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Ageing is associated with a decline in cognitive function 
that can, in part, be explained by changes in neural 
plasticity or cellular alterations that directly affect 
mechanisms of plasticity. Although several age-related 
neurological changes have been identified during nor-
mal ageing, these tend to be subtle compared with the 
alterations that are observed in age-associated disorders, 
such as Alzheimer’s disease and Parkinson’s disease. 
Moreover, understanding age-related changes in cogni-
tion sets a background against which it is possible to 
assess the effects of pathological disease states.

In this review, we discuss functional alterations that 
occur during normal ageing in the medial temporal 
lobe and the prefrontal cortex (PFC) and how these age-
associated changes might contribute to the selective cog-
nitive impairments that occur in advanced age. We first 
discuss data that suggest that profound loss of neurons 
does not significantly contribute to age-related cognitive 
impairments. We then review the subtle changes in neu-
ronal morphology, cell–cell interactions and gene expres-
sion that might contribute to alterations in plasticity in 
aged animals and how these changes disrupt the network 
dynamics of aged neuronal ensembles that ultimately 
contribute to selective behavioural impairments.

Morphology of the ageing brain
Age-related changes in the morphology of neurons are 
selective and it seems that there is no universal pattern 
across the entire brain. However, one finding that does 
seem to be consistent is that in most brain areas neuronal 
loss does not have a significant role in age-related cogni-
tive decline. Rather, small, region-specific changes in den-
dritic branching and spine density are more characteristic 
of the effects of ageing on neuronal morphology (FIG. 1). 
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Stereological principles
A set of rules that allows 
objective counting of the 
number of objects in a three-
dimensional structure 
independent of the size of the 
objects. Among these is the 
dissector principle, which 
ensures that objects are 
sampled with a probability that 
is proportional to their number 
and not their size.

This is contrary to early investigations of aged nervous 
tissue in which profound neuron loss was reported to 
occur in advanced age.

In 1955, Brody was the first to suggest that age-related 
reductions in brain weight were due, in part, to a decline 
in neuron number in all cortical layers1. Subsequent 
investigations corroborated this work, reporting a 
10–60% decline in cortical neuron density between late 
childhood and old age2. In addition, profound cell loss 
was found in the hippocampus of ageing humans3 and 
the hippocampus and PFC of non-human primates4. The 
data obtained from these early reports, however, were 
confounded by various technical and methodological 
issues, such as tissue processing and sampling design, 
that later called into question their accuracy5.

In the 1980s, when new stereological principles were 
developed, it became possible to identify and eliminate 
many of the confounding factors of the previous studies 
that had indicated a profound decline in neuron number 
occurring in advanced age6. The resulting conclusion 
was that in humans7,8, non-human primates9–12 and 
rodents13–15, significant cell death in the hippocampus 
and neocortex is not characteristic of normal ageing. 
A notable exception to this idea, however, has recently 
been reported. In aged non-human primates, there is a 
~30% reduction in neuron number in all layers in area 
8A of the dorsolateral PFC, which significantly correlates 
with impaired performance on a working memory task. 
By contrast, area 46 of the PFC shows conservation of 
neuron number16.

Similar to early reports of a decline in neuronal density 
with ageing, early investigations of dendritic branching 
suggested massive deterioration in the human entorhinal 
cortex and hippocampus17,18 (FIG. 1a). These experiments, 
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support cognition, and some of these processes are affected during normal ageing. 
Notably, cognitive functions that rely on the medial temporal lobe and prefrontal cortex, 
such as learning, memory and executive function, show considerable age-related decline. 
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however, included both healthy individuals and people 
with dementia. Subsequent investigations, which were 
more precisely controlled for the participants’ mental sta-
tus and applied stereological controls, found that normal 

aged individuals had extensive dendritic branching in 
layer II of the parahippocampal gyrus, the origin of the 
perforant pathway to the dentate gyrus19,20. Moreover, 
dendritic branching and length appeared to be greater 
in aged individuals than in younger adults or patients 
with senile dementia. Other investigations have repor-
ted increased dendritic extent in the dentate gyrus of 
old compared with middle-aged humans21,22. In other 
subregions of the human hippocampus, however, 
including areas CA1 (REF. 23) and CA3 (REF. 24), and the 
subiculum25, there is no change in dendritic branching 
with age.

Studies of dendritic extent in other animals have, in 
general, confirmed that there is no regression of dendrites 
with age. In rats, there is no significant change in den-
dritic length of hippocampal granule cells between young 
(3 months), middle-aged (12–20 months) and aged 
(27–30 months) rats, with a trend towards an increase 
between middle-age (20 months) and old age (27 months)26. 
There is also no decrease in dendritic extent between 
young (3 months) and old rats (26 months) in area CA1 
(REFS 27,28), although there is some evidence that a small 
subset of CA1 neurons from 24-month-old rats have 
increased basilar dendritic length and branching com-
pared with 2-month-old rats28 (but see also REF. 29).

The morphology of PFC neurons seems to be more 
vulnerable to the effects of ageing than that of hippo-
campal neurons. In rats, dendritic branching of pyramidal 
neurons decreases with age for both apical and basal 
dendrites in superficial cortical layers30. A reduction 
in dendritic branching with age has also been observed in 
anterior cingulate layer V of the rat31 and the human 
medial PFC32,33.

