material. Under increased loading, global microc-

racking results in reduced material stiffness. Eventually, further increase in compressive

strain demand results in the development of multiple continuous crack systems and

reduced strength.

Figure 2.2 also shows the typical response of plain concrete subjected to uniaxial,

cyclic compression loading. Important characteristics of this response include the follow-

ing:

1. Under increasing compressive strain, the stress developed follows the monotonic

stress-strain response.

2. At moderate strain levels, the stiffness of the unload-reload cycles is approximately

equal to the elastic modulus; however, the stiffness deteriorates with increased

strain demand.

Figure 2.3 shows the normalized stress-strain response for a number of plain con-

crete specimens subjected to monotonic loading. Figure 2.5 and Figure 2.4 show similar
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data for concrete subjected to cyclic loading. Previous research suggests that the post-peak

compressive stress-strain response is dependent on specimen height, implying that com-

pression failure is a localized phenomenon [van Mier, 1986]. The data presented in Figure

2.3 are for specimens with gage lengths that vary from 3.5 inches to 6.5 inches and this

accounts somewhat for the variability of the results. The data presented in Figure 2.5 show

the response of plain concrete prisms (3.0 by 5.0 by 6.5 inches) subjected to cyclic com-

pression loading. For this configuration, it was found that peak compressive strength was

approximately 85 percent of that determined using the standard compression tests. While

this test program does not predict the compression strength as defined by the standardized

test procedure, the results are representative of concrete subjected to cyclic compression

loading.

Figure 2.6 shows a plot of normalized unloading stiffness as a function of normalized

plastic compressive deformation. Plastic deformation is defined as the deformation that is

not recovered upon unloading to zero compressive stress and this deformation is normal-

ized with respect to the deformation at approximately zero compressive strength. This

Figure 2.3: Normalized Stress-Strain Histories for Concrete Subjected to Compres-
sion Loading (Data from Bahn and Hsu [1998], Karson and Jirsa [1969], Kosaka et al. 
[1984] and Sinha et al. [1964])
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applies to unload-reload cycles that occur at initial strains in excess of that corresponding

to peak load. These data reflect the material damage associated with the development of

continuous crack systems under severe loading. These data will be used to develop an ana-

lytical model that characterizes the deterioration of concrete stiffness under increased

compressive strain demand.  

2.2.5  Concrete Subjected to Uniaxial Tension

The response of plain concrete subjected to uniaxial tension may determine the

response of reinforced concrete structural elements that are inadequately reinforced. Addi-

tionally, the deterioration of concrete tensile strength results in accelerated activation of

reinforcing steel in all reinforced concrete structures. Thus, it is necessary to include rep-

resentation of the deterioration of concrete tensile strength in a concrete constitutive

model.

Figures 2.7, 2.8 and 2.9 show the typical stress-deformation response of plain con-

crete prisms subjected to uniaxial tensile deformation under monotonically increasing,

Figure 2.4: Stress-Strain History for Concrete Subjected to Uniaxial, Cyclic Com-
pression Loading (Data from Sihna et al. [1964] as Presented by Chen and Han [1988])
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loading, cyclic loading and reversed cyclic loading. The response of plain concrete in ten-

sion is characterized by initiation, opening and propagation of cracks, thus it is inappropri-

ate to consider tensile strain, since strain measurement depends entirely on the gage length

Figure 2.5: Stress-Strain History for Concrete Subjected to Uniaxial, Cyclic, Com-
pression Loading (Data from Karson and Jirsa [1969])

Figure 2.6: Normalized Stiffness versus Normalized Plastic Deformation (Data from 
Lee and Willam, 1997)
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associated with the investigation. Important characteristics of these material responses

include the following:

1. Concrete responds in an essentially linear-elastic manner until the tensile strength

is achieved. This response corresponds to the initiation of a small number of stable

microcracks within the transition zone.

2. Loading of the concrete to tensile strains in excess of that corresponding to the

peak tensile strength results in loss of load capacity. This response corresponds to

the development of continuous crack systems in the transition zone and the hcp. 

3. Unload-reload cycles that initiate at strains in excess of that corresponding to the

peak tensile strength occur at a material stiffness that is significantly less than the

original material modulus. This reduced material stiffness is a result of cracks that

formed under peak tensile load remaining open as long as the prism is carrying

tensile stress.   

2.2.6  Concrete Subjected to Shear

Plain concrete subjected to monotonically increasing shear will exhibit tensile crack-

ing perpendicular to the orientation of the principal tensile stress. In this case, material

behavior may be predicted on the basis of the established concrete response to tensile

Figure 2.7: Tensile Monotonic Concrete Tensile Stress-Strain History (Data from 
Yankelevsky, 1987)
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loading. This implies that shear load and material response most appropriately is modeled

on the basis of the combined compression and tension stress state. However, in a rein-

forced concrete system subjected to a general load history, regions of plain concrete may

be subjected to shear loading along previously formed crack surfaces. This mechanism of

Figure 2.8: Stress-Deformation History for Concrete Subjected to Cyclic Tensile 
Loading (Data from Reinhardt, 1984)

Figure 2.9: Stress-Deformation History for Concrete Subjected to Reversed Cyclic 
Loading (Data from Reinhardt, 1984)
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response is distinct from the response of a continuum subjected to multi-dimensional ten-

sion and compression loading. Thus, it is necessary to consider the capacity for shear

transfer across a cracked concrete surface. 

Shear transfer in cracked concrete has been the subject of many previous experimen-

tal investigations. Typically these investigations utilize a specimen shape that allows for

the application of shear load along a well-defined cross section. Of interest to this investi-

gation are the studies in which laboratory specimens are pre-cracked (along the appropri-

ate cross section) under one load distribution and then subjected to shear load across the

established crack surface. Also of interest to this study are the investigations in which the

presence of reinforcing steel outside of the crack zone isolates concrete damage to the ini-

tial crack zone. For relatively small crack widths, load transfer across the crack plane is

achieved primarily through aggregate interlock, the development of bearing forces

between pieces of aggregate. Given this mechanism of load transfer, it is reasonable that

the capacity of the system is determined by the width of the crack opening. Of particular

interest to this investigation are studies in which a constant crack opening width is con-

trolled. However, consideration of the behavior of systems in which reinforcement cross-

ing the crack plane allows for increasing but moderate crack width is also appropriate.

Results of a few particular investigations provide insight into shear transfer in

cracked concrete. An investigation conducted by Paulay and Loeber [1977] considers

shear transfer in reinforced concrete specimens with pre-cracked, unreinforced, constant-

width crack zones. The results of this investigation show that for small crack widths the

shear stress versus slip relationship is linear to peak strength of approximately 0.20fc. For

increased crack width, the shear stress versus slip exhibits some loss of stiffness at low

load levels, but maintains a peak capacity of approximately 0.20fc. Results of an investiga-

tion presented by Laible et al. [1977] shows low shear transfer capacity (0.06fc to 0.09fc)
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for larger crack widths (greater than 0.03 inches [0.8 mm]). Hofbeck et al. [1969], on the

basis of an investigation of shear transfer across reinforced crack planes, propose that

shear strength and stiffness increase with increasing volume of reinforcement crossing the

crack plane and that the peak strength of the system is limited to 0.30fc. The results of this

study also show that for systems in which crack width is controlled by the tensile response

of steel reinforcement crossing the crack plane, the shear stress versus slip relationship

exhibits deteriorating stiffness up to the peak load and then softening. This behavior may

be attributed to increased crack width up to peak capacity. It is important to note that for

these systems in which reinforcement crosses the crack plane, the direct contribution of

steel reinforcement to shear capacity and stiffness (dowel action) is minimal at moderate

slip levels. Similar results for systems in which steel reinforcement crosses the crack plane

are presented by Walraven and Reinhardt [1981]. Here peak shear strength, achieved with

high volumes of reinforcement crossing the crack plane, varies between 0.26fc and 0.32fc.

The results of these investigations are summarized for use in developing and calibrat-

ing a concrete material model:

1. The capacity for shear transfer across a concrete crack plane as well as the stiffness

of the shear stress versus slip relationship increases with increasing concrete

strength and decreases with increasing crack width.

2. Concrete aggregate size and shape have relatively little effect on shear strength and

stiffness.

3. Typically, under monotonically increasing slip across the crack plane, shear resis-

tance increases up to a maximum strength of approximately 0.20fc to 0.30fc and

then begins to decrease.

2.2.7  Concrete Subjected to Multi-Dimensional Loading

Since plain concrete in a reinforced concrete element is subjected to multi-dimen-

sional loading, it is not sufficient to develop a constitutive model for concrete that is cali-
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brated solely on the basis of the uniaxial response. A number of researchers have

investigated the response of concrete subjected to two- and three-dimensional loading.

Results of these investigations include analytical models characterizing the multi-dimen-

sional compressive yield/failure surface and the evolution of this yield surface under

increased loading as well as experimental data defining the concrete strain history under

multi-axial loading.

2.2.7.1  Concrete Strength under Multi-Dimensional Loading

Kupfer et al. [1969] completed a series of tests to investigate the response of plain

concrete subjected to two-dimensional loading. Yin et al. [1989] completed a similar

investigation. In these investigations concrete plates (approximately 200 mm by 200 mm

by 50 mm in dimension) were loaded to failure at prescribed ratios of σ1:σ2 with σ3 equal

to zero (where  is the ith principal stress). Loads were applied using steel brushes to

minimize stresses introduced through friction at the specimen boundaries. The failure sur-

faces developed through these investigations are presented in Figure 2.10. The result of

the investigation conducted by Yin et al. show a failure surface that is slightly stronger

than that developed by Kupfer. The difference in the failure surfaces may be due to a num-

ber of factors including load rate, conditions of the specimens during testing, preparation

of the specimens, properties of the mixes or size effects. Yin et al. propose that the dis-

crepancies are due in part to differences in the type of coarse aggregate used in the two

studies and in part to the use by Kupfer of a slower rate of loading than is currently stan-

dard. 

These two-dimensional failure surfaces are extended by data presented by Van Mier

[1986] (see Figure 2.10). Van Mier investigated the effect on the two-dimensional con-

crete failure surface of applying low levels of confining pressure in the third dimension.

Two series of tests were completed in which concrete specimens were loaded at prescribed

σi
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ratios of σ1:σ2:σ3, with the stress in the one out-of-plane direction maintained at 5 or 10

percent of one of the in-plane stresses. The results of these tests show that a relatively

small confining pressure in the out-of-plane reaction can significantly increase the

strength of concrete in the plane of the primary loading.

