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The Nobel Prize in Physics 2016 was divided, one half awarded to
David J. Thouless, the other half jointly to F. Duncan M. Haldane and

J. Michael Kosterlitz "for theoretical discoveries of topological phase
transitions and topological phases of matter".

This year’s Laureates opened the door on an unknown
world where matter can assume strange states. They have
used advanced mathematical methods to study unusual
phases, or states, of matter, such as superconductors,
superfluids or thin magnetic films. Thanks to their
pioneering work, the hunt is now on for new and exotic
phases of matter. Many people are hopeful of future
applications in both materials science and electronics.



OUTLINE

1. Overview of David Thouless’
contributions and the Nobel prize
and current impact

speaker:

2. Classic local order-parameter critical Marcel den Nijs, UW
phenomena and topology.

statistical physics, surface

3. Kosterlitz-Thouless Phase Transitions science, (non-) equilibrium
critical phenomena,
4. Integer Quantum Hall Effect quantum phase transitions,

neural science (ECOG)

5. The TKNN topological invariant

Physics Colloquium, Dept of Physics, UW, October 10 2016
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describes properties that “
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c¢hange in integer steps:
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The number of holes is a °
Aans0
n=1

lopological invariant that is
always an integer, but never
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Topology and genus of
smooth objects.

(from Wikipedia)

The energy of a cell lipid layered cell membrane depends
on curvature, not on surface tension. Its total energy
varies (almost) only with the genus. So our cells could
rather easily shape shift from “bagels” into “coffee
mugs” (by controlling their volume).

Red blood cells are an example of genus-0 shape shifters.

genus O genus 1 genus 2



Topology and homotopy of a
torus (from Wikipedia)

Closed loops that go “around” the torus can not be
removed by deforming them. They are topologically
trapped. Such loops have specific (2-component)
topological winding numbers.

Local variables can not measure the winding number.
(Unless you do something fancy - like coloring-in the
areas on both sides of the loops).



The pretzel has 3 holes and in topology is
classified as an object of genus-3.

But when you look closer you see many more
tiny worm holes.

While at the atomic scale the pretzel consists
of ordinary atoms for which the rules of
Physics (quantum mechanics mostly) are well
understood.

Question: So what is the big deal?
Answer: Most of the microscopic properties
and details play no role whatsoever in the

processes at the coarse grained macroscopic
scale. They are not expressed and become
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Our type of condensed matter physics and
statistical physics/field theory concerns
the novel phenomena and laws of nature
that emerge at the coarse grained scale
(smoothened level).

/ Those new phenomena and laws play a crucial role in
emergent technologies involving, e.g., topological insulators,
graphene, nanotubes and quantum computation.



This year’s Physics Nobel Prize honors the shift in paradigm from atomic type
meso-scopic thinking (like in terms of local order parameters) into topological
based concepts (vortices, dislocations, topological invariants...)

In particular, it honors the foundations for this paradigm shift laid 30+ years ago.

The prize was probably awarded this year because this type of topological driven
thinking is evolving rapidly right now, both theoretically and experimentally, driven by
the nano-technology and information revolutions whirling around us.

Two example of this are the current research efforts on topological insulators and
guantum computing.

Here at the UW, we are close to being well positioned to play once more a major role.
We are in the middle of rejuvenating the condensed matter efforts on the
experimental side; with the recent hires of Xiaodong Xu, Paul Wiggins, Kai-Mei Fu,
Arka Majundar, Jiun-Haw-Chu, ... All hold joint appointments with other department
across campus. It is essential to rebuild the condensed matter theory side as well.



David Thouless’ 1/2 part of the 2016 Physics Nobel Prize is based on
two seminal contributions:

1. Kosterlitz-Thouless Phase Transitions (1973)
explaining (only one of many more applications) the superfluid
phase transition in Helium-4 films on two dimensional surfaces.

2. The TKNN topological invariant (1982)
(Thouless - Kohmoto - Nightingale - den Nijs)
explaining the integer quantum Hall effect.

The KT-transition contribution belongs to his Birmingham days.
We discovered the TKNN invariant here at the UW
(in the old Physics building — now Mary Gates Hall).



David is known also for many other
important contributions to Physics, e.g., to
the theory of localization of many body
guantum systems in the presence of
disorder; the “Thouless Energy”.

Early in his career he wrote a famous
book on Many Body Quantum
Mechanics, first published in 1966,
second edition in 2014. Itis even
translated in Russian.



David Thouless

Undergraduate, Cambridge, 1955
PhD, Cornell, 1958 (Hans Bethe)

Professor of Mathematical Physics, University of Birmingham, 1965-78.

Professor of Applied Science, Yale University, 1979-80.

Royal Society Research Professor, University of Cambridge, 1983-5.

Professor of Physics, University of Washington, 1980 to 2003; Edwin Uehling
Distinguished Scholar, 1988-98; Emeritus Professor 2003-.