Similar to the investigations on dendritic branching 
during ageing, the data on spine density suggest that age-
associated alterations are also region-specific. Even in the 
hippocampus, changes in spine density are not consistent 
across subregions. In the dentate gyrus, there is no signifi-
cant reduction in spine density in aged humans34 or rats35. 
There is also no reduction in spine density in area CA1 
in aged compared with young rats29. In the subiculum of 
non-human primates, however, significant reductions in 
spine density with age have been observed in monkeys 
between the ages of 7 and 28 years36.

Biophysical properties of aged neurons
In all subregions of the hippocampus, most electrical 
properties remain constant over the lifespan37. These 
include resting membrane potential27,38–45; membrane time 
constant27,46,47; input resistance39–48 (but see also REF. 49); 
threshold to reach an action potential42,47; and the width 
and amplitude of Na+ action potentials27,40,42–45,47,50. 
Numerous studies, however, have shown an increase in 
Ca2+ conductance in aged neurons. CA1 pyramidal cells 
in the aged hippocampus have an increased density of 
L-type Ca2+ channels51 that might lead to disruptions in 
Ca2+ homeostasis52, contributing to the plasticity deficits 
that occur during ageing53,54. Moreover, Ca2+ activates 
outward K+ currents that are responsible for the after-
hyperpolarizing potential (AHP) that follows a burst of 
action potentials41,43. Aged neurons in areas CA1 and CA3 

Figure 1 | The myth of brain ageing. A common misconception about normal ageing 
is that significant cell loss and dramatic changes in neuronal morphology occur. 
a | This example shows progressive loss of the dendritic surface in aged human dentate 
gyrus granule cells. These data do not accurately reflect the subtle and selective 
morphological alterations that actually occur in aged neurons, however. Age-
associated loss of dendritic extent in the dentate gyrus and CA1 was exaggerated by 
including healthy aged individuals and those with dementia in the same experimental 
group, and not using stereological controls. b | Two representative granule cells filled 
with 5,6-carboxyfluorescein from the dentate gyrus of a 24-month-old rat. In the rat 
dentate gyrus, there is no significant change in dendritic extent between young and 
old animals, but there is a significant increase in electrotonic coupling (REF. 71; C.A.B., 
unpublished observations). c | Reconstructions of representative hippocampal CA1 
neurons from young rats (2 months) and old rats (24 months). There is no reduction 
in dendritic branching or length with age in area CA1. d | A CA3 neuron filled with 
5,6-carboxyfluorescein from a 24-month-old rat. There is no regression of dendrites 
but the aged cells show a significant increase in the number of gap junctions compared 
with young cells72. Panel a modified, with permission, from REF. 17 © (1976) Elsevier 
Science. Panel c reproduced, with permission, from REF. 28 © (1996) Elsevier Science. 
Panel d reproduced, with permission, from REF. 168 © (1986) Elsevier Science.
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have an increase in the amplitude of the AHP that results, 
at least in part, from age-related increases in Ca2+ conduct-
ance41,50. Other factors that might contribute to the larger 
AHP in aged animals include reduced basal cyclic AMP 
(cAMP) levels55.

The larger AHP observed in aged hippocampal 
neurons suggests that aged CA1 pyramidal cells are less 
excitable, as they are further from action potential thresh-
old than are young neurons during the AHP. The only 
evidence that supports this idea is the finding that, in an 
in vitro hippocampal slice preparation, aged CA1 neu-
rons fire fewer action potentials than do young neurons 
in response to a prolonged depolarization50. This is not 
the case, however, when pyramidal neurons are recorded 
in vivo under normal physiological conditions. In awake, 
behaving rats, there is no difference in the firing rates of 
CA1 pyramidal neurons according to age56–64, and, in fact, 
the firing rates of CA3 pyramidal neurons are actually 
slightly higher in aged than young rats64.

Similar to neurons in the hippocampus, many electro-
physiological properties of neurons in the PFC remain 
the same during normal ageing, including resting mem-
brane potential; membrane time constant; threshold to 
elicit an action potential; and rise time and duration of 
an action potential65. There is some evidence of a small 
increase in the input resistance in PFC neurons of aged 
monkeys as well as a decrease in the amplitude and fall 
time of action potentials65. However, cognitive perform-
ance is not related to action potential amplitude, action 
potential fall time or input resistance65. Neurons in the 
PFC of aged monkeys also have a significantly larger 
AHP compared with young neurons65, which suggests 
that Ca2+ homeostasis might also be disrupted in PFC 
neurons in advanced age.

Changes in cell–cell interactions
Aged animals have alterations in the mechanisms of 
plasticity that contribute to cognitive functions. One 
functional alteration that could directly affect plasticity 
is reduced synapse number, which could make it more 
difficult to attain the sufficient amount of cooperatively 
active synapses that is necessary to lead to network 
modifi cation. An early electron microscopic investi-
gation at the perforant path–granule cell synapse showed 
that aged rats have a 27% decrease in axodendritic 
synapse number in the middle molecular layer of the 
dentate gyrus compared with young rats66,67. Moreover, 
spatial memory deficits have been shown to correlate 
with a reduction in perforated synapses at the medial 
perforant path–granule cell synapse68. When these 
results were replicated with stereologically controlled 
measures of synapse number, the total number of syn-
aptic contacts per neuron was found to be diminished 
significantly in the dentate gyrus middle molecular layer 
and inner molecular layer of aged rats relative to young 
adults. Both perforated and non-perforated axospinous 
synapses showed age-dependent decreases in numbers69. 
The primary difference between the new stereological 
synapse count data and the old synapse count data is 
the observation that age-related synaptic loss involves 
axospinous, but not axodendritic, junctions.

