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Preface

This is a compendium of problems from past qualifying exams for physics graduate students
at the University of Washington. This compendium covers the period preceding Autumn
2011 when the Department changed the format from a classic stand alone Qualifying Exam,
(held late Summer and early Spring) into the current course integrated Masters Review Exam
(MRE) format. The problems from the post Autumn 2011 period can be found in the separate
MRE problems compendium.

UW physics graduate students are strongly encouraged to study all the problems in these two
compendia. Students should not be surprised to see a mix of new and old problems on future
exams.

The level of difficulty of the problems on the old Qualifying Exams and the new Masters
Review Exams is the same. All problems from the Qualifying Exams that cover material
beyond the first and second quarters of the quantum mechanics and electromagnetism courses
have been removed from this compendium.

Problems are grouped into four chapters:

1. Classical Mechanics

2. Electromagnetism

3. Quantum Mechanics

4. Thermodynamics and Statistical Mechanics

The actual exams for each section contained typically 2 problems. Their relative weight can
be judged from the point assignments on the problems. The exam for each section had a
maximum possible score of 100 points. Not all problems from all exams are listed in this
compendium, because some are used several times or are very similar, while others do not
apply to the current material anymore.

Many faculty have contributed to the preparation of these problems, and many problems have
received improvements from multiple people. Consequently, it is impossible to give individual
attributions for problems.

If you notice any typographical errors (no doubt there are still some), please send a note to
the chair of the Exam Committee (currently Marcel den Nijs ) so improvements can be made.
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Finally, here are bits of advice given to the students studying for the stand alone old version
of qualifying exam, most of this still applies to the current MRE format:

• Try to view your time spent studying for the Qual as an opportunity to integrate all the
physics you have learned (and not just as a painful externally imposed burden).

• Read problems in their entirety first, and try to predict qualitatively how things will
work out before doing any calculations in detail. Use this as a means to improve your
physical intuition and understanding.

• Some problems are easy. Some are harder. Try to identify the easiest way to do a
problem, and don’t work harder than you have to. Make yourself do the easy problems
fast, so that you will have more time to devote to harder problems. Make sure you
recognize when a problem is easy.

• Always include enough explanation so that a reader can understand your reasoning.

• At the end of every problem, or part of a problem, look at your result and ask yourself
if there is any way to show quickly that it is wrong. Dimensional analysis, and consider-
ation of simplifying limits with known behavior, are both enormously useful techniques
for identifying errors. Make the use of these techniques an ingrained habit.

• Recognize that good techniques for studying Qual problems, such as those just men-
tioned, are also good techniques for real research. That’s the point of the Qual!

• Good luck!
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Notation

Boldface symbols like r or k denote three-dimensional spatial vectors. Unit vectors pointing
along coordinate axes are denoted as êx, êy, etc. Carets are sometimes (but not always)
placed over quantum operators to distinguish them from c-numbers. Dots are sometimes
used as shorthand for time derivatives, so ḟ ≡ df/dt. Implied summation conventions are
occasionally employed.

Physical constants appearing in various problems include:

c vacuum speed of light
e electron charge
me electron mass
mp proton mass
ε0 vacuum permittivity
µ0 vacuum permeability
Z0 ≡ µ0c vacuum impedance
h ≡ 2π~ Planck’s constant
g Earth’s gravitational acceleration
GN Newton gravitational constant
kB Boltzmann’s constant

Trying to memorize SI values of all these constants is not recommended. It is much more
helpful to remember useful combinations such as:

α ≡ e2/(4πε0~c) ≈ 1/137 fine structure constant

(300 K) kB ≈ 1
40

eV room temperature

me c
2 ≈ 0.5 MeV electron rest energy

mp c
2 ≈ 1 GeV proton rest energy

aB ≡ ~/(αmec) ≈ 0.5 Å Bohr radius
1
2
α2mec

2 ≈ 13.6 eV Rydberg energy

~ c ≈ 200 MeV fm conversion constant

1/ε0 = µ0 c
2 ≈ 1011 N m2/C2 conversion constant

mPl ≡
√

~c/GN ≈ 1019 GeV/c2 ≈ 0.2µg Planck mass
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Chapter 1

Classical Mechanics

1.1 Anisotropic Oscillators

A. [10 points] Recall that the Poisson bracket {a, b}PB =
∑

k

(
∂a
∂qk

∂b
∂pk
− ∂a

∂pk

∂b
∂qk

)
. Let f =

f(~q, ~p, t) be an arbitrary function on phase space. Prove that

df

dt
= {f,H}PB +

∂f

∂t
.

B. A two-dimensional oscillator has kinetic and potential energies

T (x, y) = 1
2
m (ẋ2 + ẏ2) ,

V (x, y) = 1
2
K(x2 + y2) + C xy ,

where K and C are constants and m is the mass of the particle.

i. [10 points] Show by a coordinate transformation that this oscillator is equivalent
to an anisotropic harmonic oscillator with Lagrangian

L = 1
2
m (η̇2 + ξ̇2)− 1

2
Aη2 − 1

2
B ξ2 ,

where η and ξ are the transformed coordinates, and A and B are functions of K
and C. Express the constants A and B in terms of K and C.

ii. [5 points] Use a Legendre transform to derive the Hamiltonian for the transformed
problem.

iii. [10 points] Find two independent constants of motion for the problem, and verify
this fact using the result of part A.

iv. [10 points] If C = 0, find a third independent constant of motion. Again verify
this fact using the result of part A.
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1.2. BAR ON SPRINGS CM

1.2 Bar on Springs

A rigid uniform bar of mass M and length L is supported in equilibrium in a horizontal
position by two massless springs attached at each end.

The identical springs have the force constant k. The motion of the center of mass is constrained
to move parallel to the vertical x-axis. Furthermore the motion of the bar is constrained to
lie in the xz-plane.

A. [5 points] Show that the moment of inertia for a bar about the y axis through its center
of mass is ML2/12.

B. [15 points] Construct the Lagrangian for this bar-spring arrangement assuming only
small deviations from equilibrium.

C. [15 points] Calculate the vibration frequencies of the normal modes for small amplitude
oscillations.

D. [5 points] Describe the normal modes of oscillation.

2002au 12



1.3. BAR ON STRING CM

1.3 Bar on String

φ

θ

L

L3
2

x

y

A thin uniform bar of mass M and length 3
2
L is

suspended by a string of length L and negligible
mass, as shown in the figure. [Note: The moment
of inertia of a thin uniform bar of length l and
mass m about its center of mass, perpendicular
to its length is 1

12
ml2.]

A. [8 points] In terms of the variables θ and φ shown in the figure, what is the position and
velocity of the center of mass of the bar in the xy-plane?

B. [8 points] Write the Lagrangian for arbitrary angles θ and φ, and write the Lagrangian
appropriate for small oscillations.

C. [7 points] Find the Euler-Lagrange equations and show that the equations of motion for
the angles θ and φ are

Lθ̈ + Lφ̈+ gθ = 0, Lφ̈+ 3
4
Lθ̈ + gφ = 0 .

D. [8 points] Write down the form of the normal modes of the system and solve for the
frequencies of the normal modes.

E. [10 points] Describe, both quantitatively and qualitatively, the motion of each normal
mode.

Consider the situation where initially the system is at rest with θ = φ = 0. Starting at time
t = 0, a constant force of magnitude F is applied horizontally to the bottom of the rod.

F. [7 points] How are the equations of motion that you found in part C modified by the
force.

G. [6 points] After a very short time ∆t, how are θ and φ related?

2003au 13



1.4. BEAD ON ROTATING HOOP CM

1.4 Bead on Rotating Hoop

A circular wire hoop is rotating about a vertical axis (along a
diameter) with constant angular velocity ω. A bead of mass
m, is free to slide without friction on the hoop. A convenient
definition is ω0

2 = g/R.

A. [5 points] Draw all the forces (in the lab frame) on the bead when it is in an equilibrium
position (for 0 < θ < π). Also show the net force (label it clearly).

B. [5 points] Write the Lagrangian for the bead.

C. [10 points] Derive the equation of motion from the Lagrangian.

D. [10 points] Find the stable equilibrium position, θq, of the bead as a function of ω. There
is a critical value of the angular velocity, ωc, below which the nature of the equilibrium
changes. Find ωc. Describe the nature of the change.

E. [15 points] Find the frequency of small oscillations of the mass about the equilibrium
point θq. Assume that the angular velocity is above the critical value ωc and 0 < θq < π.

2000au 14



1.5. BEAD ON ROTATING WIRE CM

1.5 Bead on Rotating Wire

A bead of mass m slides without friction along a straight wire
at an angle θ0 from vertical that is rotating with a constant
angular velocity Ω about a vertical axis. A downward vertical
gravitational force mg acts on the bead.

A. [8 points] Show that the Lagrangian for the bead, using as a generalized coordinate the
displacement s measured along the wire from the point of intersection with the rotation
axis, is

L = 1
2
m
(
ṡ2 + s2Ω2 sin2 θ0

)
−mgs cos θ0 .

B. [8 points] Obtain the equations of motion from the Lagrangian, and show that the
condition for equilibrium at constant position on the wire is s = s0 ≡ g cos θ0/(Ω sin θ0)2.

C. [10 points] Derive the above result for s0 by directly applying Newton’s second law of
motion to the bead.

D. [10 points] Discuss the stability of this orbit against small displacements along the wire
by finding an equation for the deviation η(t) ≡ s(t)− s0.

E. [8 points] Find the constraint force which keeps the bead moving with uniform angu-
lar velocity in the φ̂-direction as the displacement s varies. You may use Lagrangian
methods or Newton’s Second Law.

F. [9 points] Find H, the Hamiltonian of the system, in terms of a suitable coordinate and
momentum.

G. [12 points] Show (i) whether H is conserved, (ii) whether H is equal to the sum of
the kinetic and potential energies, and if not, (iii) whether the energy of the bead is
conserved. Explain the physics behind your answers.

2001sp 15



1.6. BEAD ON SWINGING HOOP CM

1.6 Bead on Swinging Hoop

A thin hoop of radius R and mass M is free to oscillate in its plane around a fixed point P.
On the hoop there is a point mass, also M , which can slide freely along the hoop. The system
is in a uniform gravitational field g.

A. [20 points] Introduce appropriate coordinates describing the combined motion of the
hoop and point mass, showing them on the diagram above. How many unconstrained
coordinates are required?

B. [50 points] Consider small oscillations. Derive the Lagrangian, and the Lagrange equa-
tions. Find the normal mode eigenfrequencies.

C. [30 points] Find the normal mode eigenfunctions and sketch the motion associated with
each eigenfunction.

1999sp 16



1.7. BILLIARD BALL CM

1.7 Billiard Ball

A spherical billiard ball with mass M and radius R is initially at rest on a pool table. At
t = 0, a cue stick strikes the ball at a point a height h above table, exerting a horizontal
impulsive force F on the ball. Immediately after this, the ball is observed to have a horizontal
velocity v0. The coefficient of sliding friction between the ball and the table is µ. The moment
of inertia of a sphere about an axis through its center of mass is 2

5
MR2.

In terms of the given quantities:

A. [8 points] What is the angular velocity of the ball about its center of mass immediately
after the cue stick hits it?

B. [10 points] At what time does the ball start rolling without sliding along the table?

C. [5 points] What is the final translational velocity of the ball?

D. [12 points] Calculate the final translational kinetic energy, rotational kinetic energy, and
total kinetic energy of the ball. Physically interpret any changes in these quantities, and
explain the sign of changes.

2001sp 17



1.8. BLOCK ON WEDGE CM

1.8 Block on Wedge

A wedge of mass M sits on a frictionless table. A block of mass m slides on the frictionless
slope of the wedge. The angle of the wedge with respect to the table is θ. Take x positive to
the right. Let the coordinates for the block be (x1, y1), and those of the point of the wedge
(x2, 0).

A. [8 points] Write the constraint equation for the block sliding on the wedge and the
Lagrangian for the block and wedge.

B. [22 points] Derive the equations of motion for the block and wedge, using the method
of Lagrange Multipliers to incorporate the constraint.
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1.9. BLOCKS ON SLIDER CM

1.9 Blocks on Slider

A platform of mass M sits on a frictionless table. Two identical blocks of mass m are attached
with identical springs to a post fixed to the platform. The springs are massless and have force
constant k. The blocks move on the frictionless surface of the platform and are constrained
to move along the x axis (parallel to the table surface and in the plane of this paper).

A. [10 points] Give the Lagrangian of the system of masses and springs.

B. [25 points] Calculate the normal frequencies of the system.

C. [5 points] Describe the normal modes of vibration corresponding to these frequencies.

2002sp,2007sp 19



1.10. CART AND PENDULUM CM

1.10 Cart and Pendulum

A solid cylinder of radius R and mass M rolls along a horizontal rail without slipping. The
center of the cylinder is attached to the walls by four massless springs, each having a spring
constant k. A rod of negligible radius and mass m is hung from a frictionless and massless
axle at the center of the cylinder by means of rigid massless wires of length L. The rod is free
to swing in response to gravity as shown in the figure. The moment of inertia of the cylinder
about the axle is I = 1

2
MR2.

A. [8 points] Write down the kinetic energy of this system in terms of the parameters given.

B. [7 points] Write down the potential energy of this system in terms of the parameters
given.

C. [10 points] Write down the coupled equations of motion describing the cylinder’s dis-
placement from equilibrium along the rail, x, and the hanging rod’s angle from equilib-
rium, θ. Do not solve or simplify the equations at this point.

D. [15 points] After making both of the following two simplifying assumptions to your
answer in part C, determine the frequencies of the normal vibrational modes of this
system:

• let M = 2m and kL = mg, where g is the acceleration of gravity;

• assume both the pendulum and cylinder have small oscillations.

E. [10 points] Assume that x(t=t0) = xmax, where xmax is the maximum positive displace-
ment of the cylinder from equilibrium. For each of the normal vibrational modes, sketch
both the normalized cylinder displacement, x/xmax, and the normalized rod swing angle,
θ/θmax, as a function of time using the same time axis for both quantities. Sketch only
for one full period T of the system’s motion (from time t0 to t0 + T ).

2007au 20



1.11. CATENARY CM

1.11 Catenary

a

g

An unstretchable cord of uniform density ρ is suspended from
two points of equal height (see Figure). The gravitational
acceleration is taken to be a constant g in the negative z di-
rection.

A. [10 points] Write the expression for the potential energy
U and the length l for a given curve z = z(x).

B. [10 points] Write down the Euler-Lagrange equation which
determines the shape of the hanging cord in equilibrium
for fixed length l.

C. [10 points] Treating x as the analogue of time, write an expression for the analogue of
the conserved energy.

D. [10 points] Show that the equilibrium configuration is given by z = A cosh(x/A) + B,
where A and B are constants.

E. [10 points] Someone grabs the middle point of the cord and pulls it down. Some part of
the cord goes up, the other part goes down. Does the center of mass of the cord move
up or down? The cord is not stretchable. (You should be able to solve this part without
extensive calculations.)

2010au 21



1.12. CENTRAL FORCE CM

1.12 Central Force

A particle of mass m moves in a circle of fixed radius under the influence of an attractive
central force F (r) = f(r) êr, with êr an outward radial unit vector and

f(r) = − k
r2
e−r/a ,

where k and a are positive constants (and r is the radial distance from the origin).

A. [20 points] Determine under what conditions the circular orbit is stable, and for such
an orbit, compute the frequency of small oscillations.

Now consider the scattering of a particle by a central force. Suppose that trajectories with
impact parameter b are deflected through an angle θ.

B. [10 points] Define the differential cross section, and show that it is given by

dσ

dΩ
= − b db

sin θ dθ
.

C. [10 points] For the force given above, and a particle of mass m and energy E, derive an
expression for the differential scattering cross section in the limit of small θ. Evaluate
the expression to first order in b/a.

D. [10 points] Can the limits of small scattering angle, θ � 1 (implying b large), and b� a
be mutually compatible? If so, characterize the regime where both approximations are
valid.