David Thouless

Maxwell Prize of the Institute of Physics, 1973.

Fellow of the Royal Society, 1979.

Holweck Prize of the Institute of Physics and Societé Francaise de Physique, 1980.
Fritz London Award for Low Temperature Physics, 1984.

Fellow of the American Physical Society, 1987.

Wolf Prize for Physics, 1990.

Paul Dirac Medal of the Institute of Physics, 1993.

Member of the National Academy of Sciences, 1995.

Lars Onsager Award for Statistical Physics of the Am. Phys. Soc., 2000.
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The topological set-up most relevant
for today is that of a spiral.

Imagine a very wide spiral parking garage.

The topological defect sits in the center, but is invisible locally unless you are close to it.

If you are too far from the center you do not even “know/see” you live on a spiral.
That is also why | can not find better pictures.

Every closed contour type walk that does not go around the center leads you back to
where you started. Paths that go around the defect make you end-up one floor higher
or lower. This height difference is the “winding number.”



2. Classic local order-parameter critical phenomena and topology.

At boiling, water is
A : equally “happy” in the
| Shipercritical vapor as liquid phase
Critical Point (phase coexistence,
Gibbs free energies

are equal).

218

Ice local order parameter:

Triple Point a local measurement

of density tells you in
/ Steam which phase you are.

Understood since
1900 (van der Waals)

0.06

Pressure (atm)

0001 100 374
Temperature (°C)



2. Classic local order-parameter critical phenomena and topology.

Spontaneous broken
A 5 ergodicity.

Supercritical
Fluid
Critical Point - The vapor does not

turn into a liquid by
random thermal
fluctuations.

218

Ice

The Free energy

Triple Point barrier scales with

system size L as
~[ (D-1)
Steam A.F . .
with D the spatial

dimension.

0.06

Pressure (atm)

00.01 100 374 Peierls, van Hove,
Bloch (1930-ties):

no equilibrium phase
transitions in 1D

Temperature (°C)



t In an easy axis Ferro magnet (Ising model)
the same type of phase transition occurs,

g M>0 but the two phases can then be easily
© .
L transformed into each other by a global
= ’ > . . e fa
§, spin flip: the spin—up versus spin-down
® | coexisting phases.
= M<0
Ferromagnetic Paramagnetic Here the Spontaneous magnet‘izal‘ion acts
v as the local order parameter.
Temperature
+ * + + .
+ + +
+ +
+ ' + E]
+ +
T
+
+ +
+
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In the post Kosterlitz-Thouless era we tend to
reformulate this topologically. This started
with the next generation — including myself.
We focus on the domain walls:

Every closed walk across the surface crosses
an even number of domain walls.

For periodic boundary conditions in one direction:
Every closed path crosses an even number of domain walls

For anti-periodic boundary conditions, the Mobius strip:

Every closed path that winds around the strip an odd (even) number of times, crosses an
odd (even) number of domain walls; because when you walk around once you end up at
the opposite side of the strip and interpret spin-up as spin-down. A topological defect is
imposed by the boundary condition.



limpose an open domain wall into the
system at a distance R apart (which
requires a branch cut). The free energy
of this topological dislocation like defect
scales as:

- below Tc: linear with distance R and
proportional to the surface tension
(confinement, dislocation pairing).

- at Tc: logarithmically
(scale free fractal fluctuations).

- above Tc: does not depend on R
(de-confinement, free dislocations).

In these Ising universality class phase
transitions, the topological charge of the
domain walls remains somewhat
hidden. (They act similar to being their
own “anti-particles”.)
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Starting in the mid 1970-ties this department became
famous for the experiments by Greg Dash, Oscar Vilches,
and Sam Fain, of physisorbed single layers of noble
elements like Helium and Krypton on graphite surfaces.
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This provides a nice
example of an application
where the domain walls
have a modulo 3 topological
chiral charge. (Expressed by
directional arrows.)
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The adsorbed atoms form
three coexisting
commensurate phases,
where they sit in the A, or
the B, or the C positions.
(nearest neighbor sites are
blocked by size and/or zero
point motion).
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0.1

Tc)/Tc

(7~

root 3 peaks

experiments: Vilches&Dash starting in the mid 1970-ties.
theory: C~ | T-Tc|"Y/3 (den Nijs 1979).

The specific heat divergent at criticality;
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In the post Kosterlitz—Thouless (1970-ties) era, the classification of phase
transition in term of the local order parameter is often replaced by listing the
topological charges of domain wall excitations, their merging/creation rules,
and how they can be topologically trapped when on a torus.

This point of view has proven to be very productive. We often make progress
in Physics by reformulating and restating what we know already from a
different perspective.

The KT transition research was instrumental for developing this topological
perspective of phase transitions.