Electrophysiological data support the anatomical 
observation that there is a reduction in synapse number 
in the dentate gyrus of older animals. In the aged rat, the 
field excitatory postsynaptic potential (EPSP) recorded in 
the dentate gyrus is reduced38,47. This reduction is accom-
panied by a decrease in the presynaptic fibre potential 
amplitude at the perforant path–dentate gyrus granule 
cell synapse47,70. Because there is no loss of entorhinal 
cells13, this decrease is probably due to a reduction in 
axon collaterals from layer II of the entorhinal cortex to 
the granule cells. Interestingly, whereas the field EPSP in 
the aged dentate gyrus decreases, for a given magnitude 
of afferent fibre response, old animals show a larger syn ap-
tic field potential47, which indicates that fewer fibres are 
able to elicit larger postsynaptic currents in aged animals. 
Consistent with this, the unitary EPSP is increased in old 
granule cells in response to stimulation of single afferent 
perforant path fibres71. The increase in unitary EPSP size 
in the dentate gyrus is probably mediated by an increase 
in AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid) receptor currents and is suggestive of a 
compensatory mechanism that increases postsynaptic 
sensitivity in response to the reduced medial perforant 
path input39,47,71. Another possible mediator of the larger 
currents is the increase in electrotonic coupling that is 
observed between aged hippocampal neurons. In fact, 
there is a 15% increase in the number of gap junctions 
between granule cells in aged compared with young rats 
(FIG. 1b). Old rats also show an increase in electrotonic 
coupling between neurons in areas CA1 (15% more gap 
junctions; FIG. 1d) and CA3 (18% more gap junctions) 
compared with young rats72.

A reduction in axospinous synapses in the dentate 
gyrus is correlated with spatial memory deficits in aged 
rats68. This is not the case for Schaffer collateral–CA1 
synapses, as the total synapse number remains the same 
across different age groups73. When the post synaptic 
density area of axospinous synapses in area CA1 is comp-
ared between aged learning-impaired and learning-
unimpaired rats, however, the impaired animals show a 
profound reduction in the postsynaptic density area of 
perforated synapses74. These findings support the idea 
that many hippocampal perforated synapses become 
non-functional or silent in aged learning-impaired 
rats, and this loss of functional synapses might con-
tribute to cognitive decline during normal ageing. 
Electrophysiological data also support the hypothesis 
that there is a loss of functional synapses in area CA1. 
The amplitude of the field EPSP recorded in area CA1 of 
aged rats is reduced compared with young rats39,75,76. The 
unitary EPSP size in the CA1 region of the hippocam-
pus in aged rats is preserved39, however, and there is no 
change in the amplitude of the Schaffer collateral presy-
naptic fibre potential77–79, which indicates that there is 
no axonal pruning of aged Schaffer collateral fibres. 
Interestingly, the postsynaptic density area of perforated 
synapses declines most significantly in aged learning-
impaired Long Evans rats74. In an electrophysiological 
study, however, the field EPSP amplitude was found 
to be reduced in both impaired and unimpaired aged 
Fischer 344 rats80, whereas plasticity mechanisms were 
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Long-term potentiation 
The physiological mechanism 
for selectively increasing 
synaptic weight distributions 
to develop the associations 
between neurons that are 
necessary for learning and 
memory.

Long-term depression 
A mechanism for selectively 
decreasing synaptic weights so 
that new associations can be 
stored in the network without 
reaching saturation.

Immediate-early gene 
(IEG). Any gene whose 
expression does not require 
the activation of any other 
responsive genes or de novo 
protein synthesis.

defective only in the impaired group80. Combined, these 
data implicate the perforated synapse postsynaptic den-
sity area in plasticity mechanisms independent of fast 
synaptic transmission processes.

The effects of altered morphology, biophysical prop-
erties and synaptic connections of aged neurons on 
plasticity can be assessed by measuring age-associated 
alterations in long-term potentiation (LTP) and long-term 
depression (LTD).

LTP can be divided into an induction phase (early-
phase LTP) and a maintenance phase (late-phase LTP). 
The induction phase involves the temporal association of 
presynaptic glutamate release with postsynaptic depolari-
zation (necessary to eject Mg2+ from the pores of NMDA 
(N-methyl-d-aspartate) receptors), which results in an 
increase in intracellular Ca2+ (REF. 81). LTP maintenance 
is the continued expression of increased synaptic efficacy 
that persists after induction. It probably involves changes 
in gene expression and insertion of AMPA receptors 
into the postsynaptic membrane82. Aged rats have 
deficits in both LTP induction and maintenance. These 
deficits, however, are complex, protocol-dependent and 
region-specific.