The results of these two- and three-dimensional studies can be compared with results

of other investigations of the response of concrete subjected to three-dimensional load his-

tories. Figure 2.11 shows a plot of  versus  where  is the second invariant of the

deviatoric stress tensor and I1 is the first invariant of the stress tensor defined by the fol-

lowing relationships:
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(2-6)

(2-7)

where sij are the deviatoric components of the stress tensor defined as follows:

(2-8)

and  is the Kroneker delta (Einstein summation notation convention is assumed).

In Figure 2.11 data collected from experimental investigations completed by Kosaka

et al. [1984], Salami et al. [1990], and Imran et al. [1996] are presented in addition to the

previously discussed data. The Kosaka study looks at the response of concrete loaded to

failure in compression along one axis while subjected to relatively low levels of confining

pressure in the perpendicular plane. For this study, the confining pressure was applied first

in one plane and then the specimens were loaded to failure in compression along the per-

pendicular axis. Lateral confining pressure was maintained manually during the test and

data show some increase as testing progressed. The presented lateral confining loads cor-

respond to peak compressive strength. Friction along the specimen boundaries was

reduced by placing greased pads between the specimen and loading frame. In the Salami

and Imran studies, the initial load sequence consisted of applying an increasing hydro-

static pressure up to a specified level. Following application of hydrostatic pressure, the

specimens were loaded to failure along one of the following load paths: maintain the

applied pressure in two directions and increase load in the third direction, alternate a rela-

tively large load increase in one direction with smaller load increases in the other two

directions, alternate load increase in one direction with load reduction in the other two

directions or simultaneously vary the load in one direction and the load in the remaining

J2
1
2
---sijsij=

1
6
--- σ1 σ2–( )2 σ2 σ3–( )2 σ3 σ1–( )2+ +=
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two directions at some prescribed ratio. As with the two-dimensional testing, boundary

conditions minimized frictional loads on the specimens.

The data presented in Figure 2.11 indicate several characteristics of the concrete

compressive failure surface. First, the data show that concrete subject to moderate levels

of confining pressure along two principal stress axes can exhibit tremendous compressive

strength along a third principal stress axis. Also, the data show that the failure surface is a

function of  and . However, the data show that the failure surface for concrete sub-

jected to general three-dimensional loading is not uniquely defined by  and .

Instead, the data presented in Figure 2.11 indicate that the relationship between  and

 is a function of the ratio of the principal stresses. This is evident in the comparison of

the data presented by Kupfer et al., Yin et al. and Van Mier with that presented by Salami.

Within each of the first four data sets, most of the data points represent approximately the

Figure 2.11:Deviatoric Stress versus Pressure at Concrete Compressive Strength 
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same loading in two dimensions and variable loading in the third dimension. For example,

most of the data points in the data set presented by Van Mier for 5 percent confinement

stress represent a stress state in which ,  and

. On the other hand, the data presented by Salami for compressive

loading represents stress states in which the ratio between the principal stresses is approx-

imately constant and thus the confining pressure in two dimensions varies with the com-

pressive strength achieved in the third dimension. The non-uniqueness of the  and 

relationship is further supported by the data presented in Figure 2.12. Here the data indi-

cate that there is a linear relationship between minimum and maximum normalized princi-

pal stress at peak compressive load. 

σ3 1.80fc≅ σ1 0.05σ3=

0.6fc σ> 2 1.75fc>
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Figure 2.12:Maximum Versus Minimum Normalized Principal Stress (Data from 
Sources Identified in Figure 2.11)
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2.2.7.2  Evolution of the Yield Surface Under Multi-Dimensional Loading

There are few investigations that have considered the evolution of the concrete multi-

dimensional yield surface from the initial inelastic response through complete loss of

strength. A thorough investigation of the topic requires a coordinated effort between

experimental and analytical research since the evolution is unique to the plasticity model.

Kupfer et al. [1969] propose that the shape of the biaxial yield surface for concrete loaded

in compression maintains the same shape throughout the loading process. Lubliner et al.

[1989] propose that the limit of the elastic domain for concrete loaded in multi-dimensions

appropriately is defined on the basis of the uniaxial stress-strain response. Conversely,

Salami and Desai [1990] propose some moderate modification to the yield surface for

concrete loaded in three dimensions. The most extreme variation in the concrete yield sur-

face is that proposed by Chen and Han [1988]. In this model, the researchers propose a

model that is consistent with experimental observation that while the initial elastic domain

excludes extreme loading of concrete in hydrostatic pressure, the ultimate yield surface

does not. 

2.2.7.3  Concrete Strain History Under Multi-Dimensional Loading 

In experimental investigations concrete exhibits variation in volumetric strain as a

function of deviatoric stress. This dilatant response is revealed explicitly in the data pre-

sented by Stankowski and Gerstle [1985] (Figure 2.13). However, concrete dilatancy is

also revealed in the more commonly presented volumetric strain versus compression load

for concrete tested in uniaxial compression (Figure 2.14). Here dilatancy contributes to the

volumetric expansion observed near peak load capacity. In reinforced concrete structural

elements, volumetric expansion activates transverse reinforcement and thus may deter-

mine the mechanism of response. This characteristic of concrete response properly is con-

sidered in development of a concrete material model.
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2.2.8  The Effect of Load Rate on Concrete Response

Time represents the fourth dimension for concrete loading, and a number of research-

ers have investigated the effect of load rate on concrete material response. Since the focus

of this study is the analysis of reinforced concrete members subjected to earthquake load-
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ing, it is necessary to consider the response of concrete subjected to the moderately rapid

load rates associated with earthquake ground motions.

Load rate for materials is most appropriately considered in terms of applied strain

rate. Numerical modeling [e.g., Wakabayashi et al., 1984] and experimental, dynamic test-

ing of full-scaled models [e.g., Hosoya et al., 1997] has been used to investigate the strain

rate associated with earthquake loading of reinforced concrete structures. This research

indicates that the strain rate is a function of the period of the structure, the earthquake

ground motion and the ductility demand on the structural elements. This research and the

investigations of others [Mahin and Bertero, 1972] identify the maximum strain rate in

reinforced concrete structures subjected to severe earthquake ground motion to be

between 0.001 per second and 0.25 per second. 

An appropriate range for maximum strain-rates for plain concrete in a bridge frame

subjected to earthquake loading can be estimated on the basis of the typical period range

for these structures. Here we will assume that the period, Tbridge, is not the purely elastic

period but includes some softening of the system due to cracking of concrete under service

level and environmental loading. For the case of a brittle failure of a bridge connection

due to overloading of plain concrete in tension, it is reasonable to assume that maximum

tensile strength will be reached at the point of maximum displacement. This will corre-

spond to loading during an time interval equal to 0.25Tbridge. A plausible range for the

period of a reinforced concrete bridge is 0.25 sec. to 1.0 sec. Thus, concrete strength is

assumed to be achieved during a minimum time interval of 0.0625 sec. For average-

weight, normal-strength concrete, tensile strength is achieved at a strain of approximately

10-4. This implies a maximum strain rate of approximately 0.002 per second. 

An appropriate maximum strain-rate for the case of crushing of plain concrete, is

estimated assuming that crushing occurs once some inelastic deformation has occurred in
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the bridge. For this case, peak flexural demand is assumed to developed during a load

increment equal to 0.25Tyield. Here Tyield defines the effective period of the bridge for the

case of some inelastic deformation. A reasonable estimate for Tyield is 2Tbridge assuming

an average ductility demand of 4. The compressive strain corresponding to crushing of

plain concrete is approximately 0.006 for average-weight, normal-strength concrete. On

the basis of these assumptions, it follows that a maximum strain rate for consideration of

concrete crushing strength is 0.05 per second. 

In considering the effect of load rate of concrete response it is appropriate to consider

variation in compressive and tensile strength and material stiffness. Additionally, since

concrete material response is controlled by damage mechanism, it is necessary to consider

the effect of load rate on concrete fracture energy. 

A number of researchers have investigated the response of concrete subjected to

loading at strain rates up to 10 percent strain per second. Material testing at these strain

rates requires an experimental test set-up in which it is possible to record data at very high

rates and for which it is possible to determine the loads applied to the test specimen as

well as the loads transferred back into the test frame. 

Figure 2.15:Effect of Strain Rate on Concrete Tensile Strength
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Figure 2.15 shows two proposed relationships between the dynamic to static tensile

strength ratio and strain rate, as well as additional experimental data. The relationship pro-

posed by Ross et al. [1996] is derived on the basis of fracture mechanics and calibrated to

fit experimental data provided by the authors and by Ross et al. [1995]. The relationship

proposed by Yon [1992] is developed to fit empirical data. The data provided by Ross

[1995, 1996] follow from dynamic split-cylinder testing of 51 mm-diameter by 51 mm-

long (2.0 by 2.0 inches) concrete specimens that were cut from 300 mm square concrete

cubes (12 inch cube). Yon determined concrete tensile strength from three point bending

tests of 16.0 by 3.75 by 2.00 inch (407 by 95.4 by 50.9 mm) plain concrete beams. The

data presented in Figure 2.15 indicate that for the strain rates of interest to this investiga-

tion, there is an increase in tensile strength over the static strength. The extent of this

increase varies for the different experimental data sets. However, at these strain rates, the

increased strength is not as significant as is found for strain rates in excess of 100 percent

per second.

Figure 2.16 shows two proposed relationships between the dynamic to static com-

pressive strength ratio and strain rate. The relationship proposed by Ross et al. [1995] fol-

Figure 2.16:Effect of Strain Rate on Concrete Compressive Strength
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lows from material testing of the 51 mm-diameter by 51 mm-long (2 inch by 2 inch)

concrete specimens in compression. The authors note that the compression specimens fail

through the development of cracks along the axis of loading, apparently indicating that the

compressive strength is actually determined by the tensile strength in the direction perpen-

dicular to the applied loading. The data provided by Hughes and Gregory [1978] is from

impact tests in which a steel hammer was dropped on 102 mm (4.01 inch) concrete cubes.

For the compression specimens, the transition between dynamic and static response occurs

at a strain rate of approximately 10.0 per second, Ross et al. [1996] note that this corre-

lates with their proposed relationship for dynamic concrete tensile strength. The data

appear to indicate that the compressive strength increases at most 10 to 15 percent within

the strain rate in the range of interest to this study. This correlates well with experimental

testing of reinforced concrete specimens in which the nominal strength of the members

increases by approximately 10 percent under dynamic loading [Hosoya, 1997].