3. Kosterlitz-Thouless Phase Transitions

J. Phys. C: Solid State Phys,, Vol. 6, 1973. Printed in Great Britain. © 1973

Ordering, metastability and phase transitions in
two-dimensional systems

J M Kosterlitz and D J Thouless

Department of Mathematical Physics, University of Birmingham, Birmingham B152TT, UK
Received 13 November 1972

Abstract. A new definition of order called topological order is proposed for two-dimensional
systems in which no long-range order of the conventional type exists. The possibility of a
phase transition characterized by a change in the response of the system to an external
perturbation is discussed in the context of a mean field type of approximation. The critical
behaviour found in this model displays very weak singularities. The application of these
ideas to the xy model of magnetism, the solid-liquid transition. and the neutral superfluid
are discussed. This type of phase transition cannot occur in a superconductor nor in a
Heisenberg ferromagnet. for reasons that are given.



CC/NUMBER 44

_ _This Week’s Citation Classic ® NOVEMBER 4, 1991

Kosterlitz J M & Thouless D J. Ordering, metastability and phase transitions in
two-dimensional systems. J. Phys.—C—Solid State Phys. 6:1181-203, 1973.
(Department of Mathematical Physics, University of Birmingham, England]

This paper showed how a type of order more robust
than the conventional sort of long-range order can
exist in two-dimensional systems. When the temper-
ature is raised, the ordered state is destroyed by the
dissociation of pairs of defects such as vortices or
dislocations, and a new type of phase transition is
produced. [The SC/® indicates that this paper has
been cited in more than 1,930 publications, making
it the most-cited paper in this journal.|

Comments by David himself
about his work in 1991, when
this paper was cited 1930
times.
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Kosterlitz J] M & Thouless D J. Ordering, metastability and phase transitions in
two-dimensional systems. J. Phys.—C—Solid State Phys. 6:1181-203, 1973.
[Department of Mathematical Physics, University of Birmingham, England]

This paper showed how a type of order more robust
than the conventional sort of long-range order can
exist in two-dimensional systems. When the temper-
ature is raised, the ordered state is destroyed by the
dissociation of pairs of defects such as vortices or
dislocations, and a new type of phase transition is
produced. [The SC/® indicates that this paper has
been cited in more than 1,930 publications, making
it the most-cited paper in this journal.|
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Defect-Driven Phase Transitions

David Thouless
Department of Physics FM-15
University of Washington
Seattle, WA 98195
Arguments against the existence in two-di-

mensional systems of the type of long-range
order associated with superfluidity in helium,

in two-dimensional magnets with a preferred
plane of magnetization.

| stumbled across this idea while preparing a
course of lectures on superfluidity and super-
conductivity, but | was prepared to expect the

uliar nature of :::crh& transition by work |
done on a one-dimensional problem two
years earlier. | recruited ). Mike Kosterlitz, who
was then a postdoctoral particle theorist and is
now at Brown University, to work on this prob-
lem. This paper was the result of our collabora-
tion. Before we had published it, we became
aware that Berezinskii,' in the Soviet Union, had
anticipated some of our ideas, although our use
of the renormalization group? gave us insights
that he missed.

We got many of the interesting features of the
transition right, but there were important modi-
fications that were made by other people. It was
pointed out that, in addition to the spontaneous

ion of disl i in a solid, i

freezing of solids, or ion of isotropic
magnets had been given in the 1930s by R.E.
Peierls and L.D. Landau, and had been made
rigorous in the 1960s by P.C. Hohenbeﬂr% and by
N.D. Mermin and H. Wagner. Despite this, there
were many theoretical and experimental indica-
tions that some sort of ordered state existed at
low temperatures for two-dimensional systems
such as helium films.

The idea that superfluidity might be destroyed
by the spontaneous formation of quantized vor-

tices, or solids melted by the formation of dislo- '

cations, is an old one, but it never looked con-
vincing for bulk systems. In two dimensions, the
statistical mechanics of such defects is particu-
larly simple, as the position of a defect is given

by a point, whereas it is specified by a path in !

three dimensions. We used the close analogy
between the behavior of a collection of defects
and that of a two-dimensional gas of positive

and negative electric charges. At low tempera- |

tures, all the charges are bound in pairs of “mol-
ecules,” and at some critical temperature, the

largest of these molecules dissociated to form a |
conducting plasma. This is the nature of the |

phase transition that we argued should exist in
superfluid films, in two-dimensional solids, and

with the start of viscous flow, there was a further
transition of the same sort possible in which
disclinations would appear, and orientational
order lost. We had argued that this sort of tran-
sition should not occur for superconductivity
but had forgotten that the penetration depth in a
thin film is very large.