Although there is a reduction in the field EPSPs 
recorded both in the dentate gyrus47,71 and in area CA1 
(REFS 39,75,76), aged animals can show intact LTP induc-
tion at the perforant path–granule cell synapse38,83,84, the 
CA3–CA1 Schaffer collateral synapse85,86 and the per-
forant path–CA3 pyramidal cell synapse87 when robust 
high-frequency, high current amplitude stimulation 
protocols are used (FIG. 2a). Even when supra-threshold 
stimulation parameters are used, however, aged rats have 
a deficit in the maintenance of LTP in both the dentate 
gyrus38,47 and CA3 compared with young rats87.

When peri-threshold stimulation parameters are 
used, LTP induction deficits can be observed in both the 
dentate gyrus and CA1. In the dentate gyrus, when weak 
presynaptic stimulation is combined with direct depolariz-
a tion of the granule cell, larger amplitude current injec-
tion is required to elicit LTP at the perforant path–granule 
cell synapse of aged rats compared with young rats88. This 
indicates that aged granule cells in the dentate gyrus have 
an increased threshold for LTP induction.

The pattern of age-related LTP deficits in CA1 
pyramidal cells is different from that observed in the 
dentate gyrus. Aged neurons in area CA1 do not have an 
increased threshold for LTP89, but when peri-threshold 
stimulation parameters are used, the level of LTP induc-
tion in aged rats is less than in young rats78,80,90,91 (FIG. 2b). 
For example, when LTP induction is measured in young 
and old rat hippocampal slices using four-pulse stimu-
lation at 100 Hz90 or the primed-burst protocol, in 
which a single priming pulse is followed 170 ms later 
by four stimulus pulses at 200 Hz91, the increase in field 
EPSP slope is less in the aged rats than in the young 
rats. These induction deficits occur even if the stimulus 
intensity of the Schaffer collaterals is increased to match 
field EPSP amplitudes between young and aged rats78. 
Although the aged rats’ Schaffer collateral axons can 
follow high-frequency stimulation as well as those of 
young rats, aged CA1 neurons show weaker temporal 

summation of the multiple EPSPs induced by high-fre-
quency stimulation. Therefore, during high-frequency 
bursts, CA1 pyramidal cells are less depolarized, which 
explains the age-related LTP induction impairment in 
CA1 (REF. 78).

It is possible that age-related changes in Ca2+ regu-
lation cause some portion of the observed age-related 
plasticity deficits. In particular, it has been proposed 
that post synaptic intracellular Ca2+ concentrations are 
involved in setting the synaptic modification threshold. 
This threshold might then affect the probability that 
a synapse will be depressed or potentiated at a given 
time53,92,93. Ca2+ dyshomeostasis in aged animals51,53,54 
could, therefore, alter the probability that synaptic activity 
will induce either LTP or LTD. This idea is supported 
by Ca2+ imaging studies, which have shown that the 
resting Ca2+ concentration does not differ substantially 
with age in area CA1. Greater elevation of somatic Ca2+ 
and greater depression of EPSP frequency facilitation, 
however, develop in aged CA1 neurons in response to 
stimulation94.

In line with the Ca2+ hypothesis of age-related plas-
ticity impairments is the finding that aged rats are more 
susceptible than are young rats to LTD95 (FIG. 2c) and to 
the reversal of LTP53 (FIG. 2d). Moreover, it was recently 
shown that inhibition of Ca2+ release from intracellu-
lar Ca2+ stores attenuated LTD induction in aged CA1 
neurons96 (FIG. 2c).

Age-related changes in gene expression
It is known that the maintenance of LTP requires gene 
expression and de novo protein synthesis; therefore, it 
is not surprising that aged animals also show altera-
tions in these processes. The investigation of the role of 
immediate-early genes (IEGs) in neural plasticity began in 
1987 with the observation that the IEG c-fos is rapidly 
induced in neurons following seizures97. Subsequent 
investigations showed that IEGs are expressed follow-
ing LTP induction98–100, which led to the hypothesis that 
IEGs are dynamically regulated by specific forms of pat-
terned synaptic activity believed to underlie information 
storage98. It was later shown that IEGs are expressed by 
cells that are activated during behaviour such as spatial 
exploration101.

A crucial event for the induction of expression of 
IEGs is the phosphorylation of CREB (cAMP-respon-
sive element-binding protein). Once phosphorylated, 
CREB promotes the transcription of IEG mRNA that 
may then be translated into protein. On the basis of the 
functional role of the protein, IEGs can be grouped into 
two classes: inducible transcription factors and effector 
proteins. Among the inducible transcription factors 
are c-jun, c-fos and zif268. After c-jun and c-fos mRNA 
are translated into protein, their protein products can 
form a heterodimer called the activator protein 1 (AP1) 
complex. AP1 is a transcription factor that promotes 
the expression of late-response genes, some of which 
are important for the growth of new synapses or the 
modification of synaptic structure102,103. The expression 
of zif268 is necessary, although probably not sufficient, 
for the maintenance of LTP and long-term memory104.
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Among the effector IEGs are Narp (neuronal activity-
regulated pentraxin) and Arc (activity-regulated cyto-
skeletal gene). After transcription, Narp mRNA trans-
locates to the synapse105, where it is released and may act to 
cluster AMPA receptors on the postsynaptic membrane106. 
After transcription, Arc mRNA localizes selectively to the 

region of the dendrite that receives the synaptic input that 
initiated transcription107, and is proposed to be involved 
in the structural rearrangement of activated dendrites108. 
This probably involves AMPA receptor trafficking, as Arc 
protein has also been shown to reduce AMPA receptor 
currents (P. F. Worley, personal communication). Finally, 
Arc expression is necessary for the maintenance, but not 
the induction, of LTP and long-term memory109.