The experimental investigations also considered the effect of strain rate on various

other concrete material parameters including elastic modulus and fracture energy. All con-

clude that concrete fracture energy is independent of strain rate. Additionally, with the
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exception of Yon, all of the presented investigations consider elastic modulus to be inde-

pendent of strain rate. Yon does propose a relationship in which there is an increase in

elastic modulus within the strain rate of interest to this study (Figure 2.17).

2.2.9  Concluding Remarks About Concrete Material Properties

The previous sections present data that characterize the response of plain concrete to

various specific load histories. The data indicate that this response is characterized in part

by a number of material parameters including uniaxial compressive strength, uniaxial ten-

sile strength, elastic modulus, poison ratio and fracture energy. Additionally, the data show

that the concrete response is determined by damage mechanisms that are reflected in

reduced material modulus following severe loading as well as by plastic mechanisms that

are reflected in accumulated, unrecoverable plastic strain upon unloading. The data show

that the concrete response is a function of the multi-dimensional stress-state, the load his-

tory, and the rate of loading. 

Experimental data also show significant variability in measured response. This vari-

ability results in part from variation in the test set-up and procedure utilized by various

researchers. However, this variability is also a result of variation in testing conditions

(e.g., temperature and humidity) and concrete component properties (e.g., cement, sand,

aggregate and add mixtures) that cannot explicitly be incorporated into a material model

because of insufficient data. This variation in experimental data suggests that an appropri-

ate concrete constitutive model predicts the fundamental characteristics of concrete

response rather than the results of specific experimental test programs.

Finally, the experimental data suggest that a highly sophisticated analytical model is

required to characterize concrete response under all possible load histories. Such a model

may be impractical and computationally infeasible. For this reason, Gerstle et al. [1980]

propose that the simplicity of the model should be considered in addition to the accuracy
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of model prediction. An appropriate approach for this study is to develop a constitutive

model that predicts the fundamental characteristics of response within the range of loading

that is expected for reinforced concrete beam-column joint subjected to earthquake load-

ing.

2.3  Concrete Constitutive Models

In recent years there has been a tremendous effort aimed at developing analytical

models that accurately predict the response of plain concrete to variable loading. Early

models relied on elasticity theory. More recently proposed models utilize general theories

of solid mechanics including plasticity theory, damage theory and fracture mechanics. 

The majority of these proposed models predict particular aspects of concrete

response with an acceptable level of accuracy and efficiency. However, in considering

these models as a first step toward development of a constitutive model for this particular

investigation, it is necessary to consider a number of particular issues including the fol-

lowing:

• Evolution of the failure surface for both one-dimensional and multi-dimensional 

loading and particularly for two-dimensional loading with minimal confining 

pressure in the third dimension.

• Representation of material damage exhibited under both compression and tension 

loading.

• The manner in which softening is incorporated and calibrated.

• Dilatancy associated with compressive failure.

• Representation of concrete shear response. 

• Representation of loading from compression into tension and the reverse.

2.3.1  Elasticity Theory Applied to Modeling Concrete Behavior

Some of the first proposed constitutive models were developed on the basis of elas-

ticity theory and utilized a variety of methods to represent the non-linear response of con-
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crete under multi-dimensional, reversed-cyclic loading. One approach was to follow a

Hookean formulation with non-linear functions representing the concrete material

response: 

(2-8a)

(2-8b)

Here  defines the secant material stiffness. This approach is suggest by Ahmed and

Shah [1982]:

Such a model may be used to represent the response of concrete subjected to moder-

ate loading. However, because this model implies a one-to-one correspondence between

stress and strain, such a model is not appropriate for predicting the response of concrete

subjected to severe loading in which case load reversals and monotonic loading past peak

result in multiple strain states being associated with a single stress state. 

A second approach is to characterize the tangent material stiffness and to define the

stress and strain states incrementally:

(2-9)

Here  defines the tangent material stiffnesses. This approach is presented by Gerstle

[1981]. 

Such an approach can be used to characterize the response of concrete subjected to

variable load histories. However, without additional criteria, determining appropriate val-

ues for the tangent material stiffness may not be practical. 

2.3.2  Plasticity Theory Applied to Modeling Concrete Behavior

The defining characteristic of material plasticity is the accumulation of unrecover-

able deformation upon loading beyond the yield limit. The previously presented data show
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that concrete exhibits this characteristic when loaded in compression and, to a lesser

extent, when load in tension (see Figures 2.3, 2.5, 2.8 and 2.9). Thus, it is appropriate that

a constitutive model for plain concrete incorporate plasticity theory. 

Development of a plasticity-based constitutive model requires defining a rule for

decomposition of the total strain, the elastic material constitutive relationship, the yield/

failure surfaces that bound the elastic domain and the flow rules that define the evolution

of the internal variables. Traditionally, the total strain, ε, is assumed to be the sum of the

elastic strain, εe, and the accumulated plastic strain, εp:

(2-10)

It is reasonable to assume that concrete is a homogenous material; thus, the elastic mate-

rial properties are readily defined on the basis of data collected from standard material

tests and the elastic constitutive relationship follows Hooke’s Law:

(2-11)

where Cijkl is the rank four material stiffness tensor. The yield surface or surfaces bound

the elastic domain. Following classical plasticity theory, the elastic domain is defined in

stress space. For concrete, the available material data facilitated definition of the yield sur-

face in stress space and it is most appropriate to consider a yield surface that evolves as a

function of the load history. A hardening rule defines the evolution of the yield surface.

The flow rules define the evolution of a set of internal variables that uniquely define the

material state. In particular a flow rule defines the orientation of plastic strain which may

be associated, defined as normal to the yield surface, or non-associate. Proposed models

for concrete vary in the definition of the yield surface, the hardening rules and the flow

rules.

ε εe εp+=

σij Cijklεkl
e=
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2.3.2.1  Yield Surfaces for Concrete Plasticity Models

A variety of yield surfaces have been proposed to characterize the response of plain

concrete. Two of the first were the Mohr-Coulomb (dating from 1800) and the Drucker-

Prager [1952] criterion. These criteria were developed to describe the response of material

such as rock, sand and concrete for which hydrostatic pressure affects the material yield

and failure strengths. The Mohr-Coulomb criterion is defined as follows:

(2-12)

In Equation (2-12) I1 and J2 are invariants of the stress states as previously defined,  and

c are material parameters and θ is also an invariant of the stress state defined as follows:

(2-13)

where  is the third invariant of the deviatoric stress, defined as follows:

(2-14)

Equations (2-12) and (2-13) represent a straight line of variable slope in the meridian

plane and an irregular hexagon in the -plane (see Figure 2.18). The Mohr-Coulomb crite-

rion rarely is utilized in current concrete models in part because of the discontinuity of the

surface hinders numerical implementation and in part because recent investigations show

the Mohr-Coulomb criterion to be only a moderate fit to experimentally observed material

response.

The Drucker-Prager criterion represents moderately well the response of plain con-

crete subjected to multi-axial compression and provides a smooth yield surface (Figure

2.18). This criterion is incorporated into some currently proposed concrete material mod-

els and is defined as follows:
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(2-15)

In Equation (2-15) α and y are material parameters that in the original formulation are

considered to be constant but that vary with load history in more recent implementations.

Figure 2.19 shows the Drucker-Prager criterion for several values of α and y com-

pared with experimental data. As indicated in Figure 2.19, Imran and Pantazopoulou

[1996] propose  for characterizing the response of concrete subjected to triaxial

compression. The response of concrete subjected to biaxial compressive loading (Kupfer

et al. [1969] and Yin [1989]) is characterized well by . All of the presented yield

criteria are calibrated to predict the observed uniaxial compressive strength.

Comparison of the Drucker-Prager criterion with experimental data shows that while

the criterion may be used to represent the response of concrete subjected to multi-axial

compression, the model over-estimates the capacity of concrete subjected to compression-

tension or tension-tension type loading. Variation in concrete response under various load

regimes has been addressed by a number of researcher through the use of multi-surface

plasticity models. Murray et al. [1979] propose a three surface model to characterize the

response of plain concrete subjected to biaxial loading (Figure 2.20). This approach was

extended to concrete loaded in three-dimensions by Chen and Chen [1975], and Lubliner

et al. [1989] (see Figure 2.21). It is interesting to note that the Lubliner model uses the

Figure 2.18:Mohr-Coulomb and Drucker-Prager Failure Criteria
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α 0.3=
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Drucker-Prager criterion to characterize the response of concrete subjected to triaxial

compression. While the introduction of multiple, intersecting failure surfaces may facili-

tate definition of the entire yield surface, it may complicate determination of flow equa-

tions as will be discussed in the following paragraphs. 

Data indicate that concrete subjected to severe hydrostatic pressure loading does not

respond elastically as is implied by some models [e.g., Drucker-Prager 1952; Murray et al,

1979; Vermeer et al., 1984] in which the failure surface is linear in  space. This

issue has been addressed in a number of models that limit the elastic range under severe

hydrostatic pressure. Some of the models introduce a non-linear relationship between 

and  [e.g., Han and Chen, 1985; and de Boer and Dresenkamp, 1989] and some actually

“cap” [Drucker et al., 1975; Schofield and Wroth, 1968; Sandler et al., 1976] concrete

capacity under hydrostatic pressure [e.g., Salami and Desai, 1990]. 

Figure 2.19:Drucker-Prager Failure Criterion Compared with Experimental Data 
(Data as Presented in Figure 2.11)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Normalized Nominal Pressure,

N
or

m
al

iz
ed

 D
ev

ia
to

ri
c 

S
tr

es
s,

    = 0.1,    = 0.48 (represents data from Kupfer et al. [1969] and Yin et al. [1989])

    = 0.2,    = 0.38

    = 0.3,    = 0.28 (proposed by Imran et al. [1996])

cfJ 2

cf
I1

α
α
α

y

y

y

J2 I1–

J2

I1



59

Also of interest is the evolution of the failure surface as a function of increased load-

ing. This evolution is typically defined by a hardening rule. Some models assume that the

shape of the yield surface remains the same with the elastic region expanding and con-

tracting as a function of load history [Kupfer et al., 1969; Chen and Chen,; Murray et al.,

1979]. In this case the hardening function is a scalar and the yield surface takes the follow-

ing form:

Figure 2.20:Multi-Surface Plasticity Model for Concrete Subjected to Biaxial Load-
ing [Murray et al. 1979]

Figure 2.21:Multi-Surface Plasticity Model for Concrete Subjected to Triaxial Load-
ing [Lubliner et al., 1989]
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(2-16)

where y defines the yield strength and λ is a function of the load history. There are few

data defining the rate at which the concrete elastic domain expands and contracts under

multi-axial loading, as a result it is reasonable to calibrate the hardening function on the

basis of the well-defined uniaxial concrete response [Murray et al., 1979; Lubliner et al.,

1989]. Many models account for variation in the shape of the yield surface that occurs as

concrete is loaded from the point of initial inelasticity to the point of maximum load and

beyond to the point of minimal capacity. Models that propose variable shaped yield sur-

faces include that proposed by Han and Chen [1985], Ohtani and Chen [1988], de Boer

and Dresenkamp [1988], Zama et al. [1993]. For these models the yield surface takes the

following form:

(2-17)

where the hardening rule y is a function of the load history as represented by λ as well as

the current stress state, σ, thereby allowing for variation in the shape of the yield surface. 