2009sp 22



1.13. CENTRAL POTENTIAL (1) CM

1.13 Central Potential (1)

[40 points] A particle moves in three dimensions subject to the attractive central force

F (r) = −
( κ
r2

+
η

r4

)
r̂ ,

with large angular momentum. (“Large” means greater than anything that is relevant to
compare it to in the following.) The constants κ and η are positive; r̂ is a unit vector in the
radial direction.

A. Find, and sketch, the effective radial potential. Show that it has a local maximum at a
radius r1 and a local minimum at a radius r2. What are r1 and r2?

B. For what range of energy and initial position can the particle reach the origin but not
reach infinity?

C. For what range of energy and initial position will the motion of the particle remain
bound, but never reach the origin?

D. Describe, and sketch, the different possible types of trajectories for which the particle
initially comes in from infinity.

E. Describe, and sketch, the different possible types of trajectories for which the particle
never reaches infinity as t→ ±∞.

2000sp 23



1.14. CENTRAL POTENTIAL (2) CM

1.14 Central Potential (2)

A particle of mass m moves in a central potential U(r).

A. [4 points] Show that the angular momentum L about the force center (r = 0) is con-
served.

B. [2 points] Show that the motion of the particle must lie in a plane perpendicular to L.

C. [5 points] Show that the total energy may be written as E = 1
2
mṙ2 + Ueff(r), where

Ueff(r) = L2/(2mr2) + U(r) and L = |L|.

D. [5 points] Assume a circular orbit of radius R exists; show that E = Ueff(R) and
dUeff(r)/dr|r=R = 0.

E. [4 points] State the condition for which the circular orbits specified in part D are stable.

F. [10 points] Let the central force be F (r) = −(b/r2 − c/r4) r̂, where b > 0, c > 0, and
r̂ is the unit vector in the radial direction. Calculate the values of R that give rise to
stable orbits as a function of L, b and c.
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1.15. CENTRAL POTENTIAL (3) CM

1.15 Central Potential (3)

A particle of mass m is moving in the r, θ plane subject to a central force. The potential
energy of the particle is of the form

V (r) = − ζ

r6
+ 1

2
kr2 ,

where ζ > 0 and k > 0.

A. [6 points] What are Hamilton’s equations for this particle? User r and θ as your coor-
dinates.

B. [10 points] For what range of values of the particle’s angular momentum L are there
circular orbits?

C. [6 points] For an L in the range you found in (B), how many circular orbits are there,
and at what radii? Which ones are stable?

D. [14 points] Consider orbits which are not circular, and which neither pass through r = 0
nor reach r =∞. Such orbits will have a minimum radius r− and a maximum radius r+.
For a particle of angular momentum L, what is the smallest r− that such an orbit can
have? Find an equation (which you should not attempt to solve) for the corresponding
r+, and compute r+ approximately in the limit that k is very small.

E. [14 points] Suppose that k = 0. Then the particle may approach from spatial infinity,
with an initial velocity v and an initial impact parameter d, as shown below. Under
what condition or conditions will the particle be unable to avoid hitting the point at
r = 0? State the conditions as mathematical relationships involving v and d.
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1.16. CENTRAL POTENTIAL (4) CM

1.16 Central Potential (4)

A particle moves in a central potential of the form V (r) = −C/|r|α, where C and α are
constants.

A. [20 points] For which values of α are there stable circular orbits?

B. [20 points] It is known that during a portion of its trajectory,
the particle moves along a circle of radius R that goes through
the point r = 0. Let r and θ denote polar coordinates of the
particle. Using Kepler’s second law, give the expressions for
the time derivatives of the radius and polar angle, ṙ and θ̇, as
functions of the polar angle θ and constants of motion.

A. [20 points] Find α (hint: use energy conservation). Are there stable circular orbits in
this potential?
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1.17. CLOSED ORBITS CM

1.17 Closed Orbits

The equation for radial motion in a central potential, U(r), is identical to the motion of a
particle in one dimension in the effective potential Ueff(r) = U(r) + L2/2mr2, where m and
L are the particle’s mass and angular momentum respectively. Consider L as well as m to be
given. Let the potential U(r) be written U(r) = Arn/n with n a non-zero integer and A > 0
ensuring a stable orbit for n > −2.

A. [5 points] If the particle is in a circular orbit, what is the angular frequency Ω of the
motion as a function of L, m, and n?

B. [20 points] If the circular motion is perturbed slightly in the radial direction, the particle
will oscillate in this direction with some angular frequency ω. Calculate this frequency,
and show that the ratio ω/Ω is a function only of n. If this ratio is an integer, then the
particle’s orbit will be closed. The condition that the ratio be an integer tells you what
potentials permit closed orbits.

C. [5 points] State a physical example of a power-law potential which you know to give
closed orbits. Check whether your result in part B passes the test of correctness provided
by your example.

D. [20 points] For the case of a particle of energy E = −|E| < 0 moving in a non-circular,
closed orbit in the Coulomb potential U(r) = −e2/(4πε0 r), calculate the two turning
points (that is ṙ = 0) of the orbit in terms of L and |E|.
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1.18. DIATOMIC & TRIATOMIC VIBRATIONS CM

1.18 Diatomic & Triatomic Vibrations

In the simplest mechanical model, the carbon dioxide molecule is a chain O-C-O, and the
carbon monoxide molecule is a chain C-O. The mass of the carbon atom is m1 = 12 atomic
units, and that of the oxygen atom is m2 = 16 atomic units. The chemical bonds between
the carbon and the oxygen atoms are modeled as springs with (identical) spring constant k.

A. [5 points] Restrict yourself to longitudinal motion (in which each atom moves only along
the direction of the line connecting the atoms in the molecules). How many modes of
oscillation exist for each molecule?

B. [20 points] Find the frequencies of the longitudinal oscillations of the two molecules.

C. [15 points] Graphically sketch the longitudinal oscillation modes of the CO2 molecule.
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1.19. DISK DYNAMICS CM

1.19 Disk Dynamics

Consider a uniform density disk of radius R, thickness t,
and mass M .

A. [10 points] Calculate the moment of inertia, IC ,
about the symmetry axis C (dotted line in diagram).

B. [15 points] For a lamina, the perpendicular axis the-
orem states that the sum of the two moments of in-
ertia about perpendicular axes in the lamina is equal
to the moment of inertia about an axis through the
intersection of the two axes and perpendicular to the
lamina. Prove this theorem and use it to calculate
the moments of inertia, IA and IB about axes A and
B in the limit t� R.

C. [10 points] Axes A, B, and C are the principal axes
of the moment of inertia tensor referred to the center
of mass. Explain why this is so.

The disk is set spinning with angular velocity ω about an axis
through the center of mass that makes an angle 45◦ with respect
to the symmetry axis C. The axis is vertical.

D. [15 points] Calculate the angular momentum L of the disk.

E. [20 points] Describe the subsequent motion. Neglect gravity.

The disk is now flipped vertically into the air spinning with a hori-
zontal angular velocity ω about axis B. At the top of its trajectory
it strikes an object that instantaneously brings to rest a point P
on its rim. At this moment the plane surface of the disk is vertical
(as shown) with a radius to the point P making an angle of 45◦

with respect to the vertical.

F. [10 points] Show that the change in angular momentum is
equal to the impulsive torque and calculate the impulsive
torque about P.

G. [20 points] Using the results of part A, calculate the angular
velocity ω′ and velocity of the center of mass vcm immediately
after impact.
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1.20. DRIVEN MASSES (A) CM

1.20 Driven Masses (A)

Effect of an External Force on particles connected by a spring

Two point masses m1 and m2 are connected by a spring with spring constant k and equilibrium
length L. The masses are constrained to move (without friction) only on the x-axis.

Before t = 0, the masses are at rest, with x1 = −d − L/2 and x2 = −d + L/2 (see figure).
External forces act on the masses for a time interval of length of T . For 0 < t < T , the force
on mass 1 is F0 x̂, while the force on mass 2 is 4F0 x̂, where F0 is a positive constant. At all
other times the forces are zero.

A. [5 points] warmup: if k = 0 (no spring), what are x1(t) and x2(t) for t > 0?

B. [7 points] warmup: if k =∞ (rigid rod), what are x1(t) and x2(t) for t > 0?

C. [13 points] Now suppose k is finite but very small. Also take m1 = m2 = m. Approxi-
mately, what are x1(t) and x2(t) for t > T? [Hint: use the approximation that k is very
small to break the problem into two simple parts.]
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1.21. DRIVEN MASSES (B) CM

1.21 Driven Masses (B)

General Questions

Now we add particle 3 into the system. Particle 3 is constrained to move (without friction)
only on the y-axis; particles 1 and 2 are similarly constrained to move (without friction) only
on the x-axis. Particle 3 interacts with particles 1 and 2 via ordinary gravity:

|F13| = −G
m1m3

r2
13

, |F23| = −G
m2m3

r2
23

,

where G is Newton’s constant.

Particles 1 and 2 are still bound by a spring. [Ignore all gravitational interactions between
particles 1 and 2; they are small compared to the forces exerted by the spring.]

A. [7 points] Write the exact Lagrangian for this system, as a function of x1, x2, y3.

B. [6 points] Write the exact equations of motion for object 2.

C. [12 points] Are there any conserved quantities in this system, and if so, what are they?
[Hint: The motion is constrained.] Be sure that you justify your answer.
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1.22 Driven Masses (C)

A Special Case

The forces are as in part (B).

Now let m1 � m2 = m3. In this case x1 is nearly constant, but x2 may oscillate.
At t = −∞, particles 1 and 2 are at rest with x1 = −d− L/2, x2 = −d+ L/2, where L� d.
At t = −∞, particle 3 is at y = −∞ and has velocity v0 ŷ.

A. [8 points] The motion of mass 1 is small, as is the force of particle 2 on particle 3; but
the force of mass 1 on mass 3 is large and causes a large ÿ3. In the approximation that
you only compute the effect of mass 1 on the motion of mass 3, show that the maximum
value of ẏ3(t) is ẏ3(t)|max ≈

√
v0

2 + 2Gm1/d.

B. [8 points] Now include the gravitational interactions between masses 2 and 3. This is
a very small effect on particle 3 (on which the dominant force is that from particle 1.)
However, gravity has an important effect on particle 2: it causes x2 to oscillate. (Mean-
while, ẋ1 is very small; it can be ignored.)
After particle 3 has moved well past y3 = 0, particle 2 will generally continue to oscillate.
For very small k, estimate [do not calculate exactly] the energy stored in the oscillations
of x2 after particle 3 has gone by. You may assume the amplitude of oscillation is small
compared to L.

C. [9 points] Suppose v0 → 0 (so that the initial motion of particle 3 is extremely slow,
though not quite exactly zero.) In this limit, including all interactions (but with k still
small), make a qualitative graph of ẏ3(t) versus t. Make sure your graph captures both
the early-time and late-time behavior of ẏ3(t). Briefly justify your answer [two or three
sentences.]
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1.23 Dumbbell Dynamics

Two identical disks of mass M are connected by a massless
rigid rod of length L. They are resting on a frictionless,
horizontal table.

A. [5 points] Choose a system of generalized coordinates, including any coordinate(s) that
you will need for describing the constraint(s). You must carefully describe your coordi-
nates both with a sketch and with a brief written description.

You are strongly advised to read the entire problem and think carefully about your choice
of coordinates, as some systems of coordinates may greatly simplify your work while
others may make subsequent calculations intractable.

B. [5 points] Write the equation(s) of constraint needed to enforce the condition that the
rod have length L.

C. [10 points] Write the Lagrangian for this system.

D. [10 points] Write Lagrange’s equations of motion.

E. [10 points] Determine the tension in the rod.
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1.24 Earth Wobble

Consider the motion of a solid as described by the Euler angles, φ, θ, ψ,
defined as shown in the figure. We use 1, 2, 3 to label the principal
axes of the solid.

A. [5 points] Show that the components of the angular velocity with
respect to the principal axes are

ω1 = φ̇ sin θ sinψ + θ̇ cosψ ,

ω2 = φ̇ sin θ cosψ − θ̇ sinψ ,

ω3 = φ̇ cos θ + ψ̇ .

B. [10 points] Start with the Lagrangian for a force-free motion of
a solid and show that

I1 ω̇1 = ω2 ω3 (I2 − I3) ,

I2 ω̇2 = ω3 ω1 (I3 − I1) ,

I3 ω̇3 = ω1 ω2 (I1 − I2) ,

where I1, I2, I3 are the principal moments of inertia.

C. [10 points] Consider now a body with symmetry around its 3–axis (i.e., I2 = I1) and
show that the angular velocity satisfies:

ω3(t) = ωz ,

ω1(t) = ωxy cos Ωt ,

ω2(t) = ωxy sin Ωt ,

with ωxy, ωz constants, and Ω = I3−I1
I1

ωz.

D. [5 points] Express the angular momentum vector in the principal axes and the kinetic
energy in terms of the moments of inertia and the constants ωxy, ωz used above.

E. [5 points] Noticing that for the Earth ωz ∼ 2π day−1, and that the Earth can be
considered as a slightly non-spherical top, say, I2 = I1 = (1 − ε)I3 with ε ≈ 3 × 10−3,
calculate the period of wobbling, i.e.. of precession of the angular velocity vector around
the axis of symmetry.

F. [15 points] Consider an inertial frame of reference external to the rotating top and make
a sketch showing the angular momentum vector, the angular frequency, and the body
3-axis, with circles indicating the precession trajectories. Choose the direction of the
axes at your convenience. Calculate the precession frequency of the body axis around
the angular momentum. Assume ωxy � ωz.
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1.25 Elastic Rod

A. [25 points] Consider a function F (ÿ(s), ẏ(s), y(s), s) and its integral,

J ≡
∫ b

a

F (ÿ, ẏ, y, s) ds .

The various derivatives ẏ(s) ≡ dy/ds, etc., of y(s) are continuous. Prove that the
solution to the extremal condition δJ = 0 with respect to functional variations of y [i.e.,
y(s)→ y(s) + φ(s)] is given by the solution to the differential equation

d

ds2

(
∂F

∂ÿ

)
− d

ds

(
∂F

∂ẏ

)
+
∂F

∂y
= 0 ,

subject to the boundary condition[
∂F

∂ÿ
φ̇+

(
∂F

∂ẏ
− d

ds

∂F

∂ÿ

)
φ

]∣∣∣∣s=b
s=a

= 0 .

B. Consider a thin elastic rod of length L with one end clamped horizontally and the
other end free. Let s denote the length along the rod and let y(s) denote the vertical
displacement from horizontal of the rod at position s, as illustrated in the figure.

There are two contributions to the potential energy, one from the curvature of the rod,
and one from gravity, so that

V =

∫ L

0

[
1
2
k ÿ 2 − gy(s) ρ(s)

]
ds ,

where k is related to the Young’s modulus of the rod material, g > 0 is the acceleration
due to gravity, and ρ(s) is the linear mass density of the rod at position s.

i. [5 points] Making use of the results of part A, show that

k
....
y = gρ(s) . (∗)

ii. [10 points] Equation (∗) is a fourth-order differential equation. State the four
boundary conditions which can be used to integrate Eq. (∗), and briefly explain
their origin. Your explanation for the boundary conditions can be physical or
mathematical.

iii. [10 points] Consider the special case of a uniformly-loaded rod, i.e., ρ(s) = ρ0.
Solve Eq. (∗) using your specified boundary conditions. If you were not able to
determine all four boundary conditions, then work toward a partial answer, clearly
labeling any undetermined integration constants.
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1.26 Elliptical Orbit

You send a spacecraft from Earth to Jupiter via an elliptical orbit around the Sun tangent to
both Earth’s orbit and to Jupiter’s orbit. Assume that the orbits of the Earth and of Jupiter
are circular and coplanar, and ignore other planets as well as the gravitational attraction of
the spacecraft to Earth and Jupiter. Call the radius of Jupiter’s orbit RJ and the radius of
Earth’s orbit Re = 1 AU. For general information (you do not need this number) RJ ≈ 5.2
AU. The speed of the Earth in its orbit is ve = 2π AU/year.