The initial reaction of the physics community
to this work was polite interest rather than en-
thusiasm, and it was several years before an
experimental test was made. In 1978, D..
Bishop and J.D. Reppy? published the resuits of
their experiment on the superfluid density of a
helium film, and correlated their results with
other experiments to show the constancy of the
ratio of superfluid density to transition tempera-
ture; this is a characteristic of the theory which
was convincingly demonstrated by D.R. Nelson

! and Kosterlitz¢ in 1977. The dramatic experi-

mental results started the boom in work on this
theory, and on its experimental manifestations.
Two recent reviews of the theory and its applica-
tions have been written by P. Minnhagens and
K.J. Strandburg.t The layered copper oxide su-
perconductors have helped to maintain activity

' in this subject.

Berezinskii V L. Destruction of long-range order in one-dimensional and two-dimensional sy stems possessing 2

continuous symmetry group. I1. Quantum systems. Zh. Eksp. Teor Fiz. SSSR 61.1144-56. 1971 (Cited 110 times.)

(Cited 915 times.)

30:1527-30. 1978. (Cited 175 times.)

IS

Phys. Rev. Lett. 39:1201-5. 1977. (Cited 285 umes.)

Rev. Mod. Phys. 59:1001-66. 1987

Kosterlitz J M. The critical properties of the two-dimensional xy model. J. Phys.—C—Solid State Phys. 7:1046-60. 1974
. Bishop D J & Reppy J D. Study of the superfluid transition in two-dimensional *He films. Phys. Rev. Lett
Nelson D R & Kosterlitz J M. Universal jump in the superfluid density of two-dimensional superfluids

. Minahagen P. The two-dimensional Coulomb gas. vortex unbinding and superfluid-superconducting films

6. Strandburg K J. Two-dimensional melting. Rev. Mod. Phys. 60:161-307. 1988

Received October 2. 1990
8
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Defect-Driven Phase Transitions

David Thouless
Department of Physics FM-15
University of Washington
Seattle, WA 98195

Arguments against the existence in two-di-
mensional systems of the type of long-range
order associated with superfluidity in helium,
freezing of solids, or magnetization of isotropic
magnets had been given in the 1930s by R.E.
Peierls and L.D. Landau, and had been made
rigorous in the 1960s by P.C. Hohenberg, and by
N.D. Mermin and H. Wagner. Despite this, there
were many theoretical and experimental indica-
tions that some sort of ordered state existed at
low temperatures for two-dimensional systems

such as helium films.

CC/NUMBER 44
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Kosterlitz ] M & Thouless D J. Ordering, metastability and phase transitions in
two-dimensional systems. J. Phys.—C—Solid State Phys. 6:1181-203, 1973.
[Department of Mathematical Physics, University of Birmingham, England]

For continuous type
order parameters the
free energy barrier for
coexisting phases scales
as

AF~L(0-2)

implying no phase
transitions for those
systems in D=1 and D=2
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Kosterlitz J M & Thouless D J. Ordering, metastability and phase transitions in
two-dimensional systems. J. Phys.—C—Solid State Phys. 6:1181-203, 1973.
[Department of Mathematical Physics, University of Birmingham, England]

The idea that superfluidity might be destroyed
by the spontaneous formation of quantized vor-
tices, or solids melted by the formation of dislo-
cations, is an old one, but it never looked con-
vincing for bulk systems. In two dimensions, the
statistical mechanics of such defects is particu-
larly simple, as the position of a defect is given
by a point, whereas it is specified by a path in
three dimensions. - '

in 3D vortices are
like smoke rings




Vortex-antivortex pair

Below critical Tkt Above critical Tkt
Nobelpris i Fysik, 2016 Free vortices and antivortices
T.H. Hansson

The whirlpools appear in pairs and trap superfluid in their circular motion
such that at the macro scale the superfluidity vanishes at T;.



CC/NUMBER 44
H H H &oa ® NOVEMBER 4, 1991
This Week’s Citation Classic ‘
Kosterlitz ] M & Thouless D J. Ordering, bility and phase itions in
two-dimensional systems. J. Phys.—C—Solid State Phys. 6:1181-203, 1973.
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We used the close analogy
between the behavior of a collection of defects
and that of a two-dimensional gas of positive
and negative electric charges. At low tempera-
tures, all the charges are bound in pairs of “mol-
ecules,” and at some critical temperature, the
largest of these molecules dissociated to form a
conducting plasma. This is the nature of the
phase transition that we argued should exist in
superfluid films, in two-dimensional solids, and
in two-dimensional magnets with a preferred
plane of magnetization.

Those “electric charges” are the cores of the vortices and
also the dislocations in the topological reinterpretation of
the above mentioned conventional phase transitions.

The core difference between continuous and discrete degrees of freedom is that the
linear bound (confined) dislocation phase can not appear for the continuous degrees of
freedom, because of AF~L(P-2), The low temperature phase is a critical phase.
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Recall the previous viewgraph for Ising type order: [~

If we impose an open domain , \

wall into the system into the system at B,

a distance R apart (which requires a ‘ A A f

branch cut), then the free energy of this A } e ;

topological defect scales: @
L ——

- linear with R below Tc and
proportional to the surface tension
(confinement).