The model proposed by Chen and Han [1988] incorporates many of the techniques

currently used in development of a concrete yield surface that evolves under a variable

load history. This model proposes that at the maximum load, the yield surface appropri-

ately may be defined following the recommendations of any of several researchers

[Ottosen, 1977; Hsieh et al., 1982; Willam and Warnke, 1975]. The complete surface pro-

posed by Ottosen [1977] is composed of two similar surfaces as follows:

(2-18a)

where λ is a function of cos3θ:

f σ( ) f̃ σ( ) y λ( )– 0= =

f σ( ) f̃ σ( ) y λ σ,( )– 0= =

f I1 J2 θ, ,( ) aJ2 λ J2 bI1 1–+ + 0= =
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(2-18b)

For this model, the initial elastic domain is closed (concrete subjected to hydrostatic pres-

sure responds inelastically) and defined by the yield surface at maximum loading. For the

Ottosen surface the initial yield surface is defined as follows:

(2-19a)

where

 (2-19b)

(2-19c)

(2-19d)

and where λ is a shape function that maps between the initial yield surface and the yield

surface defining peak strength and is defined as in Equation (2-18b). The yield surface

defined by this model is depicted qualitatively in Figure (2.22).
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[1988]
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2.3.2.2  Flow Rules for Concrete Plasticity Models

Definition of a plasticity-based constitutive model requires establishing flow rules

that define the evolution of a set of internal variables. Of particular interest is the plastic

flow rule that defines the orientation of the plastic strain. The plastic strain rate is defined

as follows:

(2-20)

where  is the rate of plastic strain, λ is a positive scalar, q is the set of internal variables

and g(σ, q) is the plastic potential function. Typically it is assumed that the orientation of

plastic flow is normal to the yield surface in which case the plastic potential function is the

yield function. Following this assumption of associated flow the increment of plastic

strain is defined as follows:

(2-21)

It has been shown that the assumption of associated flow assures a unique solution

for a given boundary-value problem in which the material stress-strain relationship is per-

fectly plastic or exhibits work hardening1. Additionally, this assumption results in a sym-

metric algorithmic tangent that greatly enhances the efficiency of numerical solution

methods. Thus, the assumption of associated flow is both theoretically and numerically

desirable. A number of plasticity models have been developed assuming associated flow

[e.g., Ohtani and Chen, 1988; Salami, 1990]. These models characterize moderately well

the response of concrete over a range of load histories (Figure 2.23).

Experimental data, however, indicate that associated flow may not be the most

appropriate assumption for characterizing the response of concrete. Researchers have

noted that concrete displays shear dilatancy characterized by volume change associated

1. A discussion of uniquenss theorems applied to plasticity theory is provided by Lubliner [1990].

ε· p λ σ∂
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ε· p

ε· p λ σ∂
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with shear distortion of the material (Figure 2.13). For typical yield functions, this charac-

teristic is contrary to the assumption of associated flow. Additionally, data show that con-

crete subjected to compressive loading exhibits nonlinear volume change, displaying

contraction at low load levels and dilation at higher load levels (Figure 2.15). These char-

acteristics of concrete response may be difficult to represent following the assumption of

associated flow. In order to improve modeling of concrete material response some propose

non-associated flow models in which the yield and plastic potential functions are not iden-

tical. Such models include that of Han and Chen, 1985; de Boer and Drenkamp, 1988; and

Vermeer and de Borst, 1984. 

The model proposed by Han and Chen [1985] follows from the assumption of non-

associated flow in which the plastic potential function is defined to capture the variation in

volumetric expansion as follows:

(2-22)

where

(2-23)

Figure 2.23:Predicted and Observed Concrete Response under Triaxial Compression 
(as Presented by Ohtani and Chen [1988])
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and α1, α2 are material parameters, k maps between the initial yield surface (ky) and the

yield surface at maximum load (kf). Figure 2.242.24 shows the computed stress-strain

response for concrete subjected to biaxial loading compared with experimental data.

2.3.3  Damage Theory Applied to Modeling Concrete Behavior

The defining characteristic of material damage is reduced material stiffness. Experi-

mental data exhibit material damage for concrete subjected to tensile loading, and to a

lesser extent, compressive loading (see Figures 2.2 and 2.8). Thus, it is appropriate to

incorporate material damage into models characterizing the response of plain concrete to

variable loading. Continuum damage mechanics provides a means of modeling at the mac-

roscopic level the material damage that occurs at the microscopic level. Development of a

damage-based model requires definition of a damage rule that characterizes the rate at

which material damage is accumulated and the orientation of the damage. Definition of

this damage rule may also include definition of a damage surface that defines an initial

Figure 2.24:Predicted and Observed Stress-Strain Response for Concrete Subjected 
to Biaxial Loading (Data from Kupfer et al. [1969]) 

σ f c
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elastic domain. Various proposed damage models differ in the definition of the damage

surface and damage rules.

Some of the first constitutive relationships for damaging materials proposed isotropic

damage rules. One such model is that proposed by Lemaitre [1986]. This model follows

from the assumption that one can define an effective stress that is larger than the Cauchy

stress and accounts for the reduction in material area that results from microcracking:

(2-24)

where  is the effective stress and D is the positive scalar measure of material damage. A

second assumption follows that the material strain is a function of the effective stress. The

contribution of damage to the thermodynamic potential for free energy in the system is

explicitly defined:

(2-25)

from which it follows ( ):

(2-26)

and from which can be defined an internal variable associated with the damage state. Ulti-

mately, a damage rule is proposed in which the rate of accumulated damage,  is a power

function of the stress state. Chaboche [1988] proposes a very similar model in which the

rate of accumulated damage is an explicit function of the strain state. These models can be

calibrated to characterize the response of concrete subjected to uniaxial, cyclic loading

However, these models imply that severe loading along one axis results in reduced mate-

rial resistance to loading in any direction. Data collected during testing of reinforced con-

crete components indicate that this is not the most appropriate model for concrete

subjected to multi-dimensional cyclic loading. Additionally, these models imply that dam-
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age is accumulated immediately upon loading, an assumption that is not supported by

material testing (Figure 2.8).

More recently anisotropic damage models have also been proposed. These models

suggest that the orientation of damage is a function of the load history. One such model is

that proposed by Resende and Martin [1984] in which different damage rules are proposed

to characterize damage in the deviatoric and volumetric modes of response. Such a model

is attractive given the clear effect of hydrostatic pressure on concrete response. However,

calibration of such a model on the basis of standard material tests may be difficult. Addi-

tionally, as with the previously discussed isotropic models, it is not clear that severe load-

ing in one direction necessarily reduces material capacity in other directions.

A second class of anisotropic models is proposed in which the orientation of material

damage is a function of direction of loading. In the model proposed by Govindjee et al.

[1995], a failure surface characterizes the initial elastic domain. A trial stress state, analo-

gous to the trial stress state proposed for plasticity formulations, outside of the elastic

domain indicates the initiation of material damage. As with the previously discussed iso-

tropic damage models, the authors propose that the thermodynamic potential for the free

energy of the system appropriately includes energy associated with material damage:

(2-27)

However, here the free energy associated with accumulated damage, S(α), is not defined a

priori; instead, the hypothesis of maximum dissipation is relaxed for softening materials

from finding the minimum of the dissipation to finding the critical point. For appropriately

defined damage surfaces, this results in damage flow rules that define the rate of change of

the material compliance, D, and the internal damage variables, α, as follows:

Ψ 1
2
---ε:D:ε S α( )+=
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(2-28a)

(2-28b)

where φk define the failure surfaces, γk are proportionality constants for loading of the sur-

faces and  represents the outer cross-product or tensors A and B. Thus, the orienta-

tion of damage is associated with orientation of the failure surfaces. These failure surfaces

may be defined on the basis of the stress state at which damage initiates; analogous to the

formation of a crack surface perpendicular to the direction of the maximum principal ten-

sile stress. The authors propose an exponential softening rule for the failure surfaces and

suggest that this softening rule can be calibrated on the basis of concrete fracture tough-

ness. 

The assumption of oriented damage incorporated in this model is conceptually pleas-

ing. However, the authors proposed that the failure surfaces constrain the tensile and shear

stresses transferred across a single fictitious crack surface, thereby allowing for unlimited

strength and stiffness in directions parallel to the crack surface. 

To address this issue, several models have been proposed in which the orientation of

the active crack surfaces is allowed to change. One such method is to introduce multiple

fixed fictitious crack surfaces [Litton, 1974; de Borst and Nauta, 1985; and Riggs and

Powell, 1986]. For the model proposed by de Borst and Nauta, new fictitious fixed crack

surfaces are introduced when the orientation of the principal stresses deviates from the ori-

entation of the active cracks by a specified angle and stresses exceed a specified strength.

Another approach is to allow the fictitious crack surface to rotate. Rots and Blaauwen-

draad [1989] suggest that the rotating crack model was first introduced by Cope et al.

[1980] and later refined by others including Bazant [1983], Willam et al. [1987], Gupta

D· γk
∂σφk ∂σφk⊗

∂σφk:σ------------------------------
k 1=

M∑=

α· γk ∂qφk( )
k 1=

M∑=

A B⊗



68

and Akbar [1984] and Crisfield and Wills [1989]. In rotating crack models, coaxality of

the principal stresses and strains is assumed for each load increment. This assumption is

enforced through variation of the material shear moduli. Rots and Blaauwendraad [1989]

suggest that these two approaches are essentially the same provided that several condi-

tions are satisfied. 

• Formation of new crack surfaces depends solely on the orientation of the principal 

stress and not on the maximum stress state.

• Existing cracks are inactive upon formation of new crack surfaces

• The traction-strain law for the current crack accounts for previous cracks and 

enforces general coaxality of principal stresses and strains.

Of the variable crack models, the approach proposed by de Borst and Nauta [1985] is

the most appropriate for modeling the response of reinforced concrete structural elements.

This model provides a framework for introducing a few fictitious crack surfaces, the ori-

entation of which is remembered and the activation of which depends on the stress state.