A. [15 points] For a general elliptical orbit around the Sun, derive the following relationship
between the semi-major axis a of the ellipse and the total energy E,

a =
GMm

2|E|
,

where G is Newton’s constant, M the mass of the Sun and m is the mass of the orbiting
object. Assume M � m.

B. [15 points] What speed does the spacecraft have when it reaches the orbit of Jupiter?
Give your answer in terms of the speed of Jupiter in its orbit vJ, and the orbit radii, RJ

and Re. Is this spacecraft speed larger or smaller than the speed of Jupiter in its orbit?

C. [5 points] When the spacecraft reaches Jupiter’s orbit, how does its speed compare with
its speed when it started its elliptical path at Earth’s orbit (give the answer in terms of
orbit radii)?

D. [15 points] Show that the time-average of the potential energy of the spacecraft over
one orbital period is 2E. [Hint: consider the time average of dS/dt where S = r · p.]
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1.27 Foucault Pendulum (1)

Analyze the motion of a Foucault pendulum with a ball of massm supported by an inextensible
massless wire of length L (on the order of a few meters). The pendulum is at latitude θ
(measured from the equator) on the surface of the Earth. Treat the Earth as a sphere of
radius R = 6400 km. Work in coordinates fixed to the surface of the Earth, with the x-
axis pointing south, the y-axis pointing east, and the z-axis pointing vertically upward. The
pendulum is suspended from the point z = L, x = y = 0. The Earth revolves with angular
frequency ω.

A. [23 points] Find the exact equations of motion.1

B. [27 points] Make appropriate approximations to the equations assuming small displace-
ments from equilibrium. Take into account the magnitude of the Earth’s angular velocity,
the frequency of the pendulum, and the magnitude of the centrifugal “force” relative to
the gravitational force. Clearly state the justifications for your approximations.

C. [20 points] Solve the approximate equations for the motion of the pendulum bob. De-
scribe the motion with initial conditions x = a, y = 0, ẋ = ẏ = 0.

D. [16 points] What Lagrangian gives rise to the (approximate) equations of motion? Find
the canonical momenta to the x and y coordinate of the pendulum bob.

E. [14 points] Find the corresponding Hamiltonian. Is the Hamiltonian a constant of the
motion? Explain.

1 The formulas relating velocities and accelerations in rotating and inertial frames are:

vinertial = vrotating + ω × r
ainertial = arotating − 2ω × vrotating − ω × (ω × r) .
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1.28 Foucault Pendulum

An observer stationed at a point in a coordinate system M whose origin is at O and with
Cartesian unit-vectors êx, êy, and êz observes a vector A and its time-derivative dA

dt

∣∣
M

:

A = A1 êx + A2 êy + A3 êz ,
dA

dt
=
dA1

dt
êx +

dA2

dt
êy +

dA3

dt
êz .

Subsequently, the observer notices that M is rotating with respect to a coordinate system F
that is fixed in space, and whose origin coincides with O.

A. [12 points] Show that the time-derivative of A as measured in the fixed coordinate
system F, dA

dt

∣∣
F

can be written as

dA

dt

∣∣∣∣
F

=
dA

dt

∣∣∣∣
M

+ ω ×A .

B. [12 points] Show that the acceleration of a particle measured in frame F is related to
that measured in M by

d2r

dt2

∣∣∣∣
F

=
d2r

dt2

∣∣∣∣
M

+ 2ω × dr

dt

∣∣∣∣
M

+ ω × (ω × rM) +
dω

dt
× rM .

Consider a simple pendulum formed by a mass attached to the end of a string of length L,
mounted to the ceiling of the physics building. In spherical coordinates defined with respect
to the axis of rotation of the Earth, the physics building is located at the coordinates θ (the
polar angle) and φ (the azimuthal angle). Assume that the period of the Earth’s rotation
about its axis is much longer than the period of the pendulum when in an inertial frame.

C. [13 points] Show that for small displacements from vertical defined by coordinates x
and y in the horizontal plane of the physics building, the position of the mass satisfies

ẍ− 2ω ẏ cos θ +
g

L
x = 0 , ÿ + 2ω ẋ cos θ +

g

L
y = 0 .

where ω is the angular frequency of the Earth’s rotation.

D. [13 points] Solve these coupled differential equations subject to these boundary condi-
tions at t = 0:

x = 0 , ẋ = 0 , y = A , ẏ = 0 .
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1.29 Hanging Cable

A flexible cable hangs under its own weight from two towers of equal height H, as sketched
below. Choose the x-axis such that the height of the cable is an even function of x. Because
of this, one need only consider the half of the cable for which x ≥ 0. Let the mass per unit
length of the cable be ρ.

A. [10 points] Let the equation for the shape of the cable be x = x(y). [This will be easier
than writing the shape as y = y(x).] Show that the potential energy of the cable (i.e.,
the half that we are dealing with) can be written as

U = ρg

∫ H

y0

y [1 + (x′)2]1/2 dy ,

where x′ ≡ dx/dy, g is the acceleration of gravity, and y0 is the lowest point of the cable.

B. [15 points] Minimize this expression subject to the constraint that the length of the
cable is fixed and thereby obtain an equation for dy/dx = 1/x′ in terms of y. (The value
of the cable length is not important.)

You are not being asked to solve this equation, but one may show that the
solution which is even in x can be written y = x0 [cosh(x/x0)− 1] + y0.

Now do the same problem using forces. Let the tension in the cable be T , with Tx and Ty
denoting its x and y components.

C. [5 points] The derivative dTx/dx is zero. Why is this? As a consequence, Tx is constant.

D. [10 points] The derivative dTy/dx is not zero. Write down an equation for it.

E. [5 points] The components of the tension are related to the slope of the cable according
to Ty/Tx = dy/dx ≡ y′. Why is this?

F. [5 points] Using the statement (E) in your equation (D), obtain an equation for dy′/dx
in terms of y′ and Tx.

G. [5 points] Show that the solution for y′ which is odd in x can be written y′ = sinh(x/x0).
Give an expression for the characteristic length x0 in terms of Tx. It follows that y =
x0 [cosh(x/x0)− 1] + y0 as stated above.
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1.30 Inertia Tensor

The inertia tensor of an object composed of point masses {mp} is given by

Iij =
∑
p

mp

[
δij

3∑
k=1

(xkp)
2 − xipxjp

]
.

A. [10 points] Show that In̂ = n̂ · I · n̂ is the moment of inertia about an axis specified by
an arbitrary unit vector n̂.

B. [10 points] If the inertia tensor is diagonal, Iij = Ii δij, and the angular velocity ω points
in an arbitrary direction, derive an explicit expression for the components of the angular
momentum L in terms of the components of ω and Ii.

C. [5 points] Under what conditions will the angular momentum point in the same direction
as the angular velocity?
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1.31 Inertially Coupled Pendula

Two pendula are attached to a cart of mass M that can move without friction along a straight
line. The two pendula are constrained to swing only in the plane that contains the straight
line along which the cart moves. The two pendula are identical: they both have a mass m
attached to a rigid rod of length l whose mass can be neglected, with the rod pivoted on a
frictionless pivot. The force of gravity mg acts downward on both of the pendula masses.
Denote the position of the cart along the line by x and the angles that the two pendula rods
make with the vertical by θ1 and θ1.

x 

q1 
q2 

l l 

m m 

A. [15 points] Write down the Lagrangian of this system. Simplify your final expression by
making the small angle approximations for both θ1 and θ2.

B. [15 points] Derive the Lagrange equations of motion.

C. [20 points] Combine the equations of motion to eliminate the x coordinate. Then solve
the resulting expressions to obtain the two non-trivial normal modes of the system.
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1.32 Linear Triatomic

Consider a linear triatomic molecule, with two atoms of
type A at its ends and an atom of type B at the middle.
At equilibrium, the distance between each A atom and
the central B atom is d, as shown in the figure at right,
and the effective spring constants for small oscillations
are both equal to k. The mass of an A atom is m, the
mass of a B atom is 4m.

This molecule has various modes of vibration. For
instance, one simple mode of vibration, sketched at
the right, involves equal and opposite motion by the
two A atoms, with the B atom at rest.

A. [6 points] What is the frequency of the mode illustrated, in terms of m and k?

B. [10 points] There is another oscillation mode with a nonzero frequency in which each
atom moves only horizontally. What is the eigenvector of this mode, and what is its
eigenfrequency?

C. [6 points] Since the molecule has three atoms and modes in three spatial dimensions,
it has nine eigenmodes of motion. Clearly and unambiguously, describe the nine eigen-
modes. When necessary, you may wish to draw pictures analogous to the figure above
to show how the three atoms move.

D. [14 points] At time t < 0, the molecule is at rest. At time t = 0, the A atom on the
left-hand end of the molecule is struck by another atom. The collision occurs rapidly, so
the impulse approximation is valid: the A atom’s position barely moves, but it acquires
a horizontal velocity v to the right. What is the subsequent motion, as a function of
time, of the three atoms?

E. [14 points] Once again, at time t < 0, the molecule is at rest. At time zero, the A
atom on the left-hand end of the molecule is struck by another atom. As before, the
collision occurs rapidly, so the impulse approximation is valid: the A atom’s position
barely moves, but this time it acquires a vertical velocity v upward. Which modes
of the system are excited? (You may describe them in words or in pictures, but be
unambiguous!) Estimate as best you can (do not calculate) the energy imparted to each
of the excited modes. Hint: You may wish to consider these questions in a different
reference frame.
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1.33 Mass on Disk

X

X

R

A

B

mM

x

y
A thin disk of radius R and mass M in the xy-plane
has a point mass m = 5M/4 attached to its edge, as
shown in the figure. The moment of inertia tensor of the
disk without the mass m about its center of mass is (the
z-axis is out of the page):

I =
MR2

4

 1 0 0
0 1 0
0 0 2

 ,

in the basis defined by the unit vectors êx, êy and êz.

A. [10 points] Identify and draw the principal axes of the disk alone about the point A.
Identify and draw the principal axes of the point mass, m, alone about the point A.
Clearly state which general principles you use at arriving at your answers.

B. [5 points] Show that the moment of inertia tensor of the combination of disk and point
mass about the point A, in the coordinate system shown, is

I =
MR2

4

 10 −5 0
−5 6 0

0 0 16

 .

C. [10 points] Find the principal moments and the principal axes about the point A. Give
numerical values.

D. [10 points] The disk is constrained to rotate about the y-axis with angular velocity ω
by pivots at the points A and B. Give the angular momentum about A as a function of
time and find the force provided by the pivot at B (ignore gravity).

At some point in time, when the disk is in the xy-plane and rotating with angular velocity
ω êy, the pivots at A and B are instantaneously removed and the combined disk-mass system
is allowed to free-fall under the influence of gravity, which acts in the y-direction.

E. [10 points] Describe qualitatively the subsequent motion of the combined disk+mass
system.

2003au 43



1.34. NORMAL MODES AND DRIVEN SYSTEMS CM

1.34 Normal Modes and Driven Systems

A system is comprised of three masses joined by two springs, as shown in the figure. The
two springs have equal spring constants. The outer masses have mass M , while the middle
mass has mass 2M . The system is constrained to move in one dimension. Let ηi denote the
displacement of the i’th mass from its equilibrium position.

A. [10 points] Find the Lagrangian for the system.

B. [10 points] Find the Euler-Lagrange equations of motion, and show that they can be
written as

T η̈ + V η = 0 ,

where T and V are matrices and η is a column vector. Find T and V .

C. [10 points] Find the normal modes of this isolated system and their frequencies, i.e.,
find the eigenvalues ωj and eigenvectors aj of this system.

D. [10 points] For an arbitrary system with non-degenerate eigenvalues (such as this) show
that the eigenvectors can be normalized so that a†i Taj = δij, where T is defined as in
part B.

Consider the situation where this isolated system is initially at rest with all masses in their
equilibrium positions. Starting at time t = 0, a force F (t) = F0 cos(Ωt) is applied to mass 1.

E. [10 points] By writing the displacement in terms of the eigenvectors found above, η(t) =
c1(t) a1 + c2(t) a2 + c3(t) a3, find the displacement of mass 3 as a function of time.
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1.35 Orbit Perturbations

A point mass m moves in a circular orbit of radius r under the influence of a central force
with potential −K/rn.

A. [20 points] Find the conditions on n such that the circular orbit is stable under small
perturbations (i.e., the mass will oscillate about the circular orbit).

B. [10 points] Find the frequency of small oscillations about stable circular orbits and
express this frequency in terms of the angular velocity of the mass moving in these
orbits.
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1.36 Mass-spring system

A mass m1, with initial velocity v0, strikes a mass-spring system consisting of a massless
spring of spring constant k, attached to a mass m2. The mass-spring system is initially at
rest. There is no friction.

0m m1 2

k
v

A. [25 points] What is the maximal compression of the spring during the collision? (Assume
the spring to be long enough so that at maximal compression it still has positive length).

B. [25 points] Find the velocity v1 and v2 of the masses m1 and m2 long after the collision.
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1.37 Particle Refraction

[20 points] A particle of mass m and velocity v1 leaves the region z < 0 where its potential
energy is a constant U1, and enters the region z > 0 where its potential energy is a different
constant U2, as illustrated. Determine the change in direction of the particle.
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1.38 Passing Stars

Two identical stars — spheres of gaseous material of radius Rs and mass M — approach each
other along initially parabolic orbits.1 In the center-of-mass system, where x1 = −x2, y1 =
−y2, their paths for t large and negative are given by

y1 = x2
2/r0 −R0; y2 = −x2

2/r0 +R0 ,

where r0 and R0 are the constants which define the particular orbit. Both r0 and R0 are
several times larger than Rs.

A. [10 points] In what crucial and remarkable way does the motion differ from the corre-
sponding Newtonian two-body problem with point masses?

B. [8 points] Is the condition that the orbits be parabolic necessary for the feature that
you have identified as “remarkable” in part A? Why or why not?

C. [7 points] Without calculating anything, and without trying to be precise, make a rough
plot, in the xy-plane, of the motion of star number 1. Make sure the “remarkable”
feature is clearly evident.

D. [Extra Credit] Can you suggest any observable consequence that this phenomenon
might have? [Note: in our region of the galaxy, stars almost never pass at such close
range.]

1 Problems 1.20–1.22 may be helpful prerequisites for this problem.
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1.39 Plumb Bob

A plumb-bob is a small mass suspended from a
flexible string, at rest relative to the Earth. The
line of the plumb-bob string defines locally what we
call “vertical”. Due to the Earth’s rotation, the
plumb-bob line, if extended, will not necessarily
pass through the Earth’s center. The latitude, θ,
of Seattle is 47.3◦ and you may consider the Earth
to be a sphere with radius 6400 km.

A. [6 points] Draw on the diagram the vector, a, that shows the acceleration of the plumb-
bob relative to an inertial (non-rotating) frame of reference.

B. [4 points] At what latitude(s) will the plumb-bob line, if extended, pass through the
center of the Earth?

C. [15 points] For a plumb-bob at Seattle, at what angle, ψ, does the plumb-bob hang
relative to the radius vector from the Earth’s center? (You may safely assume that the
plumb-bob length � Earth’s radius.)
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1.40 Rolling Cylinder

a
R

φ
A homogeneous cylinder of radius a, and total mass µ,
rolls without slipping inside a cylindrical surface with
radius of curvature R, as shown. Assume uniform grav-
itational acceleration downward.

A. [20 points] Derive the Lagrangian for this system.

B. [15 points] Determine the frequency for small oscillations about the equilibrium at the
bottom of the surface.

C. [15 points] As the amplitude of oscillation increases, does the frequency increase or
decrease? First make a qualitative argument. Then derive an expression that would
allow determination of the frequency as a function of amplitude, φmax, and verify its
small amplitude limit.
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1.41 Rotating Frame

Consider a particle of mass m moving on a two dimensional plane (x, y), in a central gravita-
tional potential of a massive body V (r) = −GMm/r where r =

√
x2 + y2. Assume M � m.

A. [10 points] Write down the Lagrangian for this particle in the coordinate system rotating
with angular velocity ω around the center of gravity.