Age-associated changes in gene expression have been 
investigated using several techniques (BOX 1), each of 
which has specific advantages and disadvantages. Gene 
microarray technology allows researchers to monitor the 
expression level of thousands of genes in a given brain 
region and make comparisons between young and old 
animals. The initial use of this method, in mice, showed 
age-related alterations in the expression of hundreds of 
genes110,111, but did not involve the use of formal statis-
tical tools to evaluate age effects and their behavioural 
relevance. In a later study that used behaviourally charac-
terized rats, gene expression alterations in area CA1 were 
found to correlate with age-related cognitive decline. The 
behaviourally relevant upregulated genes included several 
that are associated with inflammation and intracellular 
Ca2+ release pathways, whereas genes associated with 
energy metabolism, biosynthesis and activity-regulated 
synaptogenesis were downregulated. Arc and Narp were 
two of the genes that were shown to be downregulated112. 
These results should be interpreted with caution, how-
ever, as the data reflect resting levels of gene expression. 
As many of the genes that are necessary for learning and 
memory are only robustly expressed after synaptic activity, 
resting levels of expression might not capture an age 
difference that may occur in gene expression during 
behaviour.

Northern blots can be used to measure the amount 
of RNA transcribed from a particular gene. When this 
technique was used to compare resting levels of c-fos, 
c-jun and AP1 activity between young and aged rats there 
was no age-associated difference113. The expression levels 
of Arc, c-fos, c-jun, zif268 and Narp mRNA have been 
measured following LTP-inducing stimuli using a reverse 
northern strategy. In adult and aged memory-impaired 
rats, the induced levels of ARC, c-jun, junB, Zif268 and 
NARP mRNA are similar but the amount of c-fos mRNA 
is significantly higher in aged animals114. Both the micro-
array and northern blot techniques are limited, however, 
by their lack of cell specificity.

Changes in the proportion of cells that express a gene 
can be assessed using fluorescence in situ hybridization. 
This allows exact determination of which individual 
cells are expressing which genes. For example, in aged 
rats, granule cells of the dentate gyrus, but not the 
pyramidal cells of areas CA1 and CA3, have a signifi-
cantly smaller proportion of neurons that express Arc 
following spatial exploration115. Interestingly, in studies 
using MRI methods in humans and monkeys, the 
granule cells also seem to be particularly vulnerable to 
the effects of normal ageing115,116. Fluorescence in situ 
hybridization alone, however, does not allow determi-
nation of the magnitude of expression of a particular 
gene in a cell.

Figure 2 | Summary of age-related alterations in long-term potentiation and long-
term depression between young and aged animals. The y axes show the change in 
excitatory postsynaptic potential (EPSP) slope following the induction of long-term 
potentiation (LTP) or long-term depression (LTD), and the x axes show the retention 
intervals for maintenance of LTP or LTD. Red lines, young rats; green lines, aged rats. 
a | When supra-threshold stimulation parameters are used, LTP induction is intact at 
old hippocampal synapses38,86,87 but decay over days in the dentate gyrus (DG)38 and 
area CA3 (REF. 87) is faster in aged rats. b | When peri-threshold stimulation parameters 
are used, aged rats can show LTP induction deficits89–91. c | In area CA1, aged rats are 
more susceptible to LTD induction95. In old rats, however, LTD induction with low-
frequency stimulation (LFS) can be attenuated by agents such as cyclopiazonic acid 
that prevent the release of Ca2+ from internal Ca2+ stores96. d | Aged rats are also more 
susceptible than are young rats to the reversal of LTP. The increase in EPSP slope that 
results from LTP-inducing stimuli can be attenuated by the application of LFS to the 
potentiated pathway. In young rats, LTP is not completely reversed by LFS and there is 
still some residual potentiation. In old rats, however, LFS returns the EPSP slope to the 
baseline pre-LTP levels95. PP, perforant path; SC, Schaffer collateral. Data in panel a 
from REF. 38 (left), REF. 86 (centre) and REF. 87 (right). Data in panel b from REF. 91 (left), 
REF. 89 (centre) and REF. 90 (right).
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Reverse northern strategy 
A technique in which levels of 
tissue mRNA are assessed by 
monitoring the intensity of the 
hybridization signal of 
radiolabelled cDNA prepared 
from tissue RNA to Southern 
blots containing cloned cDNAs 
of multiple candidate genes. 
The hybridization signal for 
each gene is indicative of the 
tissue mRNA level.

By using real-time quantitative reverse transcriptase 
polymerase chain reaction (RT-PCR) concurrently with 
fluorescence in situ hybridization, changes in gene expres-
sion levels within a single cell can be determined. For 
example, in area CA1, the proportion of cells that express 
c-fos mRNA is similar between young and aged rats but 
when RT-PCR is carried out, young rats are found to 
have higher levels of c-fos mRNA compared with the old 
animals (M. K. Chawla, unpublished observations). This 
indicates that although a similar number of pyramidal 
neurons express c-fos across different age groups, the 
individual cells from old animals transcribe less c-fos 
mRNA, which may lead to dysregulation of other genes 
that depend on the AP1 transcription factor.

