Neural processing of written language in deaf readers: An event-related potential analysis

Alison S. Mehravari & Lee Osterhout
Program in Neurobiology and Behavior and Department of Psychology, University of Washington, Seattle, WA, USA

Contact: amehrava@uw.edu

Introduction

Reading can be difficult for many deaf individuals — but some do become skilled readers:

- 60% of deaf high school graduates read at or below a 4th grade reading level.
- But: 10% read above an 8th grade level.

Why? Phono-phonological difficulties or lack of early language proficiency?

- Understanding phonology is important for hearing children learning to read.
- Also important for deaf children:
 - Lack of hearing — harder to learn about phonology.
 - In deaf, better phonological knowledge sometimes associated with better reading skill.

Many deaf children not proficient in any language when they learn to read:

- Need to know any language to learn to read another.
- Even so, deaf children, when raised in a sign language-rich environment, learn a signed language naturally — but most not raised this way.
- Sign language skill sometimes associated with better reading skill.

Meta-analysis — variance in reading proficiency in deaf individuals is predicted:

- 11% by phonological knowledge.
- 35% by overall language ability (in a signed or spoken language, independent of reading).

Why this matters — What are the best ways to teach deaf children to read?

Objective: Use real-time measures of language processing (ERPs) to better understand how some deaf individuals read more proficiently than others.

Individual ERP responses change with language proficiency and exposure:

- Children with dyslexia & poor phonological skills show reduced or altered N400 priming to phonologically related words.
- Size of P600 to grammatical violations increases with L1 proficiency.
- Size of N400 to semantic violations changes with L1 proficiency.
- Some early L2 learners show N400s to grammatical violations.

Research questions:

1. Do deaf and hearing individuals read proficiently using the same online language processing mechanisms?
2. Do deaf individuals read proficiently using the same online language processing mechanisms?

Methods

Participants: Severely/profoundly prelingually (<2 years of age) deaf adults (n=16), age-matched hearing controls (n=15).

Procedure: Visual word-by-word presentation of stimuli, continuous EEG recorded from 19 scalp electrodes (10-20 system).

Sentence Violations (30 sentences/condition)

Well-formed	The huge house still belongs to my aunt.
Agreement violation	The huge house still belongs to my aunt.
Semantic violation	The huge house still listens to my aunt.
Double semantic & agreement violation	The huge house still listens to my aunt.

Acceptability judgment at end of sentence. ERPs computed to onset of critical (underlined) word. Words presented for 600ms, 200ms ISI.

Word Pairs (30 pairs/condition)

Unrelated	Fund – pear
Phonologically related	ear – ear
Orthographically related	ear – pear
Phonologically & orthographically related	ear – ear

Lexical decision judgment after both words. ERPs computed to onset of target word. Primes presented for 600ms, 200ms ISI, target 800ms.

| Subject/behavioral data | Standardized reading comprehension: Woodcock Reading Mastery Test word and passage comprehension (max score: 124). Results: Hearing: mean=103.3, SD=7.29, range: 87-116. Deaf: mean=68.75, SD=22.04, range: 40-115 (means significantly different, P<0.05). |
| Language background | Self-rated American Sign Language (ASL) proficiency, language usage and history (1-7 scale, 1=all spoken, 7=all manual/signing) |

Results

1. Deaf readers: P600 to agreement violations; some individuals show an earlier positivity

- Hearing (n=15)
- Deaf (n=16)

2. Growing up with more spoken English is correlated with larger P600s

Caveat: few participants from a sign language-rich background.

3. Deaf readers: Lack of robust N400 to semantic violations

4. Deaf readers: Large N400 to combined semantic-agreement violations; no P600

5. Deaf readers: Larger N400 priming response to orthographically related words correlated with greater self-rated ASL proficiency

Conclusions

Deaf readers can develop robust neural representations of English grammar:

- Growing up in a spoken language environment is correlated with more robust representations.
- We have few participants from a rich sign language background, so cannot make conclusions about English syntactic understanding in that population.

Semantic violations do not elicit robust responses in our deaf participants:

- May be a function of reading comprehension skill; will become clearer with a larger sample size.

Combined semantic and agreement sentence violations elicit larger responses than semantic violations alone, but not in semantic- and agreement-specific ways.

- The sentence is recognized as “more wrong” (larger N400 than to semantic violations alone), but not specifically wrong in both semantics and agreement (no P600).
- Curious that P600s are elicited by agreement violations alone, but less to semantic-agreement violations.

Proficiency in ASL is associated with a greater sensitivity to English orthography:

- Experience with a visual language may enhance sensitivity to visual aspects of other languages.

Future Directions

Increase sample size in order to:

- Analyze relationships between online language processing and reading skill.
- Better compare differences between deaf readers with different language backgrounds (especially growing up in a sign language-rich environment).
- Can phonology and orthography be processed differently and still lead to the same reading comprehension skill?

References

...