B. [10 points] Show that the Euler-Lagrange equation which follows from the Lagrangian
derived above can be written as

mr̈ = Fgravity + Fcentripetal + FCoriolis,

where FCoriolis = 2mṙ × ω.

k

M

m

m
Consider now a system of two particles with equal
mass m, connected by a spring with a spring con-
stant k. The separation between the two parti-
cles is much smaller than the distance from the
two to the massive body, but cannot be neglected
for this problem. The two bodies move approxi-
mately along a circular orbit. Consider the mo-
tion only in the plane of that orbit.

C. [10 points] Write down the system of linear differential equations describing small oscil-
lations around the equilibrium (two particles on top of each other moving on a circle)
in an appropriate rotating frame.

D. [5 points] Show that the normal modes can be divided into oscillations of the center of
mass of the two-particle system and the relative motion.

E. [10 points] Find all normal frequencies of the oscillations. Show that when k is smaller
than some critical value kc, there exists an unstable mode, and find kc.

F. [5 points] Describe qualitatively the long-term evolution of the system when k < kc and
the separation between particles is small in the beginning.
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1.42 Rotating Pendulum

A pendulum is constructed from a point mass M sus-
pended from a rigid massless rod of length l. The rod
is attached with a hinge (requiring the oscillations to be
in the plane normal to the hinge axis) to a vertical shaft
which rotates with a constant angular speed ω. Hence, as
a consequence of the hinge, the pendulum is constrained
to move in a vertical plane which rotates at a constant
angular speed ω, as illustrated at right. In all questions
below, ignore any effect of the rotation of the Earth.

A. [10 points] Working in the fixed (non-rotating)
frame, derive the kinetic and potential energy, de-
termine the Lagrangian for the system, and show
that the equation of motion for mass M is

θ̈ +
(g
l
− ω2 cos θ

)
sin θ = 0 .

B. [20 points] Depending on the value of ω, the equation of motion allows for up to two
equilibrium positions. Determine which equilibrium position(s) are stable, and find the
period of small oscillations about each equilibrium position.

C. [10 points] Determine the power supplied by the motor which rotates the vertical shaft
as a function of θ and θ̇.

D. [5 points] Viewed in the fixed (non-rotating) frame, is the total mechanical energy of the
mass M conserved? Is the Hamiltonian conserved? Assume arbitrary initial conditions
(not necessarily at equilibrium). Explain your answers.

E. [5 points] Viewed in the rotating frame, is the total mechanical energy of the mass
M conserved? Is the Hamiltonian conserved? Assume arbitrary initial conditions (not
necessarily at equilibrium). Explain your answers.
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1.43 Safe Driving

Consider some motions of an automobile which has a wheelbase (the distance between front
and rear axles) l, and whose center-of-mass is half way between the front and rear axles and
a distance h above the ground.

A. [20 points] Suppose that the driver is braking the car. Sketch and label all the forces act-
ing on the car and where they act. Suppose that the braking results in a de-acceleration
b of the car. Let x be the fraction of the weight of the car carried by the front wheels
so 1−x is the fraction of the weight carried by the rear wheels. Prove that:

x =
1

2
+
b

g

h

l
,

where g is the acceleration of gravity at the surface of the Earth.

B. [15 points] Suppose that the car is going around an (un-banked) curve of radius R (with
R � l) at speed v. There is a maximum speed vmax that the car can go around this
curve before the tires slip. Show that vmax is given by

vmax = µgR ,

where µ is the coefficient of static friction of the tires. In view of the fact that the car
has a finite moment of inertia about the vertical axis through the center of mass, show
that this result does not require that the center of mass be exactly half way between
the front and rear axles. Be sure to explain your reasoning.

C. [15 points] Now suppose that the car is going around the curve at a speed that is just a
little less than vmax and the driver becomes nervous and applies the brakes fairly hard.
What happens? Do not give precise quantitative results, but be sure to explain your
reasoning.
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1.44 Sliding dumbbell

α

A dumbbell of mass m and length 2l leans against a
frictionless vertical wall while standing on a frictionless
horizontal floor. The two (equal) weights at the two ends
of the dumbbell have negligible size and carry all the
mass. The dumbbell is initially at rest and then released
with initial angle α0. At some point in the subsequent
motion, the dumbbell may separate from the wall.

A. [10 points] Assume that the dumbbell has not separated from the wall and the floor.
Taking the angle α as the generalized coordinate, write the Lagrangian for the system
and the Euler-Lagrange equation of motion.

B. [10 points] Find the forces acting on the ladder at the two ends as a function of the
angle α.

C. [15 points] Find the angle α at the moment when the ladder separates from the wall

D. [15 points] Describe the subsequent motion of the dumbbell after its separation from
the wall.
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1.45 Sliding rod

A uniform rod of mass M and length L is placed at right angles to an edge of a horizontal
table. The center of mass C of the rod projects a distance d beyond the edge at point A. The
coefficient of static friction equals µ. The rod, flat on the table, is released at rest. It starts
to rotate about A and eventually slides off the table. The figure below shows the rod at time
when it is rotating, but not yet sliding.

A. [8 points] Calculate the moments of inertia of the rod, IC about point C, and IA, about
point A. You may express the answers for parts (b) - (d) below in terms of IC and IA.

B. [12 points] Calculate the angular velocity ω of the rod as a function of the rotation angle
θ before sliding occurs.

C. [15 points] The force acting on the rod by the table edge has a component in a direction
perpendicular to the rod. Calculate this component N as a function of θ before sliding
begins.

D. [15 points] Calculate the angle θ when sliding begins.

A 

C 

d q 
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1.46 Spinning Disk

t

C

B

A

R

Consider a uniform density circular disk of radius R,
thickness t, and mass M .

A. [10 points] Calculate the moment of inertia, IC ,
about the symmetry axis C (the vertical dotted
line in diagram).

B. [10 points] For any thin plate, the perpendicular axis theorem states that the sum of the
two moments of inertia about perpendicular axes in the plate is equal to the moment
of inertia about an axis through the intersection of the two axes and perpendicular to
the plate. Prove this theorem and use it to calculate the moments of inertia IA and IB
about axes A and B, in the limit t� R.

C. [10 points] Axes A, B, and C are the principal axes of the moment of inertia tensor
referred to the center of mass. Explain why this is so.

45οCD. [10 points] The disk is set spinning so that at
time t = 0 its angular velocity ω points along an
axis through the center of mass that makes an
angle 45◦ with respect to the symmetry axis C.
Calculate the angular momentum L of the disk
at time zero.

E. [10 points] Describe the subsequent motion, by
specifying the directions of the angular momentum and angular velocity vectors. No
external forces act on the disk at positive times.
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1.47 Spring & Pulley

A uniform density solid cylinder of mass M and radius R is free
to rotate about its axis, which is horizontal. The moment of
inertia of the cylinder is I = 1

2
MR2. Part of a long cable of

negligible mass is wound around the cylinder with the remain-
der of the cable hanging vertically. A massless spring, with
spring constant k, is attached to the hanging end of the cable,
and a mass m is attached to the end of the spring. A vertical
gravitational force mg acts downward on the mass m. Describe
the system using as coordinates the extension s of the spring
and the vertical position y of the mass m (with the axis of the
cylinder at y = 0).

A. [6 points] Find an expression for the kinetic energy T of the system.

B. [4 points] Find an expression for the potential energy V of the system.

C. [8 points] Write down the Lagrangian for the system and find the Lagrange equations
of motion.

D. [4 points] Find the canonical momenta that are conjugate to s and y.

E. [6 points] Find the Hamiltonian in terms of the canonical variables.

F. [7 points] If s = ṡ = 0 and ẏ = 0 at t = 0, find the subsequent motion of the mass m.
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1.48 Sweet Spot

A uniform rod of mass M and length 2L is suspended at one end from the ceiling by a massless
string of length L. An impulse of magnitude P is applied to the rod in a horizontal direction
at a distance h above the bottom end of the rod.

A. [5 points] Calculate the speed of the center of mass C of the rod immediately after the
impulse.

B. [5 points] Calculate the speed of the top end of the rod (point T on the diagram)
immediately after the impulse. Give your answer in the form vT = AP/M , where A is
an expression that depends on h and L only.

For the rest of the problem assume that the impulse is small, so that the string remains taut
and the angles θ and φ defined in the figure remain small at all times, so that you can use a
small angle approximation.

C. [10 points] Write down expressions for the kinetic energy T and potential energy V in
terms of θ and φ and their time derivatives.

D. [20 points] Calculate the oscillation frequencies of the normal modes of the system.

E. [10 points] For a particular value of h (a “sweet spot”) the motion resulting from the
impulse occurs at only one of the two frequencies determined in part D. Calculate the
dimensionless ratio h/L and identify the corresponding frequency.
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1.49 Symmetric Top

A symmetric top of mass M is in a uniform grav-
itational field along the z-axis and has one fixed
point at the tip. The principal axes of the top are
labeled 1, 2 and 3. The diagonal components of
the inertia tensor in the principal axes are I1, I2

and I3, with I1 = I2 because of axial symmetry.
The center of mass is located at the point labeled
G, a distance of l from the tip.

A. [3 points] Show that the moment of inertia of the top about the 1-axis in the above
figure is

I = I1 +Ml2 .

B. [17 points] Show that the Lagrangian can be written in terms of the Euler angles, θ, φ
and ψ as

L = 1
2
I
(
φ2 sin2 θ + θ̇2

)
+ 1

2
I3

(
φ cos θ + ψ̇

)2

−Mgl cos θ .

C. [10 points] Show that components of the angular momentum about two axes are con-
served.
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1.50 Three Cubes

[40 points] A torsion pendulum consists of a vertical wire attached to a mass which may
rotate about the vertical. Consider three torsion pendulums which consist of identical wires
from which identical homogeneous solid cubes are hung. Cube A is hung from a corner, cube
B from midway along an edge, and cube C from the middle of a face. What are the ratios of
periods of the three pendulums, TA : TB : TC? Briefly explain or derive your answer.
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1.51 Torsion Pendulum

A torsion pendulum consists of two masses, m1 and m2, supported
by a holder which is, in turn, suspended from a long elastic fiber.
Torques along the fiber ẑ axis cause the pendulum to twist in the xy
plane by an angle θ. The fiber provides a restoring torque given by
τz = −kθ, where k is the torsion constant of the fiber. The moment
of inertia of the pendulum about the ẑ axis is I.

For the following questions you may assume that m1 = m2, although
it is not necessary to do so.

A. [5 points] The torsion pendulum can undergo motions other
than its torsional oscillation. Describe in words or by sketches
two of the normal modes (other than the torsional mode) of the
torsion pendulum. (You may consider the fiber to be massless.)

B. [10 points] Write the Lagrangian and Lagrange equation of motion for the torsional
mode of the pendulum, and a solution (other than θ = θ̇ = 0) to this equation.

C. [5 points] Find the momentum that is canonical to the coordinate θ.

D. [5 points] In general, there is also a viscous (frictional) torque proportional to the angular
velocity, θ̇, about the ẑ axis: τfric,z = −γθ̇. Derive the equation: Iθ̈ + γθ̇ + kθ = τext,z,
where τext is the torque on the pendulum due to any external forces.

E. [5 points] For τext,z = 0, what is the resonant (natural) frequency of the torsional mode

of oscillation when γ <
√
kI?

F. [10 points] For τext,z = τ0 cosωt, derive an expression for the steady state motion of the
torsion pendulum.

G. [10 points] In general, it is not possible to make the
masses m1 and m2 identical, so the torsion pendulum,
at rest, will hang tipped by an angle φ, relative to the
fiber, as shown in the figure. Derive an expression for
the tip angle φ in terms of m1, m2, h and `. You should
assume that the fiber is massless and flexible, and that
the holder is rigid and has negligible mass.
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1.52 Vibrating Spring

A. [8 points] Derive from first principles the Lagrangian describing small transverse vibra-
tions of a string with mass per unit length µ(x) and tension T (x). Assume that the ends
of the string satisfy either fixed-end or free-end boundary conditions.

B. [7 points] Show how the Euler-Lagrange equations for the transverse displacement y of
the string follow from Hamilton’s principle and lead to a wave equation for the string
displacement.

C. [7 points] Find the canonical momentum density and construct the Hamiltonian density
for the string. Show that the Hamiltonian is conserved.

D. [6 points] Deduce an expression for the energy flux along the string.

E. [12 points] Let x = 0 denote the midpoint of the string. Now assume that the mass
density along the string changes from a uniform value µ = µ1 for x < 0 to a uniform
value µ = µ2 for x > 0. The tension T is uniform everywhere. Find the transmission
and reflection coefficients for a harmonic wave with angular frequency ω incident from
the left, and demonstrate that these are consistent with conservation of energy.
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1.53 Waves on a String

A thin stretched string, fixed at x = a and x = b, has mass per unit length σ(x) and tension
τ(x). In the following, let u(x, t) represent transverse small-displacement solutions to the wave
equation. (Note that varying tension would require a longitudinal external force, gravity for
example, but the source of the external force is not relevant here.) Assume that no external
force acts transverse to the string, so that its equilibrium configuration is straight.

A. [15 points] Using a labeled free-body diagram, derive the wave equation by applying
Newton’s law. State all assumptions.

B. [15 points] Construct the Lagrangian density and use Hamilton’s principle (i.e., the
principle of stationary action) to derive the equation of motion.

C. [5 points] Assuming normal-mode solutions of the form u(x, t) = ρ(x) cos(ωt + φ), find
the differential equation for ρ(x).

D. [15 points] Show that setting to zero the variation of the functional

Λ[ρ] ≡
∫ b

a

dx
[
τ(x)

(∂ρ
∂x

)2] / ∫ b

a

dx
[
σ(x) ρ2

]
with respect to ρ also gives the equation of motion for ρ(x) of the previous part. Com-
ment on why this works, interpreting the value of the functional. Your discussion may
specialize to the case of constant σ and τ .
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Chapter 2

Electromagnetism

2.1 Blood Bath

�
�

�
�

Model a sample of blood as insulating spheres, repre-
senting cells, immersed in a conductive medium. The
aim is to obtain the behavior of a sample under low
frequency (ω . 1 GHz) AC fields.

First consider a sphere of radius a with permittivity ε1 immersed in a homogeneous medium
with permittivity ε2 under a static field which, at very large distance from the sphere is
E = (0, 0, E0).

A. [15 points] State the boundary conditions for the radial and tangential components of
the electric field and calculate the electric potential in the entire space.

B. [10 points] Show that the effective permittivity ε, of a dilute system of spheres of per-
mittivity ε1 and number density per unit volume n, within a bath of permittivity ε2, is
given by

ε

ε2
= 1 + 4π na3 ε1 − ε2

ε1 + 2ε2
.

Assume that the concentration of spheres is low enough that the field in each sphere is
not influenced by the others.

Now consider a sphere with permittivity ε1 and zero conductivity immersed in a homogeneous
medium with permittivity ε2 and conductivity σ2 under a field which, at very large distance
from the sphere is E = (0, 0, E0 e

iωt). Assume that ω is such that magnetic fields and
radiation effects can be neglected.
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2.1. BLOOD BATH EM

C. [5 points] Use Maxwell’s equations to show that the boundary conditions are now given
by:

ε1 E
⊥
1 = (ε2 + σ2/iω) E⊥2 , and E

‖
1 = E

‖
2 .

D. [20 points] Obtain an expression for the complex permittivity of a solution with n
spheres per unit volume at frequency ω. Find the real part of the permittivity at both
very low and very high frequencies. In which of these regimes is the real part of the
permittivity higher. Explain why and determine an approximate value for the frequency
that characterizes the transition from the low-frequency to the high-frequency behavior.
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2.2 Charge Density Wave

[25 points] An infinite charge sheet lies in the xy-plane and carries a periodic surface charge
density, σ = σ0 cos(kx). Calculate the electric potential produced by this charge distribution
everywhere in space. Check that your answer reduces to an expected result in the limit k → 0.
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2.3 Charged Pendulum
P

d

L

grounded conductor

+e

[20 points] A particle of mass m and charge e is suspended on
a string of length L fixed at point P. At a distance d under the
point of suspension there is an infinite plane grounded conduc-
tor. Compute the frequency of the oscillations of the pendulum
if the amplitude of the oscillations is small. Neglect gravity.
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2.4 Conducting Sphere

A. An isolated, uncharged conducting sphere of radius R is placed in a uniform electric
field with magnitude E0 pointing in the z-direction, as illustrated in figure (A).

i. [15 points] Derive an expression for the electric potential everywhere outside the
sphere.

ii. [5 points] Derive an expression for the angular distribution of the induced surface
charge on the sphere.