Dynamics of aged neural ensembles
It is widely agreed that modifiable neuronal ensembles 
support cognition. Therefore, alterations in these net-
works could be responsible for the behavioural impair-
ments observed with ageing. Advances in multiple single 
unit recording methods (BOX 2) have allowed the dynamics 

of hippocampal cell populations to be investigated in 
behaving rats, and studies using these methods have 
shown that certain properties of these networks are com-
promised during ageing. Interestingly, many of the age-
related changes that have been discovered can be linked 
to plasticity deficits, as blockade of NMDA receptors in 
young rats results in ensemble dynamics that resemble 
those of aged rats117,118.

Neuronal recordings from the hippocampus of 
adult rats reveal that when a rat explores an environ-
ment, pyramidal119 and granule120 cells show patterned 
neural activity that is highly correlated with a rat’s posi-
tion in space (that is, the ‘place field’ of the cell; BOX 2). 
Between 30% and 50% of CA1 pyramidal cells show 
place-specific firing in a given environment101,121, which 
has earned these neurons the name ‘place cells’. When 
the firing patterns of many hippocampal neurons are 
recorded simultaneously, it is possible to reconstruct 
the position of a rat in an environment from the place 
cell firing patterns alone121. The composite cell activity is 
‘map-like’ and, in different environments, hippocampal 

Box 1 | Measuring age-associated changes in gene expression 

The expression of many genes can be measured using 
microarray methods, in which the total mRNA from aged 
and young cells is extracted, complementary DNA 
(cDNA) is synthesized with reverse transcriptase and 
labelled with different fluorescent dyes for young and old 
cells (panel a). The microarray contains DNA molecules at 
fixed locations (spots), and the amount of sample bound 
to a spot marked by the dyes enables the level of 
fluorescence emitted to be measured when the sample is 
excited by a laser. In traditional paired-subject 
comparisons, the old and young tissue is bound to a single array and if the mRNA from the young cells is in abundance 
the spot will be green, whereas if the aged cells have more mRNA it will be red, and if both are equal the spot will be 
yellow. Note that other approaches have been used in which samples from single animals are placed on a single chip, 
and comparisons are made across chips112. Microarrays have been used to reveal that rats show age-related differences 
in the expression of several genes. 

Following behavioural induction, the proportion of cells expressing a gene in a specific brain structure can be 
measured with fluorescence in situ hybridization. Panel b shows confocal images of fluorescence in situ hybridization 
for Arc mRNA in the dentate gyrus of a young rat and an old rat. Granule cells are shown in red and Arc mRNA in yellow. 
After spatial exploration, more granule cells are positively labelled for Arc in young than old rats115. The quantity of 
mRNA transcribed from a gene following behavioural induction can be measured using real-time quantitative reverse 
transcriptase polymerase chain reaction (RT-PCR) methods. Again, mRNA is extracted from brain tissue of young and old 
rats, synthesized to cDNA and fluorescently labelled using reverse transcriptase. The cDNA is then logarithmically 
amplified with the RT-PCR reaction. Interestingly, when RT-PCR is combined with in situ hybridization, old CA1 
pyramidal cells have less c-fos per cell than the cells of young animals. Hippocampal images in panel a reproduced, 
with permission, from REF. 164 © (1998) Academic Press; panel b reproduced, with permission, from REF. 115 © (2004) 
National Academy of Sciences.
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Morris swim task 
The most widely used test of 
spatial learning and memory in 
rats. In this task, rats are 
placed into a tank of cloudy 
water. To escape from the 
water the rats need to find the 
location of a platform hidden 
just below the surface. The 
platform is always in the same 
location relative to the room 
and the distal cues.

place maps change markedly. Although these maps can 
be driven by external environmental features, internal 
events are also important and a new map might be gener-
ated in the same environment if the demands of the task 
change122–124.

In young rats, CA1 place fields expand asymmetrically 
during repeated route following (for example, traversing 
a circular track), which results in a shift in the centre 
of mass of place fields in the direction opposite to the 
rat’s trajectory125. This observation is consistent with 
neural network models dating back to Hebb’s 1949 
concept of the ‘phase sequence’ of cell assemblies, which 
suggested that an associative, temporally asymmetric 
synaptic plasticity mechanism could serve to encode 
sequences or episodes of experience126. The magnitude 
of this place field expansion, however, significantly 
decreases in aged rats60. It is likely that this age-associated 
reduction in experience-dependent plasticity is due to 
LTP deficits, as it does not occur when the NMDA receptor 
antagonist CPP (3-(2-carboxypiperazin-4-yl)propyl-
1-phosphonic acid) is administered to young rats118.

