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How does what we do now relate
to what we studied then?

A. Two dimensional equilibrium critical
phenomena 1n retrospect

B. Dynamic phase transitions in
one dimensional driven
non-equilibrium processes.
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2D Ising configuration, Delft special
purpose computer, mid 1980-ties

The various fractal
dimensions of the object
have independent values

within scaling theory

The distributions associated with an ensemble
of critical configuration is invariant such that
correlation functions and expectation values
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are scale invariant
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The set of critical exponents
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represent the fractal dimensions of various geometric
features in the critical configurations, like droplet

area, coast line, topological connectivity, etc
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field, etc, fluctuations can be
represented as topological
excitations (vortices and/or spin
waves)
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Equivalence between D+1
dimensional equilibrium
statistical mechanics and

ground state properties of
D dimensional QFT

One dimensional
conductors, €.g. nano tubes,
Tomonaga-Luttinger liquids
and bozonization
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Conformal invariance (>1982):

(Polyakov, Zamalochikov, Shenker, Friedan,
Cardy, ...)

The ensemble of critical configurations {S(z)}
with z=x-+iy is invariant under all analytic
complex functions w(z); i.e., deformations of
space that preserve all local angles.
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Confirms critical exponent relations found earlier
by the Coulomb gas method

Can handle higher order correlation functions




2D critical phenomena and 1+1D strongly interacting quantum
Hamiltonians share now the very elite status, in that they are
analytically well understood.

(Conformal invariant, Lorentz invariant, boson-fermion equivalences,

loop gas mappings, elliptic functions class exact solutions of specific
discretized space/time models, etc)

Can we generalize this?
Can we escape for other classes of scale invariant
phenomena slavery to numerical simulations
interpreted with scaling analysis) as well?

e Upper critical dimensions, mean field theory, and field theoretical e-expansion
type RT classify universality classes and are helpful to prove the existence of
“fixed points” but do not provide the exact scaling dimensions values.

* The conformal group in D>2 is too small.

e Dynamic phase transitions in non=equilibrium driven systems have typically
anisotropic scaling in space-time (non-conformal invariant even in 1+1D)



Schramm-Loewner evolution

We return to the halfplane version of the Loewner equation, which will be our setting
for the remainder of the thesis. For k > 0, set A\(t) = \/kB;, where B, is standard
Brownian motion. Then chordal SLE, is the random family of conformal maps gen-
erated by A, that is, the family of maps solving the following stochastic differential
equation:

0 2

agt(z) = m

90(z) = z.

B N

Figure 1.2: The SLE,. trace is a simple curve, a non-simple curve, or a space-filling
curve depending on the value of k. The colored region is the domain G;.

From: PhD thesis, Joan Lind, UW (Math Dept, Rohde), Spring 2005

Seeking
generalizations
from within:

SLE

The Coulomb gas and
conformal field theory critical
dimension relations are
rederived (more rigorously) in
terms of fractal object
generated by an iterative
dynamic process.

Mostly mathematicians are
working on this + Cardy+
Nienhuis + .....

New results yet ?
New physics yet ?
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-transfer matrices of 2D equilibrium stat mech
-time evolution operators 1+1D QM (path integrals)

-master equations 1+1D dynamic processes

Seeking
generalizations
by connecting
to different
physical processes:

1+1D driven
stochastic non-
equilibrium
processes

Master Equations require

stochastic transfer matrices
(left eigen vector of ground
state 1s the disordered state)



D dimensional Quantum Mechanics:
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D+1 dimensional Equilibrium Statistical Mechanics: (
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Master equations:
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How do 1+1D stochastic dynamic processes
(Master equations) fit in
the 2D equilibrium and QFT universe?

Anisotropic scaling, non-conformal! (Lifshitz point like)

Stochastic dynamic processes are located at the edge conformal
invariant scaling.

1+1D dynamic phase transitions, like directed percolation, require
stationary states with long range effective “interactions” .

Those with no or short range interactions are unstable to edge
effects (boundary and point defect induced phase transitions.

Some exact solutions but no non-conformal Coulomb gas method
generalizations yet !...??...no novel “free field theories”.

KPZ growth and Asymmetric Exclusion processes (discretized
Burgers equation) serve as bench marks and illustrations for this.



driven stochastic flow 1+1D KPZ
through1D channels surface growth
2D polymer facet ridge end points
localization in 3D equilibrium
crystals










Another example of KPZ growth:

Flux front propagation in
High Tc super conductors

Spafial disfribufion of vorfex densify (ploffed along the
verfical axis)in a YBa,Cu,0,thinfilmin a field of 11 mT.

Wijngaarden’s group
at the VU in Amsterdam
PRL 83, 2064 (’99)
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Surface roughness

The moments of the height distribution

Wn(Lat) =L Z <(h'r - ha’v)n>

scale as

W,(t, L) = bW, (b~ *t,b L)




141 dimensional KPZ growth exact results

— The 1D KPZ stationary state 1s still trivial; the Gaussian
distribution. In the BCSOS brick growth model the

up/down steps are placed at random
1

—>~oa:§—>z:2—oz:

— The exact Bethe Ansatz solution of the BCSOS model
confirms 2 = 2 — a = %

] [¥¥)

— The linear theory fixed point 1s unstable with relevant

Crossover exponent 4, = % Crossover scaling yields
2=Z2EW — Yx = 2 — % = % with as only assumption

that A 1s a redundant scaling field for KPZ growth.