B. [10 points] Suppose that the sphere is now forced to move with constant speed v in
the xz-plane at some angle α with respect to the z-axis, as illustrated in figure (B).
Assume that α is greater than zero and less than π/2. When v is relativistic, explain
(qualitatively or quantitatively) how the induced surface charge distribution viewed in
the reference frame of the sphere will differ from your answer in part A-ii. How do the
magnitude, angular orientation, and angular distribution of the induced surface charge
differ?
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2.5 Conductors in Dielectric

A loop of radius r0 and charge Q is located above a
grounded, conducting sphere of radius a, as shown in
the figure. The plane of the loop is displaced vertically
from the center of the sphere by a distance d. The
entire system is embedded in a dielectric of infinite
extent with dielectric constant ε.1

A. [12 points] From Maxwell’s equations, derive
the boundary conditions satisfied by an electro-
static field at the interface between the dielec-
tric and the conducting sphere.

The Green’s function G(r, r′) for (minus) the Laplacian in the region outside the conducting
sphere is given by

G(r, r′) =
1

4π

(
1

|r − r′|
− a

|r′|
1

|r − r′′|

)
,

where r is the field position, r′ is the source position, and r′′ ≡ a2 r′/|r′|2 (with the origin
chosen to be the center of the conducting sphere).

B. [12 points] What properties does G(r, r′) possess to make it the appropriate Green’s
function. Draw a schematic to show the location of the sphere, a point charge, and any
image charges that might arise.

C. [14 points] Express the potential in the dielectric medium resulting from the charged
loop as a sum of Legendre polynomials.

D. [12 points] Find the charge induced on the conducting sphere.

1Possibly useful relations: 1/|r−r′| = 4π
∑
`

1
2`+1Y

∗
`m(Ω′)Y`m(Ω) r`</r

`+1
> , and Y`0 = δm0

√
2`+1
4π P`(cos θ) ,

where r< ≡ min(r, r′) and r> ≡ max(r, r′).
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2.6 Currents and Forces

An uncharged aluminum ball (with negligible magnetic sus-
ceptibility) is constrained to move with a constant velocity
~v0 (not necessarily non-relativistic) parallel to a long straight
wire. The wire has no net charge but carries a current I0 in
the same direction as the motion of the ball. The distance
between the wire and the center of the ball is d.

A. [20 points] Give an argument to account for the exis-
tence of an attractive force in the lab frame (the frame
in which the wire is at rest). Then describe how the
force depends on d, in the limit where d is large com-
pared to the size of the ball.

B. [40 points] The current-carrying wire can be modeled as two long thin rods that have
uniform linear charge density and are in relative motion. Suppose that in the lab frame
the negatively charged rod is at rest while the positively charged rod moves toward the
top of the page with velocity m~v0. The charge densities of the rods as measured in the
lab frame are λ

(lab)
± .

i. In the lab frame, determine the electric and magnetic fields due to the wire, E(lab)

and B(lab), at a distance d from the wire. Express your answer in terms of I0.

ii. In the rest frame of the ball, determine the electric and magnetic fields due to the
wire, E(ball) and B(ball), at a distance d from the wire.

iii. Is there a frame (moving in any direction) in which the magnetic field due to the
wire, at a distance d from the wire, vanishes? If so, determine the velocity of that
frame relative to the lab frame. If not, explain why not.

iv. Denote the magnitudes of the electromagnetic forces exerted on the ball by the wire
in the lab frame and in the rest frame of the ball by F

(lab)
BW and F

(ball)
BW , respectively.

Determine the non-relativistic limit of the ratio F
(lab)
BW /F

(ball)
BW . Show your work and

explain your reasoning.
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2.7 Current-Carrying Cable

A cable consists of a material of magnetic permeability
µ = µ0 with the shape of an infinitely long cylinder of
radius R, covered by two infinitesimally thin conducting
sheets as shown in the figure. The two conducting sheets
are insulated from each other and carry surface current
densities σ = σ0 êz (top sheet, 0 ≤ φ ≤ π) and σ =
−σ0 êz (bottom sheet, π ≤ φ ≤ 2π).

A. [15 points] Given that the volume current density is zero, show that one can use a
magnetic scalar potential ψ, such that H = ∇ψ everywhere. Using Maxwell’s equa-
tions, show that ∇2ψ = 0 inside and outside the cable, write down the general form of
the solutions (inside and outside) in cylindrical coordinates, and specify the boundary
conditions that should be used at the surface of the cable.

B. [10 points] Use qualitative arguments to sketch the field lines.

C. [15 points] Show that the magnetic field inside and outside the cable has the form

Bin(x) = Aint
∑

n=1,3,5,···

1

n

( ρ
R

)n−1

(êρ cosnφ− êφ sinnφ) ,

Bout(x) = Aout
∑

n=1,3,5,···

1

n

(
R

ρ

)n+1

(−êρ cosnφ− êφ sinnφ) ,

with the constants Ain and Aout determined by the characteristics of the cable.

D. [10 points] At large distances from the cable, the field has the form,

B(x) ∼ C

ρ2
(−êρ cosφ− êφ sinφ) .

This is the same form as the field produced by two infinitely thin wires located at x = 0,
y = ±d/2 and carrying currents ±I êz. Find a current I and separation d that would
produce, at large distances, the same field as the cable of this problem.
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2.8. DIPOLES AND DIELECTRICS EM

2.8 Dipoles and Dielectrics

A. [15 points] Consider a dielectric sphere of radius R and permittivity ε in empty space.
Find the field inside the sphere when the electric field at large distances from the sphere
is uniform and aligned in the z-direction.

B. [20 points] Prove that for an arbitrary distribution of charges residing within a sphere
of radius R, the volume integral of the electric field over the enclosing sphere is related
to the electric dipole moment of the charge distribution,∫

r<R

d3xE(r) = − p

3ε0
.

Here ε0 is the vacuum permittivity, and p is the electric dipole moment of the charge
distribution,

p ≡
∫
d3r r ρ(r) .

[Hint: at some point in your proof you may need the relationship:∫
r=R

d2S
n

|r − r′|
=

4π

3
r′ ,

where the integral is over the surface of a sphere with radius R, n is the outward unit
normal to the surface, and r′ is an arbitrary point within the sphere. If you use this
relationship, first prove it.]

C. [15 points] Consider an electric dipole located at the origin. The field, for r > 0, is given
by

E =
1

4πε0

[
3(p · r) r

r5
− p

r3

]
.

Show that the volume integral over a sphere with radius R > 0 (excluding the point at
the origin) yields zero, seemingly contradicting what was proven in part B. Explain the
origin of this apparent discrepancy.
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2.9 Electromagnet Hoist

A U-shaped electromagnet designed for lifting metal objects is sketched below. The dimensions
of the magnet core are shown in the figure. The core has circular cross-sectional area A = πr2

and magnetic susceptibility χm = 1000. Assume that the object being lifted has the same
magnetic susceptibility and cross-sectional area. The coil has N turns and a constant current
I flows through it. Your goal is to estimate the lifting force as a function of the gap h. Assume
that the gap h is much much smaller than a, b, and r, but that χmh is comparable to a and b.

A. [10 points] Write down the relationship between B and H in the core and in the gap.

B. [10 points] Calculate the magnetic fields in the core and in the gap as a function of h.
[Hint: use Ampere’s law.]

C. [10 points] Calculate the energy of the electromagnetic field. Assume that the field is
concentrated in the core and the gaps.

D. [10 points] Calculate the work done by the power supply of the coil when the gap
distance is changed by an amount δh. Assume that the power supply maintains a
constant current.

E. [10 points] Calculate the lifting force.
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2.10 Electrostatic Sheet

Consider a non-conducting sheet in empty space, located in the xy-plane. The electrostatic
potential on the sheet is given by

Φ(x, y, z=0) = C sin(kx x) sin(ky y) ,

with kx, ky, and C constants.

A. [15 points] Find the potential Φ(x, y, z) everywhere in space.

B. [10 points] Determine the charge per unit area σ(x, y) on the sheet.

Replace the above sheet of charge by a sheet with an electric dipole moment per unit area
given by p(x, y, 0) = C ′ cos(κx) êx, where C ′ and κ are constants.

C. [10 points] Determine the potential Φ(x, y, z) everywhere in space.

Finally, consider a non-conducting sheet located in the xy-plane with a periodic surface charge
density given by σ(x, y) = σ(x+ x0, y) together with

σ(x, y) =

{
σ0 , 0 < x < x0/2 ;

0 , x0/2 < x < x0 .

D. [15 points] Calculate the potential Φ(x, y, z) everywhere in space. You may express the
result as an infinite series if you wish.
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2.11 Electrostatic Cylinder (1)

A long cylindrical conducting tube of radius R is
separated into two equal parts by an infinitely fine
cut parallel to the cylinder axis. The two parts are
held at constant potentials V1 and V2.

A. [10 points] What is the differential equation satisfied by the potential V inside and
outside the cylinder? What are the boundary conditions on the potential as the radial
distance r →∞?

B. [15 points] Determine the potential Φ(r, θ) at all points inside the cylinder.
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2.12 Electrostatic Cylinder (2)

An infinitely long hollow cylindrical conductor of radius a
is divided into two parts by a plane through the axis, and
the parts are separated by a negligibly small gap. The
parts are kept at potentials V1 and V2.

A. [15 points] Show that the most general form of the
potential inside the conducting cylinder is1

Φ(r, θ) =
∞∑
m=0

(r/a)m [Am cos(mθ) +Bm sin(mθ)] .

B. [15 points] Find the coefficients Am and Bm.

1Possibly useful: ∇2 = ∂2

∂r2 + 1
r
∂
∂r + 1

r2
∂2

∂θ2 + ∂2

∂z2 .
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2.13 Electrostatic Shells

The most general solution to Laplace’s equation, ∇2Φ = 0 with azimuthal symmetry may be
expressed in the form

Φ(r, θ) =
∞∑
`=0

(
A` r

` +
B`

r`+1

)
P`(cos θ) .

A conducting sphere of radius a at a potential V0 is surrounded by a concentric non-conducting
spherical shell of radius b with a surface charge density σ(θ) = K cos θ, where K is constant.

A. [9 points] Write the allowed form of the potential in each of the two regions a < r < b
and r > b, without regard to the boundary conditions at r = a and r = b.

B. [9 points] What is the discontinuity in the electric field across the non-conducting spher-
ical shell? Explain the physical basis of your answer.

C. [8 points] What are the boundary conditions that must be satisfied by the potential
Φ(r, θ)?

D. [14 points] Find the potential in both regions.
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2.14 Electrostatic spheres

a 

b 

c 

I II III IV 

V 

A uniform charge density sphere
of radius a has total charge Q.
It is surrounded by a spher-
ical shell that is centered on
the same origin. The shell is
made of copper, having inner
and outer radii b and c, respec-
tively, and the shell is kept at
potential V .

A. [10 points] Find the potential Φ and the field ~E in the four marked regions: I (charged
sphere); II (vacuum); III (copper shell); and IV (vacuum). Assume Φ(∞) = 0. Carefully
sketch the radial potential Φ(r), label the axes, and indicate the values of the potential
at r = a, b, and c.

B. [15 points] Find the total electrostatic energy inside radius b.

a 

b 

c 

q 

F=0 

C. [25 points] Next, consider the
slightly modified geometry shown
on the right. The copper shell
that surrounds the sphere is now
grounded and the inner sphere of ra-
dius a is different. It has a surface
charge distribution arranged so that
Φ(a, θ, φ) = V cos2 θ. Find Φ(r, θ, φ)
for the region between the sphere
and the shell; i.e., a < r < b.
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2.15. A CONDUCTING WEDGE INSIDE A CYLINDER EM

2.15 A Conducting Wedge inside a Cylinder

A hollow cylinder of radius R has a poten-
tial V (R, φ) maintained on its surface, as
shown in the figure. A conducting wedge
with surfaces at φ = 0 and φ = β, and its
apex at the symmetry axis of the cylinder
(as shown by the shaded region), is placed
inside the cylinder and held at a potential
of V = 0 (s denotes the radial coordinate).

A. [10 points] Derive the most general form for the potential inside the cylinder for 0 < φ < β
for a general boundary-condition V (R, φ). 1

B. [10 points] Determine the potential resulting from the boundary condition

V (R, φ) = V 1 sin

(
πφ

β

)
+ V 3 sin

(
3πφ

β

)
,

where V 1,3 are constants.

C. [20 points] Determine the electric field at each point inside the cylinder for 0 < φ < β,
and determine the charge density on the φ = 0 and φ = 2π − β surfaces of the wedge.
Comment on the behavior of the electric field near the tip of the wedge as a function of
the wedge apex-angle, 2π − β.

D. [10 points] For the situation where β = π and V 3 = 0, draw the electric field lines and
equi-potential surfaces inside the cylinder.

1Possibly useful: ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 = 1
ρ
∂
∂ρ ρ

∂
∂ρ+ 1

ρ2
∂2

∂φ2 + ∂2

∂z2 = 1
r2

∂
∂r r

2 ∂
∂r+ 1

r2 sin θ
∂
∂θ sin θ ∂∂θ+ 1

r2 sin θ
∂2

∂φ2 .
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2.16. ENERGY AND MOMENTUM (1) EM

2.16 Energy and Momentum (1)

Maxwell’s equations and the Lorentz force law are (where D = εE, H = B/µ):

∇ ·D = ρ , ∇×E = − ∂
∂t
B , ∇ ·B = 0 , ∇×H = J + ∂

∂t
D , F = q (E + v ×B) .

A. [15 points] Starting from the Lorentz force law show that the work per unit time done
on all charged particles in a system is given by

dW

dt
=

∫
d3r E · J ,

where J is the current density of the charged particles.

B. [20 points] A constant current I flows uniformly through a straight cylindrical wire of
finite resistance R that has a potential difference V maintained between its two ends.
The wire has length L and radius a � L. Compute the electric and magnetic fields
at the surface of the wire, and compute the Poynting vector. Explicitly indicate the
direction of the Poynting vector with respect to the wire.

C. [15 points] Determine the electromagnetic energy per unit time entering the wire and
compare this with naive expectations based on ohmic heating.
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2.17. ENERGY AND MOMENTUM OF ELECTROMAGNETIC FIELDS EM

2.17 Energy and Momentum of Electromagnetic Fields

A. [7 points] Starting from the Lorentz force law, show that the work per unit time done
on all charged particles in a system is given by

dW

dt
=

∫
d3xE(x) · J(x) ,

where J(x) is the current density of the charged particles.

B. [7 points] A constant current I flows uniformly through a straight cylindrical wire of
finite resistance R which has a potential difference V maintained between its two ends.
The wire has length L and radius a � L. Compute the electric and magnetic fields
at the surface of the wire, and compute the Poynting vector. Explicitly indicate the
direction of the Poynting vector with respect to the wire.

C. [6 points] Determine the electromagnetic energy per unit time entering the wire, and
compare this with the ohmic heating.

Consider now an insulating sphere of radius a with charge Q distributed uniformly over its
surface and uniform magnetization M = M êz throughout its volume.

D. [15 points] Calculate the angular momentum in the electromagnetic field.

E. [15 points] Assume the magnetization is slowly brought to zero (for example, by heating
up the sphere). Because of the varying magnetic field, an electric field will appear that
will change the mechanical angular momentum of the sphere. Compute the net change of
mechanical angular momentum and compare with the answer to the previous question.
Assume that the rotation of the sphere is such that v/c� 1 for any point on the surface
of the sphere.
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2.18. FARADAY EFFECT EM

2.18 Faraday Effect

A plane wave with frequency ω travels in a medium filled with molecules that can be regarded
as simple harmonic oscillators with charge q, mass m, and spring constant κ.