Laboratory testing of reinforced concrete elements shows that discrete cracks form when

principal stresses exceed concrete strength. As loading continues, these cracks may open

or close depending on the load history. However, once formed, the concrete maintains a

weakness in the direction of these cracks. Under load reversal additional cracks may form;

however, typically the orientation of new cracks varies from the orientation of the initial

cracks.

2.3.4  Elastic-Plastic-Damage Models for Concrete Response

Given that concrete displays the characteristics of both a plastic material and a dam-

aging material, it is appropriate to develop models that incorporate both mechanisms of

response. In recent years, two types of elastic-plastic-damage models have been proposed.

Several of these models are developed on the basis of plasticity theory and the assumption

that material damage appropriately is defined by the accumulated plastic strain [e.g.,
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Frantziskonis and Desai, 1987; Lubliner et al., 1989]. The model proposed by Lubliner et

al. [1989] has the following characteristics:

• The shape of the yield surface is assumed to remain constant and is defined by a 

modified Mohr-Coulomb criterion.

• The evolution of the elastic domain is defined by a hardening rule that is calibrated 

on the basis of experimental data.

• Plastic strain is defined on the basis of an associated flow rule.

• Damage is assumed to be isotropic and defined by a single scalar damage variable, 

κ, that is a measure of the accumulated damage.

• Damage is assumed to accumulated as a function of plastic strain:

(2-29)

where  and  are the principal tensile and compressive strains;  and  

are the hardening functions for concrete response in tension and compression; gt is 

the concrete fracture toughness; gc is a material parameter analogous to gt but 

defined for compression response, and  is a weighting function that character-

izes the response as tensile or compressive in nature.

This models follows from the assumption that damage accumulated as a result of

post-peak tensile loading will reduce concrete stiffness in compression; however, experi-

mental testing of reinforced concrete elements under reversed cyclic loading indicates that

this is not an appropriate assumption. This issue has been addressed by Lee and Fenves

[1994] through the introduction of multiple damage parameters that defined concrete dam-

age under predominantly compressive loading and predominantly tensile loading indepen-

dently. 

For a second class of elastic-plastic-damage elements, the damage and plasticity

mechanism of response are independent. For these models, it is appropriate to consider the

elastic domain to be bounded by the damage surfaces and the plasticity surfaces. One such
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model is that proposed by Govindjee and Hall [1997]. This model considers a damage

model to characterize the response of concrete in tension and shear and a plastic model to

characterize the response of concrete in compression. Additionally, this model has the fol-

lowing characteristics:

• Anisotropic damage model with the orientation of damage established by formation 

of a single fixed fictitious crack surface that is perpendicular to the direction of the 

peak principal tensile stress.

• The damage/failure surface defines an undamaged concrete tensile strength and 

shear strength; damage initiates when the trial principal tensile strength exceeds the 

concrete tensile strength.

• The damage surface has an exponential softening rule with accumulated damage 

occurring through tensile and shear action on the fictitious crack surface.

• Single surface plasticity model with associated plastic flow. 

This model has the advantages of the anisotropic, crack-oriented damage models previ-

ously identified. Additionally, the partial decoupling of the damage and plasticity modes

of response provides enhanced numerical efficiency by allowing for consideration of only

a single mode of response for appropriate trial stress states. It is possible for both the plas-

ticity and damages surfaces to be active for a particular strain increment; thus, Govindjee

and Hall [1997] propose a computationally efficient algorithm for solution of the stress

state in this condition.

2.3.4.1  Objective Modeling of Concrete Behavior

Concrete subjected to severe compressive or tensile loading exhibits strain-softening

characterized by reduced strength with increased deformation demand. For concrete

loaded in tension, this response results from Mode I fracture. Thus, it appropriately is

characterized by the concrete fracture energy as defined by the RILEM standard test pro-

cedure [RILEM, 1985] that measures the energy dissipated by a plane concrete beam sub-
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jected to Mode I fracture. Using the finite element method and modeling concrete as a

continuum requires distributing the damage associated with discrete cracking over a vol-

ume of material. The inconstancy between the concrete fracture energy that defines energy

dissipation per unit crack area and the finite element model that defines energy dissipated

per unit volume can be addressed through introduction of an element characteristic length.

The need for consideration of the element characteristic length is supported further by the

observation that the results of analysis using models that do not introduce a measure of

mesh size exhibit severe dependency on the mesh discretization. A number of researchers

have proposed methods for computing appropriate characteristic length values. Bazant

and Oh [1983] introduce a crack-band width that is a function of the element area and the

direction of the crack advancement. Crisfield [1986] proposes that the characteristic

length be defined by the Jacobian at the individual Gausse points. Oliver [1989] intro-

duces a general method for computing an element characteristic length that is a function of

element size and the elastic stress state. These models shows mesh-independent results; in

particular the model proposed by Oliver shows mesh-independent results for variable

mesh patterns and stress fields.

Concrete loaded in compression also exhibits strain-softening. Results of similar

studies by van Mier [1986] and by Lee and Willam [1997] show that the area under the

stress-strain history for concrete prisms subjected to uniaxial compressive loading

decreases with increasing prism height. This implies that compression failure is a local-

ized phenomenon similar to concrete fracture. For the case of concrete loaded in compres-

sion, failure typically results from the development of variable-angle shear planes over the

specimen height. For shorter specimens, more fracture surfaces form thereby resulting in a

total energy dissipation that is approximately equal for specimens of variable height [van

Mier, 1986]. However, calibration of the material response considering multi-Mode frac-
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ture is not obvious, nor is consideration of an appropriate element characteristic length.

Lubliner et al. [1989] propose that the area under the post-peak concrete compression

stress-strain history be considered a material property and that an appropriate characteris-

tic length be chosen such that the analytical results coincide with experimental results. Lee

and Willam [1997] propose a crack density, hc, that maps the area of crack surface under

compression failure into the continuum volume. This crack density, hc, could also be con-

sidered to be an element characteristic length. Here this parameter is defined on the basis

of experimental data to be a function of the continuum element geometry:

(2-30)

where helement is a measure of the element length in the direction of the principal compres-

sive stress, Model I refers to a fracture surface developed under purely tensile loading and

Mode II refers to a fracture surface developed under in-plane shear loading. The authors

present data showing that the analytical models compare well with the experimental data.

2.4  Characterization of the Response of Plain Concrete in Reinforced Concrete 

Beam-Column Bridge Joints

The experimental data presented in the preceding sections define the response of

concrete subjected to variable loading. The previously discussed constitutive models pro-

vide a foundation for development of a model that characterizes the response of plain con-

crete. This information can be combined to develop a model that characterizes the modes

of response exhibited by plain concrete in reinforced concrete beam-column bridge joints. 
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2.4.1  Characteristics of Reinforced Concrete Bridge Response

Data presented in Section 2.3 define the response of concrete subjected to multi-axial

loading. However, consideration of reinforced concrete bridges suggest that the response

of the system may be investigated through two-dimensional modeling. As discussed in

Section 1.2, for many bridge systems, earthquake excitation perpendicular to the bridge is

resisted through frame action while excitation parallel to the bridge is resisted at the

bridge abutments. Since loading of the beam-column connection results from frame

action, this loading is predominantly in the plane of the bridge frame. For bridge frames

with square column, this loading results in a predominantly two-dimensional stress state.

However, under moderate to severe loading, concrete expansion may activate transverse

reinforcement to provide confinement in the out-of-plane direction. Thus, for these sys-

tems, the response may be characterized by a generalized plane stress model for which the

out-of-plane shear stresses are assumed to be zero while the normal stress is defined to be

a fixed value. For circular bridge columns, the assumption of generalized plane-stress is

less accurate since flexural and shear response results in development of a fully three-

dimensional stress field in which out-of-plane shear stresses are not negligible. However,

even for a bridge frame with circular columns, the generalized plane stress model provides

information about the mechanisms of system response.

2.4.2  Characteristics of Concrete Response

Consideration of the response of reinforced concrete beam-column connections,

other reinforced concrete structural elements and plain concrete suggests a number of

characteristics of concrete response that are necessary to development of an objective

model of a reinforced concrete beam-column connection. 

Loading of a reinforced concrete beam-column connection results from the flexural

response of the beam and column members that frame into the joint. In order to predict the
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response of the joint region, it is necessary to characterize the response of frame elements

subjected to flexure and shear. Thus, the constitutive model developed for this study must

predict the experimentally defined response of concrete subjected to uniaxial tensile load-

ing and the deterioration of concrete shear transfer across crack planes. Additionally, the

model must account for the response of concrete under compressive loading, including the

observed response under uniaxial compressive loading and the observed effect of moder-

ate confining pressure on compressive strength. Further, the model must account for the

recovery of elastic concrete stiffness upon the transition from tensile to compressive load-

ing. 

The response of the reinforced concrete beam-column bridge connection may be

determined by the strength and stiffness of the concrete within the immediate vicinity of

the joint. Loading of the joint may result in cracking of the joint concrete when concrete

principal stresses exceed the concrete tensile strength. Reduced concrete tensile and shear

strength and stiffness in the direction of these cracks will result in redistribution of loads

in the vicinity of the joint and thereby activate inelastic mechanisms of response. Upon

load reversal, existing cracks will close and new cracks will form. Under earthquake load-

ing of a bridge frame, beam-column connections are loaded predominately in shear. Load

reversal represents a reversal in the connection shear stress and a 90 degree rotation of the

principal stress axes. Thus, upon load reversal new cracks typically form approximately

orthogonal to the initial cracks. This requires that the proposed concrete model predict

reduced concrete strength and stiffness along orthogonal planes and predict recovery of

concrete compression strength upon crack closure. 

Experimental investigation of the response of reinforced concrete beam-column con-

nections indicates that ultimate capacity of the system may depend on concrete compres-

sion response. As previously discussed, severe loading of a beam-column connection may



75

result in the deterioration of bond within the joint and the transfer of loads through a single

concrete compression strut. Under these conditions, the ultimate capacity of the system

depends on the response of the core concrete under compressive loading. Under compres-

sive loading approaching capacity, the concrete will expand with the result that the trans-

verse steel in the joint acts to confine the concrete. The rate at which the concrete loses

compressive strength following loading to peak strength will be determined by the amount

of confining pressure developed in the reinforcing steel. Because a goal of this study is to

consider the rate at which connection load carrying capacity is lost, it is necessary to pre-

dict the volumetric expansion exhibited by the concrete.

Ultimate strength and post-peak response of a reinforced concrete beam-column joint

may be determined by loss of concrete load capacity in tensile-type loading or in compres-

sion-type loading. The goal of this investigation is to identify the mechanisms associated

with achieving ultimate capacity and to characterize the post-peak response of the system.

