Seismic Behavior, Analysis and Design of Complex Wall Systems

A Small-Group Research Project Funded through the NSF NEES Research Program

The Research Team

- University of Washington
 - Laura Lowes, Assistant Professor
 - Dawn Lehman, Assistant Professor
 - Aaron Sterns & Paul Øyen, Graduate Student Researchers
 - Undergraduate Researchers
- University of Illinois
 - Dan Kuchma, Assistant Professor
 - Jian Zhang, Assistant Professor
 - Yuchuan Tang, Graduate Research Assistant
 - Jun Ji, Graduate Student Researcher
- External Advisory Panel
 - Ron Klemencic and John Hooper, Magnusson Klemencic Associates
 - Andrew Taylor, KPFF Consulting Engineers
 - Neil Hawkins, Professor Emeritus, University of Illinois

Project Basics

Research Objectives:

Improve understanding of the seismic behavior of complex reinforced concrete walls including soil-structure interaction and develop tools to enable performance-based seismic design of these components.

Project Scope:

- Experimental investigation of slender walls with complex configurations using the UIUC MUST-SIM NEES facility.
- Development of numerical models and modeling recommendations to enable simulation of the seismic response of buildings with walls, including foundation flexibility.
- Development of damage-prediction models and performance-based design recommendations

Seismic Behavior of Walls

- Laboratory testing of wall sub-assemblages to generate data to support development of
 - Numerical models for use by practicing engineers to predict load and deformation demands on walls with realistic foundation boundary conditions,
 - Numerical models for behavior of structural concrete,
 - Performance-prediction models for use in design.
- Experimental testing to be conducted using the UIUC NEES facility. This facility enables
 - Testing of wall sub-assemblages with realistic configurations at moderate scales (~1/3)
 - Simulation of the load distribution that develops in the critical region at the base of the wall in buildings of moderate height.
 - Testing of representative foundation boundary conditions.
 - High-resolution measurement of the specimen displacement and strain fields.

Experimental Test Program

Laboratory Test Specimens

Analysis of Wall Systems

- Develop recommendations for the use of simple, elastic, effective-stiffness models for performance-based design of walls.
- Develop recommendations for the use of simplified nonlinear models for performance-based design.
- Develop sophisticated nonlinear continuum models that can be used for design of special structures as well as to investigate the impact of design parameters and load history on performance.
- Develop nonlinear macroscopic models for use in simulating pile and spread-footing foundations.

Performance-Based Design Tools

- Quantify the uncertainty with which the simplified simulation models predict wall demand.
- Identify repair-specific performance states for slender wall systems.
- Develop probabilistic models linking structural performance with predicted demand.

	PS One	PS Two	PS Three	PS Four		
Damage	Hairline cracking	Cracking and minimal spalling	Substantial spalling	On-set of bar buckling		
Representative Damage Pattern			-			
Repair	No repair	Epoxy inject cracks and patch concrete	Remove and recast concrete	Replace concrete and reinforcement		

Activities to Date

- Literature and inventory review
- Identification of prototype buildings
- Preliminary design of planar wall test program
 - Design details for prototype test specimen
 - Test matrix

Inventory and Literature Review

- Literature and inventory review
 - Review of drawings of 10 buildings designed for construction on the West Coast, primarily designed using UBC 91 and UBC 97.
 - Questionnaires sent to 30 consulting engineering firms. To date, we've received "replies" from 5 engineers.
 - Review of 17 experimental investigations conducted from 1985 2002
 - Issues investigated in the inventory review
 - Gross dimensions: length, thickness, aspect ratio
 - Longitudinal reinforcement ratio: gross, in boundary elements, at mid-span
 - Horizontal reinforcement ratio at mid-span
 - Boundary element confinement: transverse reinforcement ratio, height of bound element confinement
 - Configuration including presence of coupling beams
- Additional issues considered in review of the experimental research
 - Axial load
 - Displacement history