BCSOS (brick laying) growth p q
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- Rectangular building blocks
(brick wall on 1ts side).

— Nearest ne1ghbour heights I
differbyonly Ah = 5% = +1. i

Growth rule: Select at random one of the columns. If

this column 1s the bottom (top) of a local valley (hill
top), a particle adsorbs (disorbs) with probability p (g)
Local slopes are 1nactive (— A < 0).

— Early numerical studies: Meakin, Family, - - -.

—1In 1D, surface tully characterized by spin—% type step
variables — Master equation: XXZ7 quantum spin chain.
— Bethe Ansatz exact solution in 1D: Dhar, Gwa/Spohn.
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Only 2 known “free field theories”:
- Relativistic electrons (CFT) with z=1

- Non-relativistic electrons (PT, EW) with z=2
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“z-theorem " :
unstable dynamics has
always larger dynamic

exponent (for z>1)
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driven stochastic flow 1+1D KPZ Conclusion:
through1D channels surface growth Master equations of 1+1D
stochastic processes with
2D polymer facet ridge end points .
localization in 3D equilibrium z>1 live on the edge of
crystals the z=1 conformal

mvariant world

Can we construct some
type of anisotropic
scaling deformations
of CFT?

KPZ
PT PT
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Directed percolation, directed Ising, directed q=3 Potts, etc, processes with
dynamic phase transitions in their stationary states also live on the edge of CFT.

All have stationary states with long range “effective interactions” in Boltzmann
like formulation, P(I")=exp[-E(I')] (needed to evade van Hove' s theorem)

The exact values of their scaling indices are yet unknown even in 1+1D



rough

(c) (d)

FIG. 1. Equilibrium crystal shapes in the BCSOS model with
enhanced interaction range: (a) ECS in the exactly soluble
square lattice BCSOS model with stochastic FRE point. (b) ECS
with a first-order line extending into the rough area. (c) ECS
with first-order facet-to-round boundaries and PTE points.
(d) ECS with a spontaneous tilted rough phase, i.e., with a first-
order ridge inside the rough phase.

Davidson and MdN 1999

Stochastic matrix critical
behavior 1s typically
unstable, consistent with
the living on the edge of
the CFT world

Adding interactions to the exactly

soluble 6-vertex model KPZ line

(conical points), in the non-

stochastic direction leads

immediately to:

- first-order rough-to-flat edges,

-sharp ridges inside the rough
(rounded) phase,

-and more.

Similar sensitivity
within the stochastic
subspace as well



asymmetric exclusion process (ASEP)

The BCSOS interface model (KPZ growth) is equiva-

lent toa drniven flow of particles with hard core repulsive
interactions:

Interpret the
Se = —1
down-steps
as particles
and the

Se =41
up-steps

as empty
sites




stationary state, fluctuations, and group velocity

The stationary ASEP state for periodic boundary con-
ditions 1s disordered, random, without any correlations,
but fluctuations scale in time as { ~ ¢1/# with the KPZ
dynamic exponent 2 = % and move with group velocity
v, = 1 — 2p (ult of KPZ surface).




boundary induced phase transitions

Phase transitions take place in open road set-ups with
reservolrs on both ends; (exact matrix formulation re-
sults of the stationary state by, e.g., Derrida et.al.)

BP
P
.\

— —e Q/EA Hm.
Josl

In the maximum current (MC) phase the road controls
the density, but in the low (high) density phase the input
(output) reservoir (o or (3) controls the bulk density.



queuing due to slow bonds

Behind the slow bond a tratfic jam develops. The 1ssue
us whether the queue 1s finite or infinite 1n length (does
it scale with the system size 1n the thermodynamic limit,
like 1n bose condensation); and also the detailed shape
of the density profile.

BP
p p p
4 4 4
O o - ® O m

o5

slow bond



.. ) Queued phase (r<r,)
critical point

the order parameter
vanishes as

Ao~ |r—r|P

re = 0.80 % 0.02
3=1.5+0.01

Finite size scaling Nonqueued SB phase (r.<r<1 )
of Ap ~ ]\/-S_mA
at r = 0.80.

za = 0.370(5)

Nonqueued FB phase (r>1)

Data collapse of the FSS
scaling function

Ap(Ng,e) = N 28 (NYe¢)
with zA = By




Non lOcal hOpplng ASEP (MdN, Meesoon Ha, Huynggyu Park, 2005)

Jump forward with probability p to site immediately
behind next particle, with probability 1-p only to next site

The stationary state immediately clusters.
Dynamic phase transition into an empty road state.
Crossover from a first-order to a critical line




Conclusions and Questions:

- Is the z=1 conformal invariant Coulomb gas 2D critical
phenomena world unique? Hopefully not.....

- stochastic 1+1D processes live at the edge of the z=1 world.
(hinting to possible anisotropic deformations of CFT??)

- z-theorem: unstable “multi-critical” z>2 anisotropic scaling
criticality crosses over to smaller z criticality.

- stationary states in dynamic processes must have long range
effective interactions to sustain dynamic phase transitions
(basically van Hove' s theorem )

- Those with short range interactions are unstable with respect
to boundary effect and bulk defects and also subject to
phase transitions (traffic jams and clustering).

“Still a lot of fun before I want to retire!”