Thus it is necessary that the constitutive model predict deterioration of material strength

and stiffness in the vicinity of peak capacity for concrete subjected to variable loading.

2.4.2.1  Rate Dependence

Experimental data show that concrete strength and stiffness increase with the rate of

loading. For plain concrete in reinforced concrete bridges subjected to earthquake loading,

maximum strain rates are estimated to be 0.2 percent per second for tensile loading and 5

percent per second for compressive loading. At these strain rates, concrete tensile strength

increases minimally, compressive strength increases less than 5 percent and elastic modu-

lus increases by approximately 25 percent over that observed under pseudo-static loading

conditions. These increases in strength and stiffness likely do not affect significantly

structural response. Further, while the maximum concrete strain rates are estimates and

may underestimate actual strain rates, additional factors support the assumption of
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pseudo-static concrete material response introduced in the proposed material model. First,

the increase in concrete strength with increasing strain rate is relatively shallow in the

vicinity of the strain rates estimated to be associated with earthquake loading. An increase

in the predicted concrete strain rate of 500 percent would introduce only a 10 percent

increase in concrete tensile strength and a 10 percent increase in compressive strength.

Second, for a bridge structure subjected to earthquake excitation, the period of time during

which strain rates approach these peak values may be so limited that it is unnecessary to

consider the effect of load rate. Also, the point in time at which load demand is maximum

may not correspond to the point in time at which strain rate is maximum. Thus, damage

may occur at moderate-to low load rates. Third, most experimental testing of reinforced

concrete beam-column bridge joints subjected to simulated earthquake loading is com-

pleted using pseudo-static, displacement controlled loading. In order to verify the results

of this analytical investigation through comparison with experimental data, it is necessary

that material response be characterized under the pseudo-static load conditions. For these

reasons, consideration of strain rate effects is considered an unnecessary complexity for

this investigation.

2.4.3  Constitutive Theories Employed to Characterize Observed Concrete Response

Both plasticity and continuum damage theory are appropriately applied to represent

the specific characteristics of concrete response identified in the preceding section. Con-

sideration of experimental data and model characteristics indicates that a model developed

on the basis of continuum damage theory is appropriate for representing the response of

concrete subjected to severe tensile loading. Such a model predicts the reduction in

strength and stiffness exhibited by plain concrete subject to tensile loading. Such a model

does not predict unrecoverable deformation associated with severe tensile loading. How-

ever, this unrecoverable deformation is a minor fraction of the total deformation and thus
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reasonably neglected. Here an anisotropic, fictitious-crack damage model is chosen as the

most appropriate model for characterizing the directional deterioration of tensile strength

and stiffness observed in reinforced concrete beam-column connections. Previously pro-

posed models of this type employ one or several, fixed or rotating, fictitious crack sur-

faces. In the current implementation, two fixed orthogonal crack surfaces are considered

the most appropriate model to represent the damage patterns observed in actual reinforced

concrete structures. The orientation of the crack surfaces is determined under the elastic

stress distribution.

Introduction of only two orthogonal crack surface does limit the generality of the

proposed model; however, this limitation likely has little effect on the model’s capacity to

represent the response of most reinforced concrete bridge frames. Observation of labora-

tory models and structures damaged during recent earthquakes indicates that for most

reinforced concrete frames subjected to earthquake loading, concrete cracking at a single

point in the structure is limited to development of two approximately orthogonal cracks.

Concrete response resulting from such cracking is represented well by the current model.

It is reasonable to assume that for some structures activation of particular inelastic

response mechanisms may result in reorientation of principal stress axes such that three or

more concrete cracks develop at a single point in the structure. The proposed model does

not directly represent these observed damage patterns. However, the deterioration of con-

crete strength and stiffness associated with development of more than two cracks is repre-

sented in part through increased action on the two orthogonal cracks included in the

material model. This results in a predicted response that is slightly stiffer and stronger than

is observed. However, since concrete fracture energy is minimal, this additional strength

and stiffness associated with activation of the two orthogonal crack rather than a single,

correctly oriented crack, likely has a limited impact on global response.
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Calibration of the damage model requires consideration of material softening.

Research indicates that system response is relatively insensitive to the shape of the soften-

ing branch of the tensile stress-deformation response [CEB, 1991]. Here an exponential

curve is assumed to represent the response. However, research also indicates that the use

of softening material models may result in mesh sensitivity that invalidates results. Con-

crete fracture energy is assumed to be a material parameter and is used to calibrate the

softening branch of the tensile response. A damage material model characterizes energy

dissipation as a function of the material volume; however laboratory testing suggests that

energy is dissipated as a function of the generated crack surface area. Here an element

characteristic length is introduced to ensure that the numerical energy dissipation is a

function of material area rather than volume. Others have shown that the characteristic

length method minimizes mesh sensitivity [Oh, 1983; Crisfield, 1986; Lee and Willam,

1997; Oliver, 1989]; similar results are observed in this study.

Consideration of material data and plasticity-model characteristics indicates that for

the current investigation such a model is appropriate for representing the response of con-

crete subjected to compressive loading. A plasticity-type model predicts the accumulated

deformation exhibited by concrete subjected to cyclic loading in compression. Also, such

a model may be calibrated to represent strength deterioration associated with severe com-

pressive strain demands. Plain concrete subjected to predominantly compressive loading

in excess of that corresponding to the compressive strength does exhibit the deterioration

of stiffness that is characteristic of material damage (Figure 2.5, Figure 2.4 and Figure

2.6). This behavior is not represented by a plasticity model, and such a model could be

expected to over predict the unloading and reloading stiffness of crushed concrete.

Research into the response of beam-column connections indicates that crushing of com-

pression zones may control connection response [Paulay et al., 1978; Leon and Jirsa,
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1986; Cheung et al., 1993; Pantazopoulou and Bonacci, 1994]. The goals of the current

study are to predict the load distribution prior to failure, the failure mode of the system and

the level of ductility associated with the final failure mode. These goals can be achieved

by representing deteriorating compressive strength on the basis of a plasticity-type model.

Representation of concrete material damage associated with severe compressive loading

introduces additional computational effort and hampers objective calibration of the model.

The additional complexity associated with introduction of a plastic-damage model does

not warranty the improved representation of concrete behavior for a limited range of load-

ing that does not directly support the project goals. 

Typically a plasticity model is formulated on the basis of a yield surface defined in

stress space. Material testing of concrete indicates that the Drucker-Prager yield criterion

is a reasonable and simple representation of the yield surface for concrete subjected to

biaxial compression and compression-tension type loading with zero to moderate levels of

out-of -plane confinement. Data show that such a model may be calibrated on the basis of

the out-of-plane confining pressure (see Figure 2.11). However, the range of loading for a

reinforced concrete beam-column joint is relatively limited, thus it is reasonable to define

a single yield surface that approximates response for the expected range of loading.

Definition of a plasticity type model requires characterization of the plastic flow.

Here the assumption of associated plastic flow is used as a basis for characterizing the

response. As previously discussed, the chosen yield surface and the assumption of associ-

ated flow has been shown to characterize the response of concrete subjected to compres-

sive loading. Research conducted by others [e.g., Chen and Han, 1988] indicates that the

assumption of associated flow may overestimate the plastic volumetric deformation

observed in material testing and an appropriately calibrated non-associated flow model

may yield more accurate prediction of concrete strains. However, the variability of experi-
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mental data, the variable precision of all models in predicting concrete response under

diverse load histories and enhanced numerical efficiency all support the use of an associ-

ated flow model.

Definition of a plasticity model also requires definition of the evolution of the plas-

ticity yield surface. In this investigation it is assumed that the shape of the plasticity yield

surface as defined by the Drucker-Prager yield criterion is maintained throughout the load

history. Some researchers [e.g., Chen and Han, 1988] propose that under compression

loading the yield surface appropriately evolves from a surface that defines a closed elastic

region at the initial yield to a surface that characterizes unlimited strength under hydro-

static pressure at the maximum strength (see Section 2.2.7.2). However, since concrete in

a reinforced concrete beam-column joint is subjected to only moderate pressure in the

direction perpendicular to the frame, it is not necessary that the model accurately represent

the response of concrete subjected to hydrostatic pressure. With the shape of the yield sur-

face established, the hardening function id defined on the basis of the response of concrete

in uniaxial compression. For the current implementation, an exponential function is cali-

brated on the basis of several typical concrete monotonic compression stress-strain data

sets. 

2.4.4  Definition of the Concrete Constitutive Model

The model developed to characterize the response of concrete for this investigation is

an extension of the models previously proposed by Govindjee et al. [1995] and Govindjee

and Hall [1997]. The formulation presented here provides for the formation of multiple

fictitious crack surfaces, accounts for crack opening and closing, represents the response

of concrete subjected to multi-dimensional loading in compression and predicts the

response of concrete subjected to predominantly biaxial loading.
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The model considers a body in three-dimensional space, , composed entirely

of the material considered here. Assuming that it is appropriate to model the material as a

homogeneous continuum, each point in the body is assumed to obey the following rela-

tionship:

(2-31)

where σ, ε, and εp are rank two stress tensors representing the Cauchy stress, the total

strain and the plastic strain and C is the rank four tensor representing the material stiff-

ness.

For this material, the elastic domain is bounded by a set of damage and plasticity sur-

faces. The three damage surfaces limit the normal and shear tractions across two, orthogo-

nal, fictitious crack planes:

(2-32a)

(2-32b)

(2-32c)

where  and are internal damage variables; kn, ks, ft and fs are material parameters,

 is the McCauley bracket and the rank two tensors S1, S2 and S3 define the normal and

shear tractions on two fictitious crack surfaces:

(2-33a)

(2-33b)

(2-33c)

Note that the normals to the fictitious crack surfaces are defined by rank one tensors l and

m with . The boundary of the elastic domain is completed by a single plasticity

yield surface, defined according to the Drucker-Prager yield criterion.

(2-34)
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where s is the deviatoric component of the stress tensor σ, I1 is the first invariant of the

stress tensor, αp is an internal plasticity variable and qp defines the evolution of the yield

surface and all other constants are material parameters.

Assuming the material moduli to be variables, the free energy of the body is defined:

(2-35)

where  is the elastic strain tensor, αd is a set of internal damage variables.