Inventory and Literature Review: Longitudinal Reinforcement Ratio

Inventory and Literature Review: Horizontal Reinforcement Ratio

Inventory and Literature Review: Wall Thickness

Inventory and Literature Review: Statistics

								Bound	ary Ele.	Vert. Reinf.		Horz. Reinf.		Reinf.	
Building	Code	Wall	Height (ft)	# stories	AspectR	Shape	t [in] Max.	Lb [in]	ρL [%]	ρv [%]	s [in]	ρg [%]	ρh [%]	s [in]	Coupled
PAB		4	129	10	29.8	Rectang	18	12	2.89	?	?	?	0.27	18	yes
MKA#4	CA98	2	237.33	25	7.8	Rectang	18	58.52	2.56	0.93	12	1.45	0.27	18	
LDAB1	UBC97	2	67	7	2.1	Rectang	24	-	-	0.31	12	0.31	0.31	12	no
LDAB1	UBC97	7	78	7	2.4	Rectang	24	-	-	0.31	12	0.31	0.31	12	no
LDAB1	UBC97	13	91	7	5.4	Rectang	24	-	-	0.42	12	0.42	0.31	12	no
LDAB1	UBC97	14	91	7	5.4	Rectang	24	-	-	0.42	12	0.42	0.31	12	no
LDAB1	UBC97	15	52	7	1.6	Rectang	24	-	-	0.42	12	0.42	0.31	12	no
LDAB1	UBC97	16	65	7	3.8	Rectang	24	-	-	0.69	12	0.69	0.31	12	no
LDAB1	UBC97	17	65	7	3.8	Rectang	24	-	-	0.42	12	0.42	0.31	12	no
EH	UBC91	2	335	30	26.3	Rectang	24	-	-	0.69	12	0.69	1.38	4	yes
CHEM		3	75	7	3.9	Rectang	12	48	3.97	0.28	12	1.81	0.67	15	no
EH	UBC91		335	30	10.6	L/Box	24	-	-	0.55	6, 12	0.55	0.92	4	yes
PAB		2	140	10	7.1	L	18	54	4.81	?	?	?	0.43	12	yes
PAB		3	140	10	14.9	L	12	12	4.33	?	?	?	0.57	9	yes
LDAB1	0	10	91	7	3.7	L	24	-	-	1	12	1	0.88	12	no
LDAB1	0	11	91	7	2.9	L	24	-	-	1.27	6, 12	1.27	0.55	12	no
LDAB1	0		78	7	2.4	L	24	-	-	1.1	12	1.1	0.31	12	no
BTT	UBC91	5	260	20	21.7	L	24								yes
BIT	UBC91	6	260		8.6	L	24	4.6	1.00	0.26	12	0.47	0.26	12	yes
MKA#I	UBC94		01		0.5	I	20	46	1.09	0.26	6.12	0.47	0.26	12	
LDABI	UBC94		91	/	2.8	<u>H</u>	24	-	-	1.5	6, 12	1.5	0.69		yes
MFC I DAD1	UBC97	<u> </u>	205		0.2	<u>C</u>		-	-	1.4	5, 10	1.4	1./	12	yes
LDAB1	UBC97	2	65	7	2.5	<u>C</u>	24	-	-	0.74	0, 12	0.74	0.88	12	no
	UBC97		65	7	2.0	C	24	-	-	0.74	6.12	0.74	0.09	12	yes
LDADI I DARI	LIBC97		65	7	2.0	C	24			0.93	12	0.93	0.42	12	<u>yes</u>
LDADI I DARI	LIBC07		78	7	2.0	<u> </u>	24			0.85	12	0.85	0.51	12	no
LDADI LDAR1	UBC97	8	78	7	2.4	<u> </u>	24			0.85	12	0.84	0.07	12	Ves
FH	UBC91		335	30	10.3	<u> </u>	24	-	_	0.77	6.12	0.77	0.92	4	ves
CHEM	02071	4	93	7	7.2	<u>C</u>	12	48	5.42	0.28	12	2.61	0.73	10	no
BTT	UBC91	4	260	20	6.5	<u>C</u>	24		0112	0.20		2.01	0175		ves
PAB		1	88	10	4.1	Box	18	36, 48	3.61	?	?	?	0.43	12	ves
MKA#4	CA98	3	309	32	10.1	Box	30	76.26	1.68	0.56	12	1.19	0.31	12	
MKA#4	CA98	1	237.33	25	6.3	Box	30	52.66	2.6	0.69	12	1.49	0.31	12	
MKA#3	UBC97	1	110	10	3.4	Box	24	49	3.18	2.17	6	2.42	0.61	6	
MFC	UBC97	1	449.50	23	13.6	Box	30	-	-	1.68	5, 10	1.68	0.69	5	yes
MFC	UBC97	2	449.50	23	11.0	Box	30	-	-	1.29	5, 10	1.29	2.2	5	yes
CHEM		1a	93	7	2.7	Barbell	12	36	4.7	0.97	6, 12	1.67	0.83	12	no
CHEM		1b	75	7	2.0	Barbell	12	36	4.7	0.97	6, 12	1.63	0.83	12	no
CHEM		2	93	7	2.1	Barbell	16	28	3.56	0.21	12	0.78	0.32	12	no
Average:			151.3		6.7		22		3.5	0.8		1.1	0.6	10.9	
Rect. Avg:			116.8		8.4	Rectang	22		3.1	0.5		0.7	0.4	12.6	
C-Shape Avg:			132.4		4.4	C-shaped	23		5.4	0.9		1.2	0.7	10.1	
L-Shape Avg:			151.4		8.8	L-shaped	21		4.6	1.1		1.1	0.5	11.4	
Box Avg:			273.9		8.1	Box	27		2.8	1.3		1.6	0.8	8.7	
Barbell Avg:			87.0		2.3	Barbell	13		4.3	0.7		1.4	0.7	12.0	