In addition to age-related alterations in experience-
dependent place field expansion, the maintenance of 
place maps also differs between young and old animals. 
In normal young rats, a place map for a given environ-
ment can remain stable for months127. Therefore, when a 
rat is returned to the same environment, the same place 
map is retrieved. A similar stability of CA1 place maps 

in aged rats is observed within and between episodes 
of behaviour in the same environment. Occasionally, 
however, if the old rat is removed from the environment 
and returned later, the original place map is not retrieved 
and an independent population of place cells may be 
activated even in a familiar room59. This ‘remapping’ 
predicts that rats should show bimodal performance on 
tasks that require the functional integrity of the hippo-
campus. For spatial tasks, good performance should 
correspond to retrieval of the original map, and poor 
performance should correspond to retrieval of an incor-
rect map. This prediction seems to be correct. When 
trained on the spatial version of the Morris swim task, the 
performance of both young and aged rats is bimodal in 
early trials. This means that for some trials rats find the 
hidden escape platform with a short path but for other 
trials the rats do not recall the location of the platform 
and take a longer path. By the final training trials, how-
ever, the young rats’ performance is unimodal, with most 
rats taking a direct path to the platform. By contrast, the 
aged rats’ performance remains bimodal. The trials on 
which the old rats fail to correctly remember the location 
of the hidden escape platform could correspond to map 
retrieval failures59.

A probable mechanism for map retrieval failures is 
defective LTP in aged rats. Although place-map stability 
within an episode does not require plasticity, the main-
tenance of place maps between episodes depends on an 

Box 2 | Investigating neuronal ensembles with multiple single unit recording methods 

Recordings of more than 100 cells can be obtained from 
a ‘hyperdrive’ device that is permanently mounted on a 
rat’s head120,165, enabling the recording of extracellular 
action potentials in freely moving animals. The tetrode 
recording probe used consists of four twisted 13-μm 
wires, each providing a different recording 
channel120,166,167. Cells can be distinguished from each 
other offline on the basis of the relative amplitude 
differences of their spikes. Panel a shows analogue 
waveforms from five hippocampal cells recorded from 
the four tetrode channels (different cells are shown in 
different colours). Panel b shows the amplitude 
distributions of the neurons from panel a. The top panel 
shows the peak amplitude on channel 1 compared with 
channel 2, and the bottom panel shows the peak 
amplitude on channel 3 compared with channel 4. Note 
that individual cell amplitudes cluster distinctively for 
the different cells. Statistical clustering methods can be 
applied to data to identify individual cells, enabling the 
rat’s behaviour to be correlated with the activity of 
single neurons. For example, principal cells of the 
hippocampus will fire selectively when a rat is in a 
specific region of the environment118,119. The area of the 
environment where a hippocampal principal cell is 
active is referred to as the cell’s ‘place field’. Panel c 
shows the place fields of seven CA1 pyramidal neurons 
when the rat traversed a circular track. Small dots 
correspond to individual spikes and the spikes from 
different neurons are shown in different colours 
(S.B. et al., unpublished observations). Multiple single 
unit recordings have been used to reveal differences in 
place cell ensemble dynamics between young and aged 
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Pattern completion 
The ability of a network 
to retrieve an entire stored 
pattern when only a fragment 
of the pattern is presented.

Pattern separation 
The ability of a network 
to make the stored 
representations of similar 
input patterns more dissimilar.

Delayed non-matching-to-
sample task
(DNMS task). A sample 
stimulus is presented to the 
subject. After a delay, the 
sample is presented again, 
along with a new stimulus. 
The subject is rewarded for 
selecting the new stimulus.

Perirhinal cortex 
High level association cortex 
in the medial temporal lobe 
that receives highly processed 
polymodal information from 
the entire cortical mantel and 
sends direct projections to 
the entorhinal cortex and 
hippocampus as well as 
back-projections to the cortex.

Wisconsin card sorting task 
(WCST). Participants are 
required to sort response 
cards of different dimensions 
(shape, colour and number) 
by a particular category, 
which is determined by an 
experimenter-defined rule. 
Card sorting principles must 
be inferred. Once the sorting 
rule is discovered and a 
determined number of correct 
responses are made, the 
experimenter changes the rule 
and the subject must then 
infer the new rule.

LTP-like mechanism. In young rats, blockade of NMDA 
receptors117 or protein synthesis inhibition128 has been 
shown to result in map retrieval errors when the rat is 
returned to the same environment.

When CA1 and CA3 place cell recordings are pooled 
it seems that spatial representations in old rats do not 
change when they should (for example, in response to 
major changes in the environment)61,129. Combining 
results across areas is problematic, however, as it has 
recently been shown that ensemble activity in these 
different subregions is dissociable130–132. This disso-
ciation could reflect two competing functions of the 
hippo campal network: pattern completion versus pattern 
separation133,134. Moreover, there is evidence of a dissocia-
tion of the effects of ageing on CA1 and CA3 ensembles. 
In area CA1, spatial representations are less stable in 
aged compared with young rats59. By contrast, spatial 
representations in CA3 seem to be more rigid in aged 
rats. When an aged rat explores a familiar environment 
for 7 min and is then placed into a novel environment, 
spatial representations in area CA3 remain the same 
even though the environment has changed64. In young 
rats, however, CA3 place maps are independent between 
familiar and new environments64,131. A disruption in the 
ensemble characteristics of dentate gyrus granule cells, 
a structure known to be particularly vulnerable to the 
ageing process115,116, could contribute to the failure of 
aged CA3 networks to form new spatial representations. 
It is believed that the dentate gyrus makes information 
stored in hippocampal networks more dissimilar (that is, 
it is involved in pattern separation), thereby increasing 
storage capacity133. Because the transfer of information 
between granule cells and CA3 pyramidal cells declines, 
this might contribute to the inability of the aged CA3 
network to form new spatial representations when 
required.