Govindjee et al. [1995] propose enforcement of the hypothesis of maximum dissipa-

tion as a means of deriving the damage flow rule. Here, assuming the damage and plastic-

ity mechanisms to be uncoupled, this technique can be used to derive both the damage and

plasticity flow rules. In the absence of thermal effects, the internal dissipation E is defined:

(2-36)

It follows from Equations (2-31) and (2-35) that 

(2-37)

where  is the plastic strain rate and  is the rate of change of the material compliance

tensor. Govindjee et al. [1985] suggest that the hypothesis of maximum dissipation cannot

be strictly enforced in the case of materials that exhibit softening. Instead it is appropriate

to consider the critical point. Here the associate Lagrangian is defined:

(2-38)

where  are generalized Lagrange multipliers. The critical point of this Lagrangian is

defined by

(2-39a)

 and (2-39b)

(2-39c)
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2
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εe

E Ψ·– σ:ε·+=

E 1
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·+ + +=
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4∑+=

γk

∂σL 0=

∂qp
L 0= ∂qd

L 0=
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Here it is assumed that the Lagrangian multipliers that define the critical point of the dissi-

pation may be determined through an incremental solution algorithm in which the damage

and plasticity mechanisms are uncoupled [Govindjee and Hall, 1997]. This requires solv-

ing the optimization problem assuming no increase in damage or no increase in plastic

deformation. The equations defining the optimization problem for the decoupled damage

and plasticity mechanisms are as follows: 

(2-40a)

(2-40b)

(2-40c)

(2-40d)

These flow rules are constrained by the consistency condition and the Kuhn-Tucker condi-

tions (defined as the constraints of optimization in Equation (2-39c)):

(2-41a)

(2-41b)

Definition of the constitutive relationship requires establishment of criteria govern-

ing crack opening and closure. Here it is assumed that if the stress normal to the orienta-

tion of a fictitious crack plane is tensile, then the crack is open and deterioration of

material stiffness associated with the particular crack is realized. However, if the stress is

compressive, the crack is considered to be closed and elastic material properties are recov-

ered. These assumptions are formalized as follows:

D· γk
∂σΦ k ∂σΦ k⊗

∂σΦ k:σ---------------------------------
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3∑=
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(2-42)

where  is the elastic material compliance,  is the material compliance

accounting for accumulated damage in the direction of fictitious crack surface k and 

is the material compliance accounting for accumulated damage in the direction of both fic-

titious crack surfaces. 

Definition of the constitutive model is completed by a series of three generalized

hardening rules that characterize the evolution of the damage and plasticity surfaces as a

function of the accumulated damage and plastic strain. As previously discussed, here it is

assumed that the deterioration of concrete tensile strength is reasonably approximated as

exponential. Thus the damage variables qd are defined as follows:

(2-43)

where the hardening parameter H is assumed to be a function of the concrete fracture

energy. The plasticity hardening function characterizes the evolution of the yield surface.

Here a six-parameter function is used to characterize the observed response of concrete

subjected to uniaxial compression loading:

(2-44)

where the hardening parameters a, b, and c are assumed to be a function of the concrete

energy dissipation in compression.
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2.4.4.1  Energy Dissipation under Strain-Softening and the Element Characteristic 

Length

For materials such as concrete that exhibit strain softening, it is necessary to consider

the energy dissipation associated with activation of the softening mechanism in calibration

of the material constitutive model. For the model developed for use in this investigation,

material softening is assumed to result from localized damage. For the case of concrete

loaded in tension, this localized damage is the formation and propagation of discrete

cracks perpendicular to the orientation of the principal tensile stress. For concrete loaded

in compression, the damage pattern proposed by van Mier [1986] is considered to be an

appropriate model. Here compressive deformation is assumed to result from the formation

of multiple shear-type cracks the density of which is a function of the length of the speci-

men parallel to the direction of the principal compressive stress. 

Both of these models for concrete damage imply that an appropriate element charac-

teristic length is a measure of the element parallel to the direction of the principal tensile

and compressive stress. As defined in Equation (2-36) energy dissipation per unit volume

is as follows:

(2-45)

For concrete loaded in uniaxial tension, the proposed model as define by Equations (2-35),

(2-40a), (2-43) and (2-45) implies that the total energy dissipated through Mode I fracture,

gt, is as follows:

(2-46)

where the total dissipation is defined over the history from zero to complete damage.

Expressions for the strain rate and stress rate appropriately are determined from an experi-

mental data. This experimentally determined energy dissipation is defined as energy per

E Ψ·– σ:ε·+=

gt
1
2
---ε·σ 1

2
---σ· ε– ft ε· ε

σ
---σ·– 

 + 
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unit volume of material. Introduction of the experimental gage length results in a defini-

tion of concrete fracture energy per unit area of crack surface as follows:

(2-47)

where . It is important to note that the model-consistent concrete fracture

energy as defined by Equation (2-47) is not precisely the same value as that defined by the

standard concrete fracture energy test [RILEM, 1985]:

(2-48)

For this investigation, the consistent concrete fracture energy is used for cases in which

the experimental test data is available and the fracture energy as defined by the standard

procedures is used for all other cases.

With the concrete fracture energy defined by experimental data, the tension softening

regime of the current model is calibrated on the basis of the following equations:

(2-49)

assuming a limit point defining substantial material damage, the model parameters is

defined 

(2-50)

where  corresponds to a value of  for which  achieves a predefined limit

value that defines substantial material damage and l is the element characteristic length.

Here the definition of element characteristic length as proposed by Oliver [1989] and as

implemented by Govindjee and Hall [1997] is used.

For concrete subjected to uniaxial loading in compression, the proposed model as

defined by Equations (2-31), (2-37), (2-40a) and (2-45) implies that the total energy dissi-

pated through damage in compression is as follows:
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(2-51)

where  defines the history from the point of maximum compressive strength through a

limited residual compressive strength. Experimental data indicate that compression soft-

ening is associated with the development of localized failure mechanisms. Thus, the

energy dissipation per material area associated with compression failure may be defined

through Equation (2-51) with the plastic strain defined as a function of the experimental

gage length:

(2-52)

Lee and Willam [1997] suggest that the appropriate gage length is a function of the

assumed mode of failure; however, the relationship between the true gage length and the

analytical gage length would be the same for both computation of concrete plastic energy

dissipation and for calibration of the material model. Following the process used for cali-

bration of the constitutive model in tension, the model is calibrated for compression-type

loading:

(2-53)

where  is the element characteristic length and defines a measure of the element parallel

to the orientation of principal compression stress at the point at plastic deformation is ini-

tiated.

2.4.5  Implementation of the Model in an Implicit Incremental Solution Algorithm

Constitutive models such as the one presented here may be utilized to solve a variety

of problems. Often such a model is implemented in a computer code that uses the finite

element or finite difference method to solve a given boundary value problem. Typically,

gc 2 σεp
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these codes employ the following techniques. An implicit incremental solution algorithm

is used to advanced the solution from a known state of the system at time tn to a solution at

time tn+1 given a load increment applied in the interval . A displacement-

based method is used in which the displacement field in the body, while not necessarily

the correct displacement field, is considered a known quantity. At the level of the constitu-

tive model, this algorithm requires the following, given a known state at time tn and the

strain at time tn+1, the constitutive model is used to predict the state at time tn+1. For the

concrete constitutive model defined here, the material state is uniquely defined by seven

internal variables. In addition to predicting the material state at time tn+1, the global solu-

tion algorithm also requires calculation of a material tangent that defines the change in

material stress as a function of material strain.

2.4.5.1  Integration of the Flow Rules

A variety of numerical integration methods have been suggested for advancement of

the material solution state. Here, the Backward Euler method is used since this method

provides unconditional stability and first order accuracy:

(2-54)

A solution at time tn implies that the following system and internal variables are known:

. Additionally, it is assumed that at time tn+1 the strain state εn+1 is

known. Given that the material constitutive parameters are a function of the level of sys-

tem damage, the stress state at time tn is an appropriate characteristic of the material state

rather than the strain state. Integrating the flow rules defined by Equation (2-40a) through

(2-40d) and using the damage and yield surfaces defined by Equations (2-32a) through (2-

32c) and (2-34) results in the following system of equations:
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(2-54a)

(2-54b)

(2-54c)

(2-54d)

(2-54e)

where the definition of the Lagrange multipliers is updated to be . Combin-

ing the integrated flow rules (Equation (2-54)) with the material constitution defined in

Equation (2-31) and the surface criteria defined in Equations (2-32a) through (2-32c) and

(2-34), results in a system of seven, coupled, non-linear equations subject to the con-

straints of Equation (2-41a) and (2-41b) and Equation (2-42):

(2-55a)

(2-55b)

(2-55c)

(2-55d)

(2-55e)

This provides sufficient constraint to solve for the seven internal variables that uniquely

define the solution at time tn+1:  (note that the plastic strain tensor,

, comprises three unique plastic strains). The material state is defined by the seven

coupled equations if there is plastic flow and accumulated damage on all of the fictitious

crack surfaces; for most cases only one or two damage/plasticity surfaces are active and

the number of equations defining the material state is reduced. 
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2.4.5.2  Algorithm for Solution of the Governing Equations

If all damage and yield surfaces are active, determination of the material state at time

tn+1 may require solution of a reduced set of seven coupled, non-linear equations. How-

ever, it is most likely that the damage surfaces and the plasticity surface will not be simul-

taneously active. Thus, in order to enhance the efficiency of the solution algorithm for the

most common material states, Govindjee and Hall [1997] suggest incremental enforce-

ment of coupling between the plasticity and damage mechanisms. A quasi-Newton solu-

tion algorithm is proposed in which the system is solved for the three consistency

parameters associated with the damage surfaces assuming no change in the plastic strain

increment and then the system is solved for the four internal plasticity variables assuming

no change in the damage level. The material state is continuously updated until there is no

increase in material damage or plastic strain. 

Since it is not possible to know which surfaces are active or which cracks are open a

predictor-corrector algorithm is used for solution of the material state. This method, the

classical return mapping algorithm, defines a predictive stress state (the trial stress) to be

elastic as defined by  and . The material compliance as defined in

Equation (2-54) also is taken to be a function of the trial stress state, defined by ,

and is equal to the material compliance at the end of the previous time step. The trial stress

state is used to determine which cracks are open and which surfaces are active. If the trial

stress state satisfies the damage/yield surface criteria, then no surfaces are active and the

trial stress is the true stress. If the trial stress state implies that particular surfaces are

active, then the solution proceeds assuming that only those particular surfaces are active.

Once a solution is found that satisfies the constraints of the surfaces assumed to be active,

the solution is considered to be valid only if it satisfies all of the governing equations for

γk 0= εp
n 1+ εp

n=

γk 0=
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the system and the associated constraints. If a solution is found to be invalid, active sur-

faces are added and dropped as is appropriate to provide a new trial stress. 