Identify Prototype Buildings

- 10-story office building in San Francisco
 - Designed by MKA per UBC 1997
 - Fairly regular layout with two core-wall systems (coupled and non-coupled)
- Would like to include
 - 4-story office building designed per code
 - 20-story office building designed per code
- Possibly will include
 - 9-story hospital in Reno
 - Designed using performance-based design criteria
 - Fairly regular layout with couple core and non-coupled walls
 - In the process of acquiring owners permission

Planar Tests: Prototype Specimen

- Thickness
 - Prototype = 18 in.
 - Average from inventory review (all walls) = 22 in.
- Length
 - Prototype = 30 ft.
 - Average from inventory review (all walls) = 29.4 ft.
- Boundary Element reinforcement ratio
 - Prototype = 5%
 - Average from inventory review (rectangular walls) = 3.1%
 - Average from inventory review (all walls) = 3.5%
- Gross vertical reinforcement ratio
 - Prototype = 1%
 - Average from inventory review (rectangular walls) = 0.7%
 - Average from inventory review (all walls) = 1.1%
- Vertical (mid-span) & horizontal reinforcement ratio
 - Prototype = code minimum
 - Average from inventory review (all walls) = 0.64% (horz.), 0.8% (vert.)
 - Average from inventory review (rectangular) = 0.5% (horz.), 0.4% (vert.)

Typical Specimen

Planar Tests: Loading of Prototype Test Specimen

Planar Wall Test Matrix

Planar Tests: Current Activities

- Review of experimental data to develop links between drift demand, damage and effective stiffness
- Analyses of prototype buildings to better determine moment-shear ratios to use in the laboratory
- Analyses of proposed test specimens to verify failure modes of laboratory test specimens
- Identify drift histories for use in laboratory testing

Research Project: Future Activities

- Planar wall tests: summer 2005
- Coupled walls
 - Design & testing: 2005-2006
- C-shaped walls
 - Design & testing: 2006
- Core wall
 - Design & testing: 2006-2007

Planar Wall Test Matrix

- Issues to be resolved in designing test matrix
 - Does the prototype specimen exhibit flexure or flexure-shear failure?
 - Does the prototype specimen have boundary elements?
 - Pseudo-dynamic testing for non-standard displacement history?
 - Is it necessary to test a wall with a steep moment gradient? If not, other potential test parameters include
 - Non-standard, pre-defined displacement histories or pseudodynamic displacement histories
 - Boundary zone confinement

Specimen Design

- Boundary elements
 - Vertical reinforcement ratio in boundary elements defined by moment demand (Mu).
 - Depth used for confinement is code defined (ACI 318: 21.7.6.2) and a function of drift demand: Is drift is computed using elastic effective stiffness model?
 - Transverse reinforcement for confinement as for columns (ACI 318: 21.4.1 – 21.4.3).
 - Height of boundary element is code defined (ACI 318: 21.7.6.4) and may be a function of Vu: Is Vu defined by analysis under code defined forces?
 - Bar size: Is this typically the same as in the remainder of wall?
 - Mid-span
 - Vertical shear reinforcement: code defined minimum ratio (ACI 318: 11.10.9.4), code defined minimum spacing (ACI 318: 11.10.9.5).
 - Horizontal shear reinforcement: code defined minimum ratio is 0.0025, code minimum spacing (ACI 318: 11.10.9.3).

Specimen Design

- Additional design issues
 - What criteria are used to determine the height at which boundary elements are discontinued?
 - What criteria are used to determine the height at which longitudinal reinforcement is discontinued?
 - How is a capacity design approach used in defining moment demand (Mu) and shear demand (Vu)?
 - Is there a target / typical shear demand on the wall $\left(\alpha \sqrt{f_c'}\right)$?

Additional issues

- Typical concrete strength?
- Typical aggregate size?

Laboratory Load Histories

Issues to be considered

- Building height as defined by M-V ratio
- Lower story shear loads
- Non-standard displacement histories
 - Pre-defined
 - Pseudo-dynamic testing

Displacement History: pre-defined

"STANDARD"

- Symmetric History
- Monotonically increasing drift demands
- 2-6 cycles per drift level
- Comparison with previous results
- CONSTANT DRIFT
 - Long-duration effects
 - Low-cycle fatigue
 - One or more drift levels
 - Symmetric

Displacement History: pre-defined

- PULSE/NON-SYMMETRIC
 - Near-fault effects
 - Analytical Model development
 - One or more drift levels
 - Not Symmetric

Lower Story Shear Load

Inter-story shear loads

Analysis of wall load distribution using a UBC lateral load distribution indicates that shear loads at 1st and 2nd story represent 17% of total base shear. Therefore, include these loads:

Building Height and M-V Ratio