A. [20 points] Neglecting the effect of the magnetic field of the wave on the molecular
oscillations, show that the index of refraction is

n =

√
1 +

Nq2

ε0m( κ
m
− ω2)

,

where N is the number of molecules per unit volume. [Hint: write the equations of
motion for the harmonic oscillator in the presence of the electric field of the wave, and
then use it to determine the polarization.]

B. [20 points] Assume now that a static magnetic field in the direction of propagation of
the wave is present in the medium. Show that the two states of circular polarization
(R/L) of the wave have a different index of refraction given by

n =

√
1 +

Nq2

ε0m( κ
m
− ω2 ± qB

m
)
,

where the upper and lower signs correspond to the two states of circular polarization of
the wave. As in part A, ignore the magnetic field generated by the wave.

C. [5 points] Explain what would happen to an electro-magnetic wave initially plane-
polarized as it travels through a medium as described in part B.
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2.19. GAUGING AWAY EM

2.19 Gauging Away

[30 points] Consider vector and scalar potentials given by:

A(t, r) = − q t

4πε0 |r|2
êr , Φ(t, r) = 0 .

A. Find the corresponding electric and magnetic fields, and the charge and current distri-
butions.

B. Use the gauge function λ(t, r) = −qt/(4πε0 |r|) to transform the potentials, and com-
ment on the result.
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2.20. HALL PROBE EM

2.20 Hall Probe

[30 points] A Hall probe with dimensions as shown
has conductivity σ and carries charge density ρ. The
probe is placed in an unknown magnetic field B ori-
ented in the +y direction. An external potential Vext

is applied to two ends of the probe, producing an
electric field in the +z direction. Between which pair
of ends is the equilibrium Hall voltage VHall observed?
Derive an expression for the magnetic field B in terms
of the above quantities and the dimensions of the
probe.
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2.21. IONOSPHERIC WAVES EM

2.21 Ionospheric Waves

The ionosphere is a plasma containing N free electrons per unit volume.

A. [10 points] First, assume the external magnetic field is zero. By considering the motion
of the electrons in the electric field of a plane wave, and neglecting the magnetic field of
the wave, show that the index of refraction of the medium, as a function of the frequency
ω, is

n =

√
1−

ω2
p

ω2

and determine ωp. Explain why we can ignore the positively charged ions.

B. [10 points] Describe in words what happens when a plane wave with frequency ω < ωp
hits the plasma.

C. [10 points] Now assume that the plasma is in a constant finite magnetic field B aligned
with the z axis. A circularly polarized electromagnetic plane wave propagates along the
+z-direction in the plasma with the electric field

E(σ)(z, t) = Eσ e
i(kσz−ωt) (êx + iσêy) ,

where σ ≡ ±1 determines the polarization of the wave. Show that the velocity of an
electron in the ionosphere is v(σ) = vσ0 e

i(kσz−ωt) (êx + iσêy) with

vσ0 =
−i|e|Eσ

m (ω − σω0)
,

where m is the electron mass, ω0 ≡ |e|B/m, and e < 0 is the electric charge of the
electron.

D. [10 points] Show that the refractive index for each circular polarization state may be
written in the form

nσ =

√
1− ωp2

ω(ω − σω0)
,

and define ωp.

A linearly polarized electromagnetic plane wave is propagating in the +z-direction. At z = 0
the electric field of the wave is along the x-direction, E(z=0, t) = E0 e

−iωt êx. Neglect the
magnetic field associated with the electromagnetic wave compared to B.

E. [10 points] What is the angle between the plane of polarization of the electromagnetic
wave at z = z0 and z = 0?
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2.22. INVERSE ELECTROSTATICS EM

2.22 Inverse Electrostatics

A static charge distribution produces a radial electric field,

E(r) =
Ae−b|r|

|r|
êr ,

where A and b > 0 are constants.

A. [15 points] What is the charge density? Make a sketch of the function.

B. [5 points] What is the total charge Q?
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2.23. LOCALIZED CURRENT DENSITY EM

2.23 Localized Current Density

A current distribution is confined to a region of space of size `. At distances r � ` the
magnetic field is

H(r, t) =
v × r
r3

(1− ikr) ei(kr−ωt) ,

with v a vector fixed in space (and r ≡ |r|, k ≡ ω/c).

A. [10 points] Using words and pictures, describe the magnetic field and its associated
electric field E(r, t).

B. [5 points] What type of current distribution might give rise to such fields?

C. [15 points] In the region of space where r � ` but kr � 1, determine the electric field
E(r, t) as completely as possible.

D. [15 points] In the region of space kr � 1, determine the electric field E(r, t) as com-
pletely as possible.

E. [10 points] Determine the rate of energy flow away from the region containing the current
source.
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2.24. MAGNETIC TORQUE EM

2.24 Magnetic Torque

An infinitely long cylinder of insulating material with radius a, permeability µ = µ0 and
permittivity ε = ε0 has a uniform volume charge density ρ > 0, a surface charge density σ,
and is electrically neutral (vanishing total charge per unit length). This cylinder is placed
in a uniform magnetic field B = B êz filling a cylindrically symmetric volume of radius RB

(RB > a) and of infinite extent in the z-direction. The symmetry axes of the insulating
cylinder and the magnetic field coincide, as shown in the figure. The cylinder is free to rotate
about its symmetry axis.

A. [6 points] Find the electric field E everywhere.

B. [9 points] Compute the Poynting vector and momentum density everywhere. Find the
angular momentum per unit length of the system, dL/dz, with the cylinder at rest.

C. [10 points] The magnetic field is now turned off with time dependence B(t). Determine
the electric field induced by the time-varying magnetic field.

D. [10 points] Find the torque per unit length, dτ/dz, on the cylinder as a function of time
and determine the mechanical angular momentum per unit length of the cylinder as a
function of time. Assume that any velocity at any point in the charge distribution is
small, so relativistic effects can be neglected.
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2.25. MAGNETOSTATICS EM

2.25 Magnetostatics

A. [6 points] Write Maxwells equations for D, E, H , and B, in the presence of a free
charge density ρ and free current density j.

B. [5 points] Define the field H in terms of the magnetic field B, the magnetization M ,
and the permeability of free space.

C. [14 points] Consider an infinite straight wire, with negligible radius, in empty space
carrying a constant current I, located at x = y = 0 and running in the z-direction.
State Ampere’s law and use it to find the magnetic field B a distance r from the wire.
Show that everywhere except at the wire, the field H can be written in terms of a
magnetic scalar potential, H = −∇ψ, where (up to an additive constant)

ψ(x) = − I

2π
Im [log(x+ iy)] .

A long, thin straight wire carrying current I
is placed a distance d above a semi-infinite
magnetic medium of permeability µ.

D. [10 points] Given that there are no free chagres or currents at the boundary of the
magnetic medium, write down the relation between components of B just above the
boundary and the components of B just below the boundary. Write this relation in
terms of the magnetic scalar potential just above the boundary, ψ>, and just below the
boundary, ψ<.

E. [15 points] Find the force per unit length (including direction) on the wire using the
method of images.
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2.26. MAXWELL’S EQUATIONS EM

2.26 Maxwell’s Equations

A. [5 points] Write the differential form of Maxwell’s equations describing electric and
magnetic fields in the presence of arbitrary charge and current distributions.

B. [5 points] How are the electric and magnetic fields related to the scalar potential Φ(r, t)
and vector potential A(r, t)?

C. [5 points] If a given system is time-reversed, i.e., t → −t, what happens to the charge
density, the current density, the electric field, and the magnetic field?

D. [5 points] If a given system is spatially-inverted, i.e., x → −x, what happens to the
charge density, the current density, the electric field, and the magnetic field?

Consider a system with vector and scalar potentials of the form

A(x, y, z, t) =
B0

a
xy êz , Φ(x, y, z, t) = 0 ,

where B0 and a are time-independent constants.

E. [6 points] Compute the electric and magnetic fields of this system, and sketch represen-
tative field lines in the z = 0 plane.

F. [6 points] Do the electric and magnetic fields satisfy the free-space Maxwell’s equations?

G. [8 points] An observer moves with velocity v = v êz in the z-direction along a line
passing through the point (x, y) in the xy-plane. What is the difference between the
scalar potential at the point (x, y) and the point (0, 0) in the z=0 plane, as measured
by the moving observer?
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2.27. MAXWELL STRESS TENSOR EM

2.27 Maxwell Stress Tensor

[40 points] Recall the definition of the Maxwell stress tensor,

Tij = ε0
(
EiEj − 1

2
δijE

2
)

+ µ0

(
BiBj − 1

2
δijB

2
)
.

A. Show that the trace of the stress tensor is a scalar, and identify the corresponding
invariant in this case.

B. Show that the total force exerted on charges in a volume V is, in the static case, given
by

Fi =

∮
S

Tij dΣj ,

were the surface S is the boundary of the volume V , and dΣ is the outward directed
surface area element. (There is an implied sum over repeated indices). It is sufficient to
show this when there is a single point charge within the volume V .
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2.28. METALLIC CONDUCTORS EM

2.28 Metallic Conductors

[40 points] In the early years of this century,
Richard Tolman conducted a series of experi-
ments designed to determine the properties of the
charge carriers that make electric current in liquid
electrolytes and in conducting metals. He (and
others) showed that the charge carriers in liquids
were heavier than a hydrogen atom. The experi-
ment in metallic conductors proved more difficult.
The apparatus used in his first successful exper-
iments is shown schematically in the figure. A
coil of copper wire wound about a non-conducting
disk was rotated rapidly about the axle by means
of an electric motor. After the disk reached a
steady speed, the motor was disconnected from
the axle and brought to rest. With the disk now
spinning at a known rate, a brake was applied to
the edge of the disk bringing it rapidly to rest. A current pulse was detected with the ballistic
galvanometer. (The thin wires connecting the ends of the copper coil to the galvanometer
were allowed to twist about the axle.)

A. Using a simplified model in which the conductor is isolated from the external circuit,
write the equation of motion for the “free” charge carriers during the very short stopping
time. You may neglect collisions which turn out to have a very small effect in this
experiment.

B. Using a result of part A, derive an expression for the charge to mass ratio of the charge
carriers in terms of the angular velocity ω of the disk, the disk radius r, and the length
L of the copper coil, and the charge Q measured by the ballistic galvanometer, and
whatever properties of the galvanometer circuit you need. (Neglect effects due to the
Earth’s or other sources of extraneous electromagnetic fields.)

C. The experimenters found it necessary to surround the apparatus with compensating
coils to cancel both vertical and horizontal components of the Earth’s magnetic field.
Why? Assume that the axle is vertical, the coil is perpendicular to the axle, and it does
not “wobble”.
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2.29. METALLIC REFLECTION EM

2.29 Metallic Reflection

Consider ultraviolet-rays with angular frequency ω incident on a plane metal surface. The
density of conduction electrons in the metal is ne.

A. [5 points] Comment on why metals are shiny (reflective to visible light), and the differ-
ence in color between silver and gold or copper.

B. [25 points] Determine the critical angle of incidence θc beyond which the incident rays
are totally reflected.

C. [10 points] For normal incidence, what is the reflection coefficient?
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2.30. MULTIPOLES AND CAPACITANCE EM

2.30 Multipoles and Capacitance

A. [10 points] In a static system, the energy stored in the electric field is

W =
ε0

2

∫
d3r |E(r)|2 .

Show that this can be written as

W =
1

2

∫
d3r ρ(r) Φ(r) .

B. [10 points] By performing a multipole expansion of the potential, Φ(r), far from a
localized charge distribution, find the contributions to Φ(r) from the charge, electric
dipole moment and electric quadrupole moments of the distribution.

C. [10 points] Consider a localized charge distribution that is axially-symmetric about the
z-axis and for which all electrostatic moments vanish except for the quadrupole moments.
This charge distribution has a quadrupole moment Qzz and is centered at the origin of
a Cartesian coordinate system. A point charge, q0, is located far from the distribution
at r = (r, θ, φ) in spherical coordinates, where θ is the angle measured from the z-axis.
The force on the point charge can be written as

F = α êr + β êz ,

where êr is the unit vector pointing toward the charge and êz is the unit vector along
the z-axis. What are α and β in terms of r, θ and φ?

D. [20 points] Consider an isolated system comprised of two spherical conducting shells of
radii a1 and a2, separated by a distance d� a1,2. Show that if shell-2 is grounded, and
shell-1 is held at a potential V1, the charge on shell-1 is approximately

q1 = 4πε0 V1
a1d

2

d2 − a1a2

.

Find the charge on shell-2. Discuss the corrections to these expressions.
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2.31. PLANAR WAVEGUIDE EM

2.31 Planar Waveguide

[40 points] A waveguide is formed by two infinite parallel perfectly conducting planes separated
by a distance a. Choose the z-direction to be normal to the planes. Consider the guided plane
wave modes in which the field strengths are independent of the y coordinate. For a given
wavelength λ, find the allowed frequencies ω. For each such mode, find the phase velocity vp
and group velocity vg.
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2.32. PLASMA DISPERSION EM

2.32 Plasma Dispersion

[40 points] A beam of plane-polarized electromagnetic radiation with (angular) frequency ω
and electric field amplitude E0 is normally incident on a region of space containing a low
density, neutral plasma containing n0 electrons/unit volume.

A. Determine the frequency-dependent conductivity, σ(ω).

B. Show that the dispersion relation for electromagnetic radiation has the form, ω2 =
k2 c2 + ωpl

2, for some plasma frequency ωpl. What is the (frequency-dependent) index
of refraction?

C. A pulsar emits a pulse of broadband electromagnetic radiation which is 1 ms in duration.
The pulse propagates 1000 light years (≈ 1019 m) through interstellar space to reach
radio astronomers on Earth. Assume that the interstellar medium contains a low density
plasma with plasma frequency ωpl = 5000 s−1. Estimate the difference in measured pulse
arrival times for radio telescopes operating at 400 MHz and 1000 MHz.
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2.33. POINT CHARGE AND CONDUCTING SPHERE EM

2.33 Point Charge and Conducting Sphere

[30 points] Consider an isolated spherical conductor of radius a, together with a point charge
q located a distance r > a from the center of the conductor.

A. Show that the effect of the conductor is equivalent to the presence of two point charges:
+qa/r at the center of the conductor, and −qa/r at a distance a2/r along the line from
the center of the conductor to the outside point charge.

B. What is the smallest positive charge that can be applied to the sphere which will cause
the resulting surface charge density on the sphere to be everywhere positive?
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2.34. RECTANGULAR WAVEGUIDE EM

2.34 Rectangular Waveguide

A waveguide is formed from a rectangu-
lar cavity inside a perfect conductor. The
cavity has sides of length a and b in the
x and y directions and has infinite extent
in the z-direction. Further, the cavity is
filled with a linear, homogeneous dielec-
tric with permeability µ = µ0 and permittivity ε. A transverse magnetic (TM) traveling wave
exists in the wave guide of the form

E(x, y, z, t) = [E0x(x, y) êx + E0y(x, y) êy + E0z(x, y) êz] e
i(kz−ωt) .

A. [10 points] Write down Maxwell’s equations for the E and B fields inside the dielectric-
filled waveguide. Specify the boundary conditions that E and B must satisfy at the
conductor-dielectric interface.

B. [10 points] Use Maxwell’s equations to write E0x, E0y, B0x, and B0y in terms of E0z.

C. [10 points] Find the second-order partial differential equation that E0z(x, y) satisfies in
the wave guide.

D. [10 points] Solve the equation in part C to find solutions for E0z(x, y) in the wave guide
which satisfy the boundary conditions of part A.

E. [10 points] Find the cut-off frequency of the TMmn mode.
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2.35. REFLECTION AND REFRACTION EM

2.35 Reflection and Refraction

A monochromatic plane-wave polarized in the
plane of incidence is incident upon a boundary
between two linear, homogeneous media at an
angle θI to the normal. Medium 1 has refrac-
tive index n1 and medium 2 has refractive index
n2. Both media have permeabilities equal to that
of the vacuum, µ1 = µ2 = µ0.

A. [7 points] Write down the boundary conditions that relate arbitrary electric and mag-
netic fields on either side of the boundary.