- logarithmically at Tc.

(scale free fractal fluctuations)

- does not depend on R above Tc

(de-confinement).

In Ising universality class phase
transitions, the topological charge of the
domain walls remains somewhat
hidden. (They act like being their own
“anti-particles”.)




Kosterlitz’ and Thouless’ thermodynamical argument
for a phase transition driven by ‘‘vortex liberation”
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Free energy for a single vortex
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The entropy balances the energy for: Txr = o

Nobelpris i Fysik, 2016
T.H. Hansson AlbaNova, 20161004
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| stumbled across this idea while preparing a
course of lectures on superfluidity and super-
conductivity, but | was prepared to expect the

uliar nature of the transition by work |
done on a one-dimensional problem two
years earlier. | recruited ). Mike Kosterlitz, who
was then a postdoctoral particle theorist and is
now at Brown University, to work on this
lem. This paper was the result of our collabora-

tion.

Teaching graduate courses is good!!!
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Before we had published it, we became
aware that Berezinskii,' in the Soviet Union, had
anticipated some of our ideas, although our use

of the renormalization group? gave us insights
that he missed.

Berezinskii V L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a
continuous symmetry group. Il. Quantum systems. Zh. Eksp. Teor Fi: SSSR 61.1134-56. 1971 chcd 110 times. )
Kosterlitz J M. The critical properties of the two-dimensional v model. J. Phyvs.—C—Solid State Phys. 7 1046-60. 1973
(Cited 915 tumes.)
Bishop D J & Reppy J D. Study of the superfluid transition in (wo- -dimensional ‘He films. Phvs. Rev Letr
30:1527-30, 1978. (Cited 1 7S umes.)
Nelson D R & Kosterlitz J M. Universal jump in the superfluid density ot two-dimensional supertluids
Phys. Rev. Lert. 39:1201-5, 1977. (Cited 285 umes.)
Minnhagen P. The two-dimensional Coulomb gas, vortex unbinding and supertluid-superconducting films.
Rev. Mod. Phvs. 59:1001-66, 1987
Strandburg K J. Two-dimensional melting. Rev. Mod. Phys. 60:161-307. 1988,

This is why this is also often called the “BKT transition”



The initial reaction of the physics community
to this work was polite interest rather than en-
thusiasm, and it was several years before an
experimental test was made. In 1978, D.).
Bishop and J.D. Reppy’ published the resuits of
their experiment on the superfluid density of a
helium film, and correlated their results with
other experiments to show the constancy of the
ratio of superfluid density to transition tempera-
ture; this is a characteristic of the theory which
was convincingly demonstrated by D.R. Nelson
and Kosterlitz¢ in 1977. |
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We got many of the interesting features of the

transition righ

t, but there were important modi-

fications that were made by other people. It was
pointed out that, in addition to the spontaneous
formation of dislocations in a solid, associated
with the start of viscous flow, there was a further
transition of the same sort possible in which

disclinations would appe
order lost. We had argued

ar, and orientational
that this sort of tran-

sition should not occur for superconductivity

but had forg

otten that the penetration depth in a

thin film is very large.




Vortex-antivortex pair

In classical hydrodynamics (think about
hurricanes) the density and velocity
fields are independent. In superfluids
they are linked by the amplitude and
gradient of the phase of a single
complex scalar field order parameter.

Below critical Tkt

The whirlpool vorticity (its strength; Nobelpri  Fysik, 2016
its winding number) is therefore
guantized.

The whirl pools trap superfluid in their circular motion such that
at the macro scale the superfluidity vanishes at T;.

The macroscopic superfluid density jumps to zero with a
universal jump.

The torsion oscillator experiment of Bishop and Reppy
confirmed these predictions in detail, in particular the actual
value of the jump predicted by Nelson and Kosterlitz.

Above critical Txr

Free vortices and antivortices
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Study of the Superfluid Transition in Two-Dimensional *He Films

D, J. Bishop and J. D. Reppy
Labovatory of Atomic and Solid State Physics, and Matevials Science Center,
Cornell University, Ithaca, New York 14853
(Received 20 April 1978)

We have studied the superfluid transition of a thin two-dimensional helium film ad-
sorbed on an oscillating substrate. The superfluid mass and dissipation when analyzed
in terms of the dynamic theory of Ambegaokar, Halperin, Nelson, and Siggia support
the Kosterlitz-Thouless picture of the phase transition in a two-dimensional superfluid,
The value for the jump in the superfluid density at the transition given by Kosterlitz
and Thouless, ps(T,") = 8mky (m/h)’T,, is in good agreement with estimates from ex-

periment,
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The rounding of crystaline
equilibrium crystal surfaces
with temperature is a second
example of a direct application
of KT transitions.