2.4.5.3  Solution Algorithm for Single Surface Plasticity

The case of single surface plasticity requires solution of a series of four coupled non-

linear equations. Substitution of the integrated flow rules into the plasticity yield surface

criteria, assuming an elastic trial stress state, result in the following system of equations:

(2-56a)

(2-56b)

where

(2-56c)

(2-56d)

With the Drucker-Prager yield criteria it is not possible to further simplify this system into

a single equation with one unknown variable. Observation of the solution of this system

shows that the coupling between the equations can be significant. As a result, the orienta-

tion of the plastic strain increment as predicted using the trial stress state can differ sub-

stantially from the orientation of the true stress and the radius of convergence of the

classical Newton solution algorithm can be impractically small. Rather than improving the

initial value used in the solution algorithm, a line search algorithm [Matthies and Strang,

1979] is implemented for cases in which the Newton solution algorithm fails to converge.

2.4.5.4  Solution Algorithm for Single- and Multi-Surface Damage

The case of single- or multi-surface damage requires solution of a system of one to

three coupled, non-linear equations. Substitution of the integrated flow rules into the dam-
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age surface criteria and assuming an elastic trial stress state, results in the following sys-

tem of three non-linear, coupled equations that must be solved for the damage consistency

parameters: 

(2-56a)

(2-56b)

(2-56c)

where 

(2-56d)

(2-56e)

The above system of equations utilizes the stiffness orthogonality of the crack sur-

faces identified by Govindjee et al. [1985]: . For the special

case of only one crack open, the stiffness orthogonality of the system may be exploited in

updating the material stiffness. In this case the Sherman-Morrison-Woodbury formula

[Golub, 1989] may be used to develop a simplified method for directly updating the mate-

rial stiffness:

if
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(2-57b)

where k = 1,2.

Φ 1 S1:σtrial
n 1+ γ1S1:Cn:S1– γ2S1:Cn:S2– ft– knqd1

αd1

n γ1 γ3, , 
 + 0= =

Φ 2 S2:σtrial
n 1+ γ1S2:Cn:S1– γ2S2:Cn:S2– ft– knqd2

αd2

n γ2 γ3, , 
 + 0= =

Φ 3 S3:σtrial
n 1+ γ3S3:Cn:S3– ft– knqd3

αd1

n α, d2

n
γ1 γ, 2 γ3, , 

 + 0= =

σtrial
n 1+ Cn: εn 1+ εp

n–( )=

γk 0≥

S1:C:S3 S2:C:S3 0= =

Dαdk

n 1+ Dαdk

n γk
Sk Sk⊗

Sk:σn 1+
--------------------- γ3

S3 S3⊗

S3:σn 1+
---------------------+ +=

Cαdk

n 1+ Cαdk

n
Cαdk

n :Sk Cαdk

n :Sk⊗

1
γk
----Sk:σn 1+ Sk:Cαdk

n :Sk+
------------------------------------------------------------

Cαdk

n :S3 Cαdk

n :S3⊗

1
γ3
----S3:σn 1+ S3:Cαdk

n :S3+
-------------------------------------------------------------+

 
 
 
 
 

–=



93

2.5  Comparison of Material Model with Experimental Data

The proposed concrete constitutive model is implemented in the finite element pro-

gram FEAP [Taylor, 1998; Zienkiwiez and Taylor, 1987 and 1991]. This implementation

is used to analyze the response of plain concrete systems subjected to various load histo-

ries. The behavior of plain concrete as predicted by the material model is compared with

experimentally observed response for a variety of load histories including uniaxial, cyclic

compression; uniaxial, cyclic tension, uniaxial reversed cyclic loading; and multi-dimen-

sional loading. Additionally, the objectivity of the model is investigated for loading in

compression and tension.

Figure 2.25 shows the predicted and experimentally observed response of concrete

subjected to uniaxial, monotonic compression loading. Given the wide variation in experi-

mental data, calibration of the model to represent the results of a single experimental test

is inappropriate. Instead, the model is calibrated to predict the typical response of con-

crete.  .

Figure 2.25:Predicted and Observed Compressive Stress-Strain Response for Con-
crete (Experimental Data as Presented in Figure 2.5)

Analytical Model

Experimental Data
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Figures 2.26 and 2.27 show good correlation between predicted and experimentally

observed response for concrete subjected to uniaxial, cyclic compression loading. In gen-

eral, the model represents well the fundamental characteristics of concrete response. One

exception is that for maximum concrete strains in excess of that corresponding to maxi-

mum compressive strength, the model does not predict the observed reduction of elastic

material modulus and over-estimates the accumulation of plastic strain. These differences

between the predicted and observed response follow from the assumption of a plasticity-

based analytical model. However, given that the goal of this investigation is to predict the

mechanisms of load transfer associated with achieving maximum strength of a reinforced

concrete bridge joint, differences between the predicted and observed response are not

expected to greatly affect the results.

Figure 2.26:Predicted and Observed Stress-Strain Response for Concrete Subjected 
to Uniaxial, Cyclic Compression Loading (Data as presented in Figure 2.2)

Analytical Model

Experimental Data
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The response of concrete subjected to uniaxial monotonic and cyclic tensile loading

is presented in Figures 2.28, 2.29 and 2.30. These data show that the analytical model

characterizes the fundamental aspects of the concrete response. Results obtained from

analytical modeling use the definition of concrete fracture energy associated with the

model rather than the definition defined by the RILEM standard [1985]. Figure 2.28

shows observed and predicted stress-strain response for concrete subjected to uniaxial ten-

sile loading. Here all observations and the analysis distribute the damage over the same

specific gage length; thus it is appropriate to consider the average tensile strain over the

gage length. Data presented in Figure 2.28 show that the models represents the typical

response of concrete subjected to monotonic loading. Figure 2.29 presents data for con-

crete subjected to cyclic tensile loading, these data show that the analytical model predicts

a greater reduction in elastic modulus than is observed. However, data presented in Figure

Figure 2.27:Predicted and Observed Normalized Stress-Strain Response for Con-
crete Subjected to Uniaxial, Cyclic Compression Loading (Experimental Data as Pre-
sented in Figure 2.4)

Analytical Model

Experimental Data
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2.30 show that the reduced material stiffness does predict the response of concrete sub-

jected to reversed cyclic loading with acceptable accuracy. 

The response of concrete subjected to biaxial and generalized plane stress loading are

presented in Figure 2.31. Figure 2.31 shows the relationship between maximum normal-

ized deviatoric stress and the maximum first invariant of the stress state. The model char-

acterizes the average response for concrete subjected to compressive-type loading in the

Figure 2.28:Predicted and Observed Normalized Concrete Tensile Stress-Strain His-
tories (Experimental Data as Presented in Figure 2.7)

Figure 2.29:Typical Response of Concrete Subjected to Uniaxial, Cyclic Tensile 
Loading (Experimental Data as Presented in Figure 2.8)

Analytical Model

Experimental Data

Analytical Model

Experimental Data
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range of nominal pressure that concrete in reinforced concrete bridge beam-column joint

may be expected to experience.

Figure 2.32 presents the relationship between volumetric strain and maximum nor-

malized compressive stress. As previously discussed, representation of the volumetric

expansion is important for predicting the response of reinforced concrete beam-column

connections, since volumetric expansion activates steel reinforcement and may determine

the mechanism of response. The analytical model predicts the fundamental characteristics

of the response. The analytical model is calibrated to predict the typical response of con-

crete subjected to biaxial and general plane stress loading (see Figure 2.31). This calibra-

tion over-estimates the strength of concrete subjected to biaxial loading as observed by

Kupfer [1969], as is shown in Figure 2.32.

Figure 2.30:Typical Response of Concrete Subjected to Reversed Cyclic Loading with 
Failure in Tension (Data as Presented in Figure 2.9)

Analyti cal Model

Experimental Data
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The sensitivity of analyses to mesh discretization is a relevant issue for concrete

loaded in compression and tension. Figure 2.33 shows the stress-deformation response for

concrete subjected to uniaxial, monotonically increasing tensile loading as predicted using

increasingly refined meshes in which the strength of the first element is reduced slightly to

localize the damage mechanism. These data show that the introduction of the characteris-

tic length and calibration of the element stress-strain relationship on the basis of the ele-

ment characteristic length and concrete tensile fracture energy essentially eliminates

dependence on mesh size. 

Figures 2.34 and 2.35 show the stress-deformation response for concrete subjected to

uniaxial, monotonically increasing compressive loading. Figure 2.34 shows results for

analysis of a concrete prism with increasingly refined meshes in which the strength of the

first element is reduced slightly to localize the damage mechanism. As with the tensile

analysis, introduction of a characteristic length and consideration of energy dissipation

Figure 2.31:Maximum Normalized Deviatoric Stress Versus Nominal Pressure as 
Predicted and as Observed (Data as Presented in Figure 2.11)
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under compressive softening produces analytical results that are essentially independent

of mesh discretization. Figure 2.35 shows the stress-strain response for variable length

concrete specimens modeled using a single element, these results show that the strain his-

tory in the softening regime is a function of the element length. These results support

experimental observation that concrete elements of decreasing length show increasing

strain ductility [van Mier, 1986].

2.6  Conclusions

The concrete constitutive model proposed for use in this investigation characterizes

the observed response of plain concrete in reinforced concrete beam-column bridge joints

subjected to earthquake loading. Plain concrete is modeled as a continuum, and plasticity

theory and damage theory are employed to develop an analytical model that characterizes

Analytical Model

Experimental Data

Figure 2.32:Predicted and Observed Compressive Strength Versus Volumetric Strain 
(Data as Presented in Figure 2.14)
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the response of plain concrete subjected to variable load histories. The result of experi-

mental testing of reinforced concrete structural elements are used as a basis for further

refinement of the model. Variability in concrete material response within individual exper-

imental investigations and between studies requires that an appropriate analytical model

predict the fundamental characteristic of the material response rather than the results of a

particular investigation. Comparison of predicted and observed concrete response shows

that the model proposed for this investigation characterizes the response of plain concrete

within the appropriate range of loading for concrete composing reinforced concrete bridge

frames. The model incorporates the characteristic length technique to ensure that the

results are independent of mesh size.
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Figure 2.33:Predicted Tensile Stress-Strain Response for Variable Mesh Size
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Figure 2.34:Insensitivity of Model to Mesh Discretization as Shown by Predicted Con-
crete Compression Stress-Strain History for Variable Mesh Sizes 

Figure 2.35:Averaging of Concrete Damage under Compressive Loading as Shown by 
the Predicted Compression Stress-Strain History for Variable Length Elements