B. [8 points] Write down general expressions for the incident, reflected and transmitted
electric and magnetic fields. Indicate all spatial and time dependences.

C. [8 points] Derive relations between the reflected scattering angle θR and the incident
angle θI , and between the transmitted angle θT and the incident angle θI .

D. [9 points] Relate the reflected electric field to the incident electric field.

E. [9 points] Find an expression for Brewsters angle, θB, the incident angle for which in-
plane polarized light is perfectly transmitted. What is θB for media with n1 = 1 and
n2 = 2.4?

F. [9 points] Find the reflection and transmission coefficients.
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2.36. RETARDED FIELDS EM

2.36 Retarded Fields

[60 points] The “retarded fields” produced by a point charge moving with arbitrary velocity
v and acceleration a can be written in the form

E(r) =
e/(4πε0)

(1− β · n̂ret)3

{
n̂ret − β
γ2 |Rret|2

+
n̂ret × [(n̂ret − β)× a]

c2|Rret|

}
, B(r) = n̂ret ×

E(r)

c
.

Here Rret ≡ r − rret is the displacement vector of the point r, where the field is evaluated,
from the position rret of the charge at retarded time t′ ≡ t − |r − rret|/c. The unit vector
n̂ret ≡ Rret/|Rret|, the velocity, and the acceleration are evaluated at the retarded time t′ and,
as usual, β ≡ v/c and γ ≡ 1/

√
1− β2.

A. Consider a charged particle moving with constant velocity v.

i. Show from the expressions above that the electric field
produced by the particle is radial from the present po-
sition (not the retarded position) of the particle, i.e.,

E(r) =
e n̂p

4πε0 γ2Rp
2(1− β2 sin θ2)3/2

,

where Rp is the displacement of the point r from the
present position of the charge, θ is the angle between
Rp and v, and n̂p ≡ Rp/|Rp.

ii. How does the electric field for a relativistic particle differ from that of a slowly
moving particle?

iii. What is the intensity of the radiation emitted by this charge if it is moving with
relativistic speed?

B. Now suppose the charged particle moves in
a circular path at constant speed. Derive an
expression for the radiation intensity emitted
by this particle in the plane of the orbit.
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2.37. RETARDED POTENTIALS EM

2.37 Retarded Potentials

The retarded potentials

Φ(x, t) =
1

4πε0

∫
d3x′

ρ(x′, tr)

|x− x′|
, A(x, t) =

µ0

4π

∫
d3x′

J(x′, tr)

|x− x′|
, (1)

with tr ≡ t− |x− x′|/c, are solutions to the (Lorentz gauge) wave equations:

�Φ(x, t) = −ρ(x, t)/ε0 , �A(x, t) = −µ0 J(x, t) ,

(with � ≡ − 1
c2

∂2

∂t2
+ ∇2). In the simple case of a point particle with charge q moving with

constant velocity v, Eq. (1) yields the (Lienard-Wiechert) potentials,

Φ(x, t) =
q

4πε0

1

|r| − r · v/c
, A(x, t) =

v

c2
Φ(x, t) . (2)

where r is the displacement vector from the retarded position of the charge to the point where
the potential is evaluated.

A bar is moving at constant speed u = u êx, as shown
in the figure. The length of the bar, in the lab frame,
is `. The bar has negligible diameter, and has charge Q
uniformly distributed over its length.

A. [15 points] Use Eq. (1) to calculate the potentials at point P = (x0, 0, 0) as a function
of time. Assume the bar is to the right of the point P , as shown in the figure.

B. [10 points] Show that your expressions reduce to the Lienard-Wiechert potentials of
Eq. (2) in the limit `→ 0 with u/c fixed.

C. [15 points] In the `→ 0 limit, calculate the electric and magnetic fields as a function of
time at the origin. Start either with the potentials you found in part B, or with Eq. (2).

D. [10 points] Re-calculate the fields of part C, starting with Coulomb’s law in the rest
frame of the charge and then applying the appropriate Lorentz transformation.
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2.38. SLAB TRANSMISSION EM

2.38 Slab Transmission

A plane electromagnetic wave with wavelength λ is nor-
mally incident on an infinite slab of non-conducting
material with thickness d, constant permittivity ε, and
permeability µ. The incident electric field amplitude is
E0, and the transmitted electric field amplitude is Et.
The reflected wave is not shown. There is vacuum on
either side of the slab.

A. [5 points] State carefully the boundary conditions satisfied by the fields at the interface
between material and vacuum.

B. [20 points] Find the equations relating incident, transmitted and reflected waves, and
use them to calculate the transmission coefficient T ≡ |Et|2/|E0|2.

C. [10 points] For what particular ratios of slab thickness to wavelength in the slab will
maximum transmission occur?
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2.39. SUPERCONDUCTORS EM

2.39 Superconductors

A superconductor can be regarded as a perfect conductor, which is at the same time a perfect
diagmagnetic material with zero magnetic permeability µ = 0.

A. [10 points] Consider a superconductor in contact with vacuum. Formulate the boundary
conditions for the electric and magnetic fields, E, and B, on the surface the supercon-
ductor.

B. [10 points] Consider a uniform magnetic field. Insert a superconducting sphere with
radius R into this field. Determine the magnetic field outside the sphere (in any system
of coordinates).

Consider a planar waveguide of two parallel superconducting slabs, separated by a distance
d. The space between the two slabs is vacuum.

C. [10 points] Are the modes of this waveguide the same or different than the modes
in the waveguide where the superconductors are replaced by conductors with infinite
conductivity, but with the magnetic permeability of vacuum? Explain your answer in
words.

D. [20 points] Find the velocity of propagation of the mode with the lowest frequency at
given wave number q.
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2.40. SMALL LOOP, BIG LOOP EM

2.40 Small Loop, Big Loop

A closed circular loop of thin wire of radius a, lying in the xy-plane and centered at the origin,
carries a clockwise persistent current I when viewed down the z-axis toward the ring.

A. [10 points] Using words and pictures, describe the magnetic field due to the loop.

B. [15 points] Give explicit expressions for the magnetic field H(z) everywhere on the z-
axis, and also find the leading asymptotic behavior of H(r) at large distance, |r| � a.

C. [20 points] A second wire loop of radius b � a and electrical resistance R is placed,
concentric and coplanar, around the small loop described above. The small loop is
then flipped 180◦ about the x-axis, causing a momentary current to flow in the large
loop. Determine the direction of this current and how much charge it carries during the
flipping.
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2.41. TIME DEPENDENT FIELDS (1) EM

2.41 Time Dependent Fields (1)

The scalar and vector potentials produced by an arbitrary localized source may be expressed
as

Φ(r, t) =
1

4πε0

∫
dτ

ρ(r′, tr)

|r − r′|
, A(r, t) =

µ0

4π

∫
dτ
j(r′, tr)

|r − r′|
.

A. [10 points] Carefully define the quantities µ0, ε0, ρ, j, dτ , r′, and tr.

Two infinite, parallel, straight wires (wire 1 and wire 2) sepa-
rated by a distance 3d, run parallel to the z-axis. One carries a
current I(t) in the +z-direction, while the other carries current
I(t) in the −z-direction, where

I(t) = q0 δ(t) ,

(with δ(t) a Dirac delta function). Point P lies in the plane of
the wires and in the z = 0 plane. It is located a distance d from
wire 1, and a distance 2d from wire 2, as illustrated at right.

B. [8 points] If an event occurs on wire 1 at a distance z along the z-axis above the point
P , how much time must pass before this event can influence physics at point P? What
is this time difference for an event on wire 2 with the same z-coordinate as the event on
wire 1?

C. [18 points] Determine the vector potential A(t) and scalar potential Φ(t) at the point
P , due to the current I(t), as a function of time.

D. [12 points] Determine the leading behavior of the electric field at the point P for large
times, t� 2d/c.

2002au 105



2.42. TIME DEPENDENT FIELDS (2) EM

2.42 Time Dependent Fields (2)

The scalar and vector potentials resulting from an arbitrary localized source may be expressed
as

Φ(r, t) =
1

4πε0

∫
d3r′

ρ(r′, tr)

|r − r′|
, A(r, t) =

µ0

4π

∫
d3r′

j(r′, tr)

|r − r′|
.

A. [5 points] Define ρ, j, r, and r′. Define tr in terms of r, r′, t, and the speed of light c.

After time t = 0, a time-dependent, uniform current
density K(t) flows in the infinite xy-plane at z = 0, so
K(t) = êyK0(t) δ(z), with δ(z) a Dirac delta function
andK0(t) vanishing for t < 0. There are no free charges
on the sheet, or anywhere in space, at any time.

B. [10 points] For a point located at (x0, y0, z0), give the contributions to Φ(x0, y0, z0, t)
and A(x0, y0, z0, t) from the current in a ring of radius s and width ds in the xy-plane
centered on x = x0, y = y0, z = 0 (as shown in the figure).

C. [5 points] At any given time t, what is the maximum value of s that can contribute to
Φ(x0, y0, z0, t) and A(x0, y0, z0, t)?

D. [15 points] Show that the vector potential may be expressed in the form

A(x0, y0, z0, t) = êy Θ(t− z0/c)

∫ t−z0/c

0

dη f(η) ,

where Θ(x) is a unit step-function. Find f(η).

E. [7 points] Find the electric and magnetic fields for z > 0.

F. [8 points] What is the intensity of radiation emitted by this sheet at a distance d from
the sheet as a function of time?
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2.43. TRANSVERSE WAVES EM

2.43 Transverse Waves

Consider electromagnetic waves in free space of the form

E(x, t) = E0(x, y) ei(kz−ωt) ,

B(x, t) = B0(x, y) ei(kz−ωt) ,

were E0(x, y) and B0(x, y) are orthogonal to êz.

A. [20 points] Using Maxwell’s equations, derive the relation between k and ω, as well as
the relation between E0(x, y) and B0(x, y). Show that they satisfy the equations for
static electric and magnetic fields in free space.

B. [10 points] Derive the boundary conditions for E and B on the surface of a perfect
conductor, taking the surface charges and currents into account.

XXX
C. [10 points] Consider a wave of the above type propa-

gating along a coaxial cable, a cross section of which is
shown at right. Assume that the central conductor and
outer sheath are perfect conductors. Make a sketch of the
electromagnetic field pattern, within the cross-section, for
non-zero fields. Take the z-axis to point out of the page.
Indicate the signs of the charges, the field directions, and
the directions of the currents. Justify in words each of
your choices on the sketch.

D. [10 points] For a particular value of z, derive expressions for E and B in terms of the
local charge per unit length λ and the current i in the central conductor.
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2.44. TWO-DIMENSIONAL ELECTROSTATICS EM

2.44 Two-dimensional Electrostatics

A. [6 points] Consider a uniformly charged line with charge density λ aligned parallel to the
z-axis and passing through the point (x0, y0, 0). Calculate the electric potential φ(x, y)
for all points in the xy-plane.

B. Three-dimensional problems with continuous translational symmetry along one direction
can be treated as two-dimensional. In such cases, methods from complex analysis are
often helpful. Let the position of the line charge from part A be denoted as u0 = x0 + iy0

(see Figure (i)).

i. [6 points] Prove that the complex potential w(u) in the xy-plane is

w(u) = − λ

2πε0
ln
u− u0

R
,

where R is an arbitrary real constant. What is the relationship between w(u) and
φ(x, y)? What basic properties must w(u) satisfy?

ii. [6 points] Find w(u) in the upper half-plane, Im u > 0, for the same line charge, if
the lower half-plane is filled with a grounded conductor (see Figure (ii)).

Now suppose that all space outside of a wedge of angle α is filled with a grounded
conductor (see Figure (iii)).

iii. [6 points] Explain why, for arbitrary values of α and u0, the method of images
is not helpful for this problem. Give a specific example for which the method of
images would lead to great computational difficulties. Explain.

iv. [6 points] What complex function f(u) will map the flat boundary depicted in
Figure (ii) onto the bent boundary in Figure (iii)? Find w(u) in the region outside
the conductor. If you cannot determine the function f(u) then describe how you
would calculate w(u) if f(u) were known.
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2.45. WAVEGUIDES EM

2.45 Waveguides

A. [25 points] Consider the fields near the
surface of a conductor. If the conductor
is perfect (i.e., its conductivity σ →∞),
then the fields will show behavior like
that sketched at the right.

Now assume the conductor to be a ma-
terial with magnetic permeability µ and
large, but finite, conductivity σ.

i. [20 points] Show that, if one neglects the displacement current and the variations of
the fields in the direction parallel to the surface, the fields in the conductor should
satisfy

E ≈ 1

σ
nξ ×

∂H

∂ξ
, H ≈ −i

µω
nξ ×

∂E

∂ξ
,

where ξ is a coordinate normal to the surface which vanishes at the surface and
increases inward into the conductor, and nξ = ∇ξ is a unit normal pointing into
the conductor. Next, show that a solution of the above relations is given by

H = H0 e
−(1−i)ξ/δ ,

with nξ ·H0 = 0 and δ ≡ C/
√
ωσ, with C some constant.

ii. [5 points] Make a sketch of the magnitude of the fields inside the conductor, similar
to the figure above, for the case when σ is high but not infinite.

B. [25 points] Consider now a square wave
guide with inner dimensions L×L, as shown
in the figure. The inside of the guide is un-
der vacuum.

i. [10 points] Assume the guide to be made of a perfect conductor and express the
boundary conditions to compute E and B and give all solutions for Ez(x, y, z, t)
such that êz ·B = 0. Assume the waves are traveling in the positive z direction
with angular frequency ω.

ii. [15 points] Now treat the conductor as having large but finite conductivity. For
the modes you just found, calculate the Poynting vector in the conductor and show
that this implies that there is attenuation and that the magnitudes of the fields in
the vacuum inside the waveguide will decrease as

|H(z)| = |H(0)| exp

(
−f(ω)z√

σ

)
,

where f(ω) is independent of σ.
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Chapter 3

Quantum Mechanics

3.1 Angular Momentum & Angular Distributions

Particle A, whose spin J is less than 2, decays into two identical spin-1/2 particles of type B.

A. [14 points] What are the allowed values of the orbital angular momentum L, the com-
bined spin S = s1 + s2 (where s1 and s2 are the spin vectors of the B particles), and
the total angular momentum J of the decay products? Give the results from two cases:
first if particle A has odd parity and then if A has even parity.

B. [6 points] Now assume that particle A has even parity and is at rest. Suppose that you
observe that one of the B particles from a given decay has its spin in the x-direction.
What would a second observer find when they measure the x-component of the spin of
the other B particle? What would they find if they measure the z-component of the
other B particle’s spin?

A negative parity spin-1 particle C decays into a spinless particle α and a spin-1 particle δ.
Both α and δ have even parity, and the decay process conserves parity.

C. [5 points] What is the angular distribution W (θ, φ) of δ particles from an unpolarized
sample of C’s? (θ and φ are the usual polar and azimuthal angles relative to the z-axis.)

D. [12 points] Spin polarized C particles are prepared at rest with spin projections along ẑ
of +1. Find the angular distribution W (θ, φ) of the resulting δ particles.

E. [8 points] Find the expectation value for the z-component of the spin of the δ particles
emitted in the decay of these spin-polarized C particles.
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3.2. ANGULAR MOMENTUM AND MEASUREMENTS QM

3.2 Angular Momentum and Measurements

A. [10 points] Show that a state with position wavefunction (y − iz)k is an eigenstate of
the orbital angular momentum operator L̂x, and find its eigenvalue.

B. [10 points] A particle moves in a three-dimensional central potential with a wavefunction
of the form

Ψ(r, θ, φ) = R(r)
[

1
2

cos (4φ) + 2 cos (2φ)
]
e−2iφ . (∗)

A measurement of L̂z performed on this system observes a value of−6~, and a subsequent
measurement of L̂z is later performed on the same system. What are the possible
outcomes of this second measurement and what are the probabilities of the possible
outcomes?