At the KT transition (in its so-
called dual representation) a
flat facet shrinks to zero and its
curvature jumps to a universal
value.

The picture shows the
evolution of a helium-4

crystal (from the Balibar group
in Paris).



This Week’s Citation Classic °

Kosterlitz ] M & Thouless D J. Ordering, ility and phase
two-dimensional systems. J. Phys.—C—Solid State Phys. 6:1181-203.
[Department of Mathematical Physics, University of Birmingham, England]

, 1973.
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The dramatic experi-
mental results started the boom in work on this
theory, and on its experimental manifestations.
Two recent reviews of the theory and its applica-
tions have been written by P. Minnhagen and
K.J. Strandburg.t The layered copper oxide su-
perconductors have helped to maintain activity
in this subject.
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4. The Integer Quantum Hall Effect”

Consider an ideal electron gas confined into a plane.

Add a very strong perpendicular magnetic field.
In classical mechanics, the electrons start
moving in circles.

Add an electric field in the x-direction.
In classical mechanics, the electrons start

spiraling sideways in the perpendicular direction,
creating the Hall current ),

In quantum mechanics the circular orbit are quantized.
giving rise to so-called Landau energy levels. It is only
possible to pack N=L%/(l;)? electrons on the surface in
the lowest Landau level, with |; the magnetic length.
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A= (0,eBz) Landau Gauge magnetic length Il = \/h/eB
the Hall conductance of a fully filled Landau level is quantized

JH JH 82

H= Ay T IL.€ " h

Until 1980 nobody expected this fine-structure like quantum number in the ideal
electron gas calculation to be stable against reality, such as adding random potentials.
Localized electrons are trapped and that should reduce the Hall current.

Worse: In 2D localization theory, disorder localizes all electrons in the absence of a
magnetic field. (The Landau level broadens into a band.) Later it was proven in field

theory that one delocalized state remains in the presence of the magnetic field.

Then in 1980 experimentalists upset the theorists.



New Method for High-Accuracy Determination of the
Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing, G. Dorda, and M. Pepper
Phys. Rev. Lett. 45, 494 — Published 11 August 1980

ABSTRACT

Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon
metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at
particular, experimentally well-defined surface carrier concentrations has fixed values
which depend only on the fine-structure constant and speed of light, and is insensitive to
the geometry of the device. Preliminary data are reported.

Received 30 May 1980

The integer quantum Hall nowadays defines the unit for electric resistance,
the Ohm; related to the fine-structure constant as

a— 2 S—
Ry = h/e” = 25813 —— lc = 137.035968(23)

von Klitzing Nobel prize 1985
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Warld Scientific

Preface

Topological quantum numbers crept up on the physics community before the com-
munity was aware of them. I did not think in these terms until I started working on
the topological aspects of long range order in the early 1970s, although I had been
working on aspects of superfluidity that are now regarded as topological for several
years before that. I should have known earlier of the importance of topology, as I
was then a colleague of Tony Skyrme, whose pioneering work on topological quan-
tum numbers is now so well known. It was around this time that there began to be
a wide awarenesss of the importance of topology both amongst elementary particle
theorists and field theorists, and amongst people who worked on superfluids and
liquid crystals. The issue was brought sharply into focus for me in 1980, when Hans
Dehmelt asked me about how the quantum Hall effect could possibly be used to
determine the fine-structure constant when so little was known about the details of
the devices used and so little understood about the theory.

Dehmelt’s question is one of the unifying themes of this book, particularly in
Chapters 2 to 5 and in Chapter 7. The answer is not entirely simple, since, although
topological quantum numbers can provide a correspondence between countable in-
teger quantities and physical observables, this correspondence is not usually exact,
and corrections may be more or less important.

A second theme, provided by the work on liquid crystals, and on the A phase
of superfluid 3He, is the use of topological quantum numbers to classify defects, in
situations where the relevant group is finite, rather than isomorphic to the infinite
group of integers.

The third theme, covered in the last chapter, is the importance of topological
concepts in the theory of phase transitions in two dimensions.

I have tried in this book to give enough background material to make it accessible
to people whose knowledge of quantum mechanics and statistical mechanics is at
the level expected in the second year of a U.S. graduate program in physics. For
Chapters 6 and 8 a little knowledge of the theory of finite groups is also necessary.
I have not assumed any previous knowledge of topology.

Thouless, D. J. (1998). Topological Quantum Numbers in Nonrelativistic Physics.

World Scientific. ISBN 981-02-2900-3.
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Preface

Topological quantum numbers crept up on the physics community before the com-
munity was aware of them. I did not think in these terms until I started working on
the topological aspects of long range order in the early 1970s, although I had been
working on aspects of superfluidity that are now regarded as topological for several
years before that. I should have known earlier of the importance of topology, as I
was then a colleague of Tony Skyrme, whose pioneering work on topological quan-
tum numbers is now so well known. It was around this time that there began to be
a wide awarenesss of the importance of topology both amongst elementary particle
theorists and field theorists, and amongst people who worked on superfluids and
liquid crystals. The issue was brought sharply into focus for me in 1980, when Hans
Dehmelt asked me about how the quantum Hall effect could possibly be used to
determine the fine-structure constant when so little was known about the details of
the devices used and so little understood about the theory.