Age-related changes in behaviour
Because the hippocampus and the PFC are particularly 
vulnerable to the ageing process, it is not surprising that 
performance on tasks that require information process-
ing in these brain regions declines with age. Below is a 
brief discussion of selective examples of these behavioural 
changes in humans, non-human primates and rats. 
One such example is an age-related decline in spatial 
memory, which is a key element of most episodic experi-
ence. Compared with younger adults, episodic memory 
declines in aged humans, who show deficits in retrieving 
the contextual details of these memories135,136. In addition, 
aged humans137,138, monkeys139,140, dogs141, rats38,142,143 and 
mice144 all show deficits on tasks designed to test spatial 
navigation. This is consistent with the neurobiological data 
that suggest that hippocampal function is compromised 
with age145.

An additional hippocampal-dependent impairment 
that is consistently observed during ageing across spe-
cies is a deficit in trace eyeblink conditioning. The trace 
eyeblink conditioning task tests associative learning 
using a classical conditioning paradigm. In this task, 
a neutral or conditioned stimulus, which is usually a 
tone, is predictive of an aversive unconditioned stimulus 

(air puff or stimulation of eye). The time taken to acquire 
the eyeblink reflex to the neutral stimulus alone and the 
retention of this association is measured. Acquisition 
and retention of the learned eyeblink response both 
require the involvement of the hippocampus, as well as 
other brain structures such as the cerebellum146. Aged 
mice147, rats148, rabbits149,150 and humans151 are impaired in 
the acquisition of trace eyeblink conditioning.

Whereas the hippocampus is crucially involved in 
spatial and episodic memory, the PFC is necessary for 
working memory152,153 and executive function154. In 
animals and humans, working memory function can 
be measured using the delayed non-matching-to-sample 
(DNMS) task. Aged rats155 and non-human primates156–158 
show time-dependent deficits on the DNMS task, with 
the magnitude of the deficit increasing as the delay 
increases. Humans also show working memory impair-
ments in advanced age159. The DNMS task also tests 
recognition memory, which depends on the perirhinal 
cortex153,160,161. It is therefore possible that age-related 
changes in this task could involve additional plasticity 
deficits in the perirhinal cortex, although little is known 
about the impact of ageing on the functional integrity of 
perirhinal circuits.

In addition to its involvement in working memory, 
the PFC is considered to be the neural substrate of 
executive function, which also declines during normal 
ageing. One way to measure executive function is with 
the Wisconsin card sorting task (WCST). Aged humans are 
impaired on the WCST and make more perseverative 
errors162. Animal analogues of the WCST have been 
design ed, which also show that normal ageing leads to 
a decline in executive function. For example, relative to 
young adult monkeys, aged monkeys show a significant 
difficulty in the acquisition of a conceptual set shifting 
task and demonstrate a high degree of perseverative 
responding163.

Conclusions
In summary, during the normal ageing process, animals 
experience age-related cognitive decline. Historically, it 
was thought that primary contributions to the aetiology 
of this decline were massive cell loss1 and deterioration 
of dendritic branching17,18. However, we now know that 
the changes occurring during normal ageing are more 
subtle and selective than was once believed. In fact, the 
general pattern seems to be that most age-associated 
behavioural impairments result from region-specific 
changes in dendritic morphology, cellular connectivity, 
Ca2+ dysregulation, gene expression or other factors that 
affect plasticity and ultimately alter the network dynamics 
of neural ensembles that support cognition.

Of the brain regions affected by ageing, the hippo-
campus and the PFC seem to be particularly vulnerable, 
but even within and between these regions the impact of 
ageing on neuronal function can differ. The morpho logy 
of neurons in the PFC is more susceptible to age-related 
change, as these cells show a decrease in dendritic 
branching in rats30,31 and humans32,33. There is also evi-
dence of a small but significant decline in cell number 
in area 8A of monkeys that is correlated with working 
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memory impairments16. Although there is evidence of 
Ca2+ dysregulation in aged PFC neurons65, the functional 
consequences of this are not yet known. Moreover, so far, 
there are no reports of multiple single unit recordings in 
the PFC of awake behaving animals. More is known about 
the impact of ageing on hippo campal function. Ca2+ dys-
regulation51,53,54 and changes in synaptic connectivity69,74 
might affect plasticity and gene expression, resulting in 
altered dynamics of hippo campal neuronal ensembles. 
Because more is known about the neurobiology of ageing 
in this brain region, there are therapeutic approaches on 

the horizon that might modify hippo campal neurobiol-
ogy and slow age-related cognitive decline or partially 
restore mechanisms of plasticity. For example, agents that 
reduce intracellular Ca2+ concentra tion following neural 
activity could modulate the ratio of LTD and LTP induc-
tion, thereby partially restoring normal network dynam-
ics. Considering that the average lifespan is increasing 
worldwide, understanding the brain mechanisms that 
are responsible for age-related cognitive impairment, and 
finding therapeutic agents that might curb this decline, 
becomes increasingly important.
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