The issue was brought sharply into focus for me in 1980, when Hans
Dehmelt asked me about how the quantum Hall effect could possibly be used to
determine the fine-structure constant when so little was known about the details of
the devices used and so little understood about the theory.



@ The Nobel Prize in Physics 1989
Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul

Share this: I EE 3

Hans G. Dehmelt - Facts

Hans G. Dehmelt

Born: 9 September 1922, Gorlitz,
Prussia (now Germany)

Affiliation at the time of the
award: University of Washington,
Seattle, WA, USA

Prize motivation: "for the
development of the ion trap
technique”

Field: atomic physics

Prize share: 1/4




Topological Quantum
Numbers in
Nonrelativistic

Physics

Dehmelt’s question is one of the unifying themes of this book, particularly in
Chapters 2 to 5 and in Chapter 7. The answer is not entirely simple, since, although
topological quantum numbers can provide a correspondence between countable in-
teger quantities and physical observables, this correspondence is not usually exact,
and corrections may be more or less important.

A second theme, provided by the work on liquid crystals, and on the A phase
of superfluid 3He, is the use of topological quantum numbers to classify defects, in
situations where the relevant group is finite, rather than isomorphic to the infinite
group of integers.

The third theme, covered in the last chapter, is the importance of topological
concepts in the theory of phase transitions in two dimensions.

[ have tried in this book to give enough background material to make it accessible
to people whose knowledge of quantum mechanics and statistical mechanics is at
the level expected in the second year of a U.S. graduate program in physics. For
Chapters 6 and 8 a little knowledge of the theory of finite groups is also necessary.
I have not assumed any previous knowledge of topology.



The Quantum Hall effect
(von Klitzing, 80, NP 85)
¢ 2d elektron gas
¢ Clean samples, low temperature, high magnetic fields
¢ Quantized Hall conductance on the plateaux

¢ Longitudinal conductance = () on the plateaux

[ . i (hes )

Similar to a band = | Y Casuall—
‘ |
insulator, but |
i | l
Why is the quantization |
S0 exact?? i

* Gauge invariance (Laughlin -81)

* Topology (Thouless et.al. -82) »_. f:,a"-f:.‘ |
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Magnetic feld (T)

Nobelpris i Fysik, 2016
T.H. Hansson AlbaNova, 20161004




Thouless: The topology explains !

Using linear response theory, the Hall conductance can be

related to the single particle wave functions in the filled
bands:

2
€ 2 . DJ Thouless, M. Kohmoto, M.P
OH — 2h § / -k B(k, n) Nightingale, and M. Den Nijs.
T == JBZ PRL, 49,405, 1982.

B(k,n) = 0, Ay (k,n) — O, Az (k,n)  Berry field
Aj(]g, n) = i(u,;,n\@kj |u,;,n> Berry potential

The Brillouinzone is a closed surface, so the integral over
a magnetic field must, according to Dirac, be quantized!

1 R is the first Chern number, which
5= | B(k,n)=Ci(n) o
2T /B is a topological invariant

Nobelpris i Fysik, 2016

T.H. Hansson AlbaNova, 20161004




Quantized Hall Conductanqe in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,'*’ M. P, Nightingale, and M. den Nijs

Depavtment of Physics, Univevsity of Washington, Seattle, Washington 98195
(Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential &/, The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U /4w, .

PACS numbers: 72.15.Gd, 72.20. Mg, 73.90.+b




Kubo-Greenwood Formula.

The Hall conductance formula

OH =

e 1 R

is approximated in linear transport theory by the 7" = 0 Kubo formula

B) (Bl 5:18) (15
"H‘WL . ZZ ofy |B)¢ lpJEa> g;l)zgl )(Blhyle)

with |a) and |B) single particle eigenstates of the full system Hy in the absence of the driving electric
field. a and S are the single particle states. The derivation follows from basic perturbation theory
in small A = e£ with V = %, and by using the standard identity

ih (a|pz|B)

R

which allows us rewrite this also as

H = hLL

z and y do not commute anymore in this setup since p, = %[8% — eBz]. Time reversal symmetry
breaking rears it head, as well as the Berry phase.

In retrospect there was an elephant in the room that nobody spotted, not in the ideal electron
version, nor the generalization with a random potential. But David kept kicking the Kubo formula
and decided to generalize it by adding a periodic potential.

.1 |/no h o 2
H= om !(231:) +(;6—y_eBx)

fully aware that his leads to a famous self-similar band structure known as the Hofstadter butterfly.

+V, cos(27rE) +V, cos(27r%)
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The eigenvalue problem for this is know as Harper’s equation, introduced by Peierls as PhD topic to
his student Harper, and was studied extensively in the 1970-ties, in particular by Hofstadter, Azbel,
and Aubry, because of the self-similarity and fractal properties of its band structure.

The incommensurability factor ® = [?/ab is equal to the ratio of the magnetic length square 1? =
h/eB with the area of the unit cell of the periodic potential. The ratio locks-in to rational numbers
when the length scales are commensurate, denoted as ® = ¢g/p. The Landau level splits into p bands.

Mahito Kohmoto (David’s postdoc) and David started this, soon Peter Nightingale (postdoc with
Michael Schick and sharing the office with Mahito) started the numerical calculations, and finally
I (postdoc with Eberhard Riedel) joined the effort too. I knew Mahito very well from my postdoc
days in Chicago with Leo Kadanoff, where Mahito was one of his graduate students. Peter is Dutch
like I, and is one of the inventors of finite size scaling methods is critical phenomena.

We had great fun discovering the self-similar values of the Hall conductance quanta in the various
gaps. Then, but not until we had almost finished the paper, the elephant came in view.

The gaps sizes and the Hall conductance can be classified by the solutions of the Diophantine equation

m = g8y, + plp,

Find the smallest integers s,, and t,, that satisfy this equation . m = 1,2,.--,p is the sub band
label. s,, orders the magnitudes of the gaps, the smaller |s),| the larger the gap between bands m
and m + 1. The Hall conductance for when the Fermi surface resides inside that sub gap is equal to



(b) ¢=3/5 —x



The periodic potential naturally leads to Bloch wave functions
U(z,y) = eH=""Hv¥y(z, y)

The original Hamiltonian transforms into an operator acting on the u(z,y)

.1 |/n o 2 /RO 2
H = 2m [(;a—-i-hK) +(;a—y+hK —eB:v)

+ Vi cos(27r§) +V, cos(27r%)

The expectation values can be written as derivatives of the Bloch wave functions, just as in conven-
tional solid state physics.

(e|pla) = —(al Ia)

Oa  Oa Oa  Oa
on =iy /d“ a?a?>_<a_m|_>]

The non-commutative nature of £ and ¢ resides now in the crystal momenta derivatives.

The elephant in the room was suddenly exposed when we naturally rewrote this as a directed contour
integral along the edge of the “Brillouin zone”

e? 1
og =— —

i P dal(al
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Oa O
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The contour integral is directed. This elephant also holds in the absence of the periodic potential
(as long as the Landau level is fully filled and there is an energy gap).






e? 1
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Nowadays, after Berry’s paper in 1984, we refer to a form like

Oa , Oa Oa , Oa

A= <8Ky|6Km> - <8Kz|8Ky)
as a Berry curvature and to
- o Oa Oa
B=VxA= <a|3—K”> _<8_K|||a>

as a Berry phase. These A and B symbols resemble the vector potential and magnetic field in the
Aharonov- Bohm effect, which is a simpler and older example of a Berry phase. The result of the
contour integration must be a multiple of 47 provided the edge of the Brillouin zone is gapped and
the adiabatic theorem applies.

n=gmi P dallog )~ (5 1o)]

is a Chern number, the so-called “first Chern class of a U(1) principle fiber bundle on a torus”
(Avron-Seiler-Simon PRL 51(1983) 51). (Fibers = magnetic Bloch functions, torus = magnetic
Brillouin zone.)



TKNN story teaches us that:

1. Dig-in when your “Kubo formula” does not seem to do what it should do.

2. Hope there is an elephant in the room to explain it.

3. Be not afraid to study esoteric looking model generalizations in fundamental research.

4. The art of it is to have the insight, or luck, to find a view point where the elephant
looks familiar and natural.

5. Spotting the elephant is then easy and just “a small step”.

6. Have fun.

The genius of David Thouless to choose the periodic potential generalization, not the
random potential one, was the essential step.



When | was young,
studying phase transition in
low dimensions was often
still frowned upon.

lgnore those people!

Be yourself!
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. “Why aren’t you wearing 3-D glasses!?! Didnt you
" read on the bulletin board that we’d all be working

g Y

in 3-D this week!?2!"



David and Margaret are both
retired faculty at the UW
(Physics and Virology/Pathology)

They moved back to Cambridge
now, but did so only last month.

on the phone last week:
me: “David how does it feel
to be a Nobel laureate

(finally)?

David: “It feels odd”

"My father was moved and honored to learn of the Nobel Prize, and he was delighted to
hear that he would share it with Mike Kosterlitz and Duncan Haldane. He is grateful to
all his friends and colleagues around the world who have sent congratulations and made
such lovely comments about his contributions to physics.”

(Prof. Michael Thouless, University of Michigan).