C. [10 points] Another system is prepared with the wavefunction in Eq. (∗). A measurement
of L̂z is performed on this system. What are the possible outcomes of this measurement,
and what are the probabilities of each possible outcome? What is the expectation value
of L̂z, and what is its standard deviation?
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3.3. ATOM IN A HARMONIC TRAP QM

3.3 Atom in a Harmonic Trap

An atom of mass M has a ground state with energy E0 and a first-excited state with energy
E1 = E0 +~ω0. The atom is placed in a harmonic potential, V (x, y, z) = 1

2
MΩ2(x2 + y2 + z2).

Assume that ω0 � Ω, implying that the motion of the atom as a whole in the potential, and
the dynamics of electronic degrees of freedom, are not strongly coupled. For times t < 0,
the atom is in the ground electronic state, and the ground state of the atomic center-of-mass
motion. Starting at time t = 0, an electromagnetic plane wave propagating in the z-direction
with wave number k is incident on the atom. The interaction is described by:

Ĥint = εF̂ (k)
[
ei(kẐ−ωt) + e−i(kẐ−ωt)

]
,

where ε� ~Ω has units of energy, F̂ (k) is an operator that acts only on the internal electronic
coordinates, and Ẑ is the position operator which measures the z-coordinate of the atomic
center of mass.

A. [10 points] Show that at some much later time t, to lowest order in ε, the probability
for finding the system in the state of oscillation |0, 0, n〉, with energy (n+ 3

2
)~Ω, and an

excited electronic state with energy E1, is maximal when ω = ±(ω0 + nΩ).

B. [11 points] Define conventional lowering and raising operators,

aZ =

(
Ẑ +

i p̂

MΩ

)√
MΩ

2~
, a†Z =

(
Ẑ − i p̂

MΩ

)√
MΩ

2~
,

where p̂Z is the momentum operator conjugate to Ẑ. Calculate the commutator [aZ , a
†
Z ],

and express the matrix element C(k) ≡ 〈0, 0, n|eikẐ |0, 0, 0〉 in terms of aZ , a
†
Z .

C. [15 points] Calculate the matrix element C(k) defined in part B. What criterion must
Ω, M , and ω0 satisfy for C(k) to be near unity? Does this condition contradict the
assumption ω0 � Ω made above?

2004sp,2007sp 112



3.4. BOUND STATES IN ONE-DIMENSIONAL WELLS (2) QM

3.4 Bound States in One-dimensional Wells (2)

A. [15 pts points] A spinless particle of mass m moves freely and non-relativistically in
one dimension subject to a rectangular potential energy well (V0 > 0),

V (x) =

{
−V0 , x0 ≤ x ≤ x0 + L ;

0 , x < x0 or x > x0 + L .

First consider the limit V0 →∞. Make a sketch of the magnitude of the wave function,
|Ψ(x)|, as function of x for both the ground state and the first excited state in the range
x0/2 ≤ x ≤ 3x0/2 + L, assuming both are bound states. Find an expression for the
energy (measured with respect to the bottom of the well) of the nth bound state in this
infinite rectangular well (n = 1 is the ground state).

Describe in words and with a sketch how the form of the magnitude of the wave function,
|Ψ(x)|, changes for a finite potential, V0 <∞.

B. [10 pts points] Define a length parameter le characterizing the (finite) depth of the
potential well via

V0 =
h2

2m

1

l2e
,

where m is the mass of the particle. Show, based on the intuition gained in part A, that
for le = L/n there are at least n bound states.

C. [10 pts points] The figure above shows four potential wells. All are very far apart from
each other. Two are at the “edge”, beyond which V (x) = +∞. Which of the 4 wells
has the lowest bound state energy? Explain your answer with a qualitative argument.

D. [15 pts points] Derive an exact relation between the bound state energy levels of the
triangular well in the middle, III, and the semi-triangular well at the left edge, I.
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3.5. BREAKING DEGENERACY QM

3.5 Breaking Degeneracy

Consider an electron in a spherically symmetric potential. The spatial part of the wavefunction
of the electron in an eigenstate of the Hamiltonian with energy E1 has the form

ψ1(r) = x f(|r|) ,

and satisfies the normalization condition∫
d3r |ψ1(r)|2 = 1 .

(Here x is a Cartesian component of the position vector r.)

A. [10 points] Is ψ1(r) an eigenfunction of the orbital angular momentum operator Lz, the
generator of rotations around the z-axis? Show your work.

B. [10 points] Write down a complete set of linearly-independent wavefunctions that have
the same energy eigenvalue E1 and are related by rotational symmetry.

C. [10 points] A spin-orbit interaction of the form

VSO = U0 S ·L/~2 ,

perturbs the system. [U0 is independent of r, and L and S are the orbital and spin angu-
lar momentum operators, respectively.] For both j = `± 1/2, find the first order energy
splitting of the E1 level. j here denotes a quantum number labeling the eigenvectors of
total angular momentum J = L+ S.

D. [30 points] Including the spin-orbit interaction of part C, consider an electron initially
in the state |ψ1〉 with spin up along the z-axis.

i. [15 points] Explicitly calculate the Clebsch-Gordon Coefficients that allow you to
rewrite |ψ1〉 in terms of eigenvectors of J2. You may wish to recall that

J±|j,m〉 = ~
√

(j ∓m)(j ±m+ 1)|j,m± 1〉.

ii. [15 points] Find the probability that the electron remains in the state |ψ1〉 with
spin up after a time t.

2006au,2010sp 114



3.6. CHARGED OSCILLATOR QM

3.6 Charged Oscillator

A particle with mass m and charge q moves in one dimension under the influence of a harmonic
potential V (x) = 1

2
mω2x2 and, in addition, a uniform electric field E = E êx.

A. [10 points] What is the Hamiltonian for the particle?

B. [15 points] Perform a coordinate transformation of the form y = αx+β, where α and β
are constants, such that the resulting Hamiltonian, expressed in terms of y, is equivalent
to that of a charge-free harmonic oscillator. What are the required values of α and β?

C. [10 points] Find the energy levels and corresponding eigenstates of the system.

2006sp 115



3.7. CLEBSCH-GORDON COEFFICIENTS QM

3.7 Clebsch-Gordon Coefficients

A. [20 points] Determine, from first principles, the Clebsh-Gordon coefficients for combining
j1 = 1 and j2 = 1 states to produce angular momentum eigenstates with m = 0. Hint:
Don’t try to remember complicated recursion formulas — use simple reasoning based
on elementary concepts (normalizations, orthogonality, ...) plus

J±|jm〉 ≡ (Jx ± iJy) |jm〉 = ~
√
j(j + 1)−m(m± 1) |j,m± 1〉 .

B. [15 points] Express the total angular momentum operator J2 in terms of J2
(i), J(i)z, and

J(i)± of the two j = 1 subsystems (for example: Jz = J(1)z + J(2)z), and use this to show
that the state

1√
6

[
|1,−1〉 ⊗ |1, 1〉+ 2|1, 0〉 ⊗ |1, 0〉+ |1, 1〉 ⊗ |1,−1〉

]
is an eigenstate of J2.
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3.8. COMMUTATOR CONSEQUENCES QM

3.8 Commutator Consequences

[20 points] Consider a system with Hamiltonian Ĥ. Two operators, Â and B̂, commute with
the Hamiltonian, [Ĥ, Â] = [Ĥ, B̂] = 0, but do not commute with each other, [Â, B̂] 6= 0. Show
that the system has degenerate energy levels.
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3.9. CYCLING AROUND QM

3.9 Cycling Around

The three mutually orthogonal states |ψr〉, |ψg〉, and |ψb〉 form a complete basis for the states
of a quantum mechanical particle. Let R denote an operator which cyclically permutes the
states, so that R|ψb〉 = |ψg〉, R|ψg〉 = |ψr〉, and R|ψr〉 = |ψb〉. The particle Hamiltonian is

H = −~ω (R +R†) .

A. [6 points] Is R an observable? Explain why or why not.

B. [18 points] Find the energy eigenvalues and eigenstates of the particle.
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3.10. DENSITY MATRICES QM

3.10 Density Matrices

A. [10 points] Explain briefly in what circumstances one should describe a physical system
using a density matrix rather than a wavefunction.

B. [10 points] Explain why the density matrix for an ensemble of spin-1/2 particles can
always be written in the form

ρ = 1
2

(I + a · σ) ,

with, as usual, σx = ( 0 1
1 0 ), σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
.

C. [5 points] Show that the ensemble average of the spin is given by 〈S〉 = 1
2
~a.

D. [15 points] The spins are placed in a magnetic field aligned in the z-direction, such that
the Hamiltonian is H = ωSz, and are kept at temperature T . The density operator
describing this situation is

ρ = Z−1 e−H/(kBT ) ,

with Z ≡ tr(e−H/(kBT )). Calculate 〈S〉 as a function of T , and comment on the result in
the limits T → 0 and T →∞.
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3.11. DELTA-FUNCTION POTENTIAL QM

3.11 Delta-function Potential

Consider a particle of mass M and charge Q moving in one dimension in an attractive potential
of the form V (x) = −α δ(x).

A. [6 points] What are the boundary conditions at x = 0 that the wavefunction must
satisfy?

B. [7 points] Show that a bound state |φ〉 exists for any value of the coupling α > 0, and
has the form

〈x|φ〉 =
√
κ e−κ|x| .

Express κ in terms of α, M and Q.

C. [7 points] Show that the eigenstate of the Hamiltonian describing the scattering of a
particle of momentum p = ~k incident from x = −∞ has a wavefunction of the form

〈x|ψk〉 =
1√
2π

[
eikx − 1

1 + iY k
e−ikx

]
θ(−x) +

1√
2π

iY k

1 + iY k
eikx θ(x) ,

where θ(x) is a unit step function. Determine Y . For a given positive energy E =
1
2
~2k2/M , how many independent eigenstates are there?

D. [6 points] Calculate 〈ψk′ |ψk〉. [Note that
∫ 0

−∞ dk e
ikx = πδ(x) − iP .V .

(
1
x

)
, where P .V .

denotes principal value.]

E. [12 points] Consider a quantum system with a discrete spectrum of energy eigenvalues.
The system is initially in its ground state |0〉, and at time t=0 a small, sinusoidally
time-dependent perturbation to the Hamiltonian of the form

V̂ (t) = V̂0 e
−iωt .

is applied. Show that the probability P (t) of finding the system at some later time in
an excited state |k〉 is

Pk(t) =
1

~2

∣∣〈k∣∣V̂0

∣∣0〉∣∣2 F (t∆ωk) ,

where F (x) = 4 sin2(x/2)/x2 and ~∆ωk is the excitation energy of state |k〉. Further
show that the total transition rate to a continuum of final states may be expressed as

Wi→
∑
f =

2π

~2

∣∣〈Ef ∣∣V̂0

∣∣Ei〉∣∣2 ρ(Ef ) ,

and define all the quantities in this expression.

F. [12 points] Returning to the case of a particle moving in the presence of a one dimen-
sional δ-function potential, suppose the particle is initially in the bound state, and a
perturbation of the form of V̂ (t) = q E x̂ e−iωt is applied to the system, where E is the
magnitude of an electric field. What is the rate for excitation into the continuum?
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3.12. DISCRETE OR CONTINUOUS QM

3.12 Discrete or Continuous

Consider the two-dimensional potential

V (x, y) = 1
2
λ2 x2 y2 .

A. [20 points] Does this potential have discrete or continous energy levels? Justify your
answer in convincing detail.

B. [20 points] Estimate (semi-quantitatively) the lowest energy level.
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3.13. ELECTRON NEAR INSULATOR QM

3.13 Electron near Insulator

Consider a non-relativistic electron that is trapped in a state
above a semi-infinite flat insulator. Due to the attractive
interaction between the electron and the insulator, the elec-
tron experiences a potential,

V (z) =

{
−A/z , z > 0 ;

+∞ , z < 0 .

where A is a positive constant, and z is the distance between
the electron and the surface of the insulator. The form of
the potential suggests that the system is a one-dimensional
analogue of a hydrogen atom. Assume the electron cannot
penetrate into the insulator.

A. [10 points] Sketch the wave functions in the z direction for the ground and first-excited
states and justify the boundary conditions.

B. [10 points] Determine the spatial part of the wave function for the ground state up to
a normalization constant. [Hint: would z e−az work?]

C. [10 points] What is the ground state binding energy in terms of A, ~, and me?

D. [10 points] State all the quantum numbers for all the states bound in the z direction
and write down the bound-state energies in terms of those quantum numbers. Take into
account electron spin, and the fact that the electron can move in all three directions.

E. [10 points] Is the total energy necessarily smaller than zero for a state bound in the z
direction? Explain.
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3.14. ELECTRON NEAR LIQUID HELIUM QM

3.14 Electron near Liquid Helium

The potential energy of an electron of charge −e and mass m, in the neighborhood of a
horizontal surface of a dielectric liquid with dielectric constant ε > 1, can be taken to be

V (x, y, z) =

{
− ε−1
ε+1

e2

z
, z > 0 ;

+∞ , z < 0 .
(1)

The electron is confined by an infinite potential barrier inside the region

0 < x < L1, 0 < y < L2 . (2)

A. [15 points] Show that the time-independent Schrödinger equation, with a potential that
is a function only of z, has stationary solutions, separable in Cartesian coordinates, of
the form

ψ(x, y, z) = Af(x) g(y)h(z) ,

and find the possible forms of f(x) and g(y) when the electron is confined in the region
(2).

B. [18 points] For the potential (1), show that one solution of the equation for the z-
component of the wavefunction has the form

h(z) = zα e−z/l0 . (3)

Find expressions for the index α, the length l0, and the energy E of the corresponding
solutions ψ(x, y, z).

C. [10 points] What is the mean distance of an electron from the surface z = 0 in terms of
the length l0?

D. [12 points] The dielectric constant of liquid helium is 1.057. Assuming that L1 and L2

are large, and using the facts that the binding energy of the electron in a hydrogen atom
is EH = me4/2~2 = 13.6 eV, and the Bohr radius a0 ≡ ~2/me2 = 0.053 nm, deduce the
binding energy of an electron to the surface of liquid helium, and its mean distance from
the surface. You can assume that the solution (3) gives the lowest possible energy.
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3.15. ELECTROMAGNETIC TRANSITIONS QM

3.15 Electromagnetic Transitions

Consider a spinless charged particle bound in a system by the Coulomb interaction, with
Hamiltonian

Ĥ0 =
p̂2

2M
+ e V̂C(|r̂|) .

[A caret (̂ ) over an object indicates that it is an operator, not a unit vector.] At time t0 = 0,
a sinusoidal perturbation is applied to the system, described by a Hamiltonian of the form

Ĥ1 = 2 v̂1 cos (k · r̂ − ωt) , (∗)

where v̂1 is some not-yet-specified operator.

A. [20 points] If the system is initially in its ground state, derive the long-time average tran-
sition rate to any one of the bound states of the system, assuming that the probability
of the system being in any excited state remains small.1

Now consider the specific situation where the perturbation results from the system being
immersed in a weak time-dependent electromagnetic field with wavelength λ � R, where R
is the characteristic size of the bound states. The leading interaction produces an operator v̂1

(in Eq. (∗)) given by

v̂1 = −eA
M
ε · p̂ ,

where ε defines the direction of the electromagnetic vector potential, and A denotes its mag-
nitude.

B. [10 points] Show that transition rates to excited states of the system are proportional
to

|Mfi|2 ∝ |〈f |r̂|i〉|2 .

C. [10 points] State the Wigner-Eckhart theorem, and use it to derive selection rules for
transitions between states with angular momentum |l,ml〉 and |l′,m′l〉 induced by the
electromagnetic field.

D. [10 points] Consider two spherical tensors, T̂
(k)
q and θ̂

(s)
u , of rank k and s, respectively.

How does the tensor product T̂
(k)
q ⊗ θ̂

(s)
u transform under rotations? Write your answer

in terms of the rotation matrices D(J)
mm′(αβγ), where α, β, and γ are the usual Euler

angles.

1A possibly useful fact: limt→∞
sin2(xt)
x2t = π δ(x).
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3.16. FIELD EMISSION QM

3.16 Field Emission

The energy levels near the surface of a metal appear
roughly as shown in the figure to the right. The en-
ergy gap between the Fermi surface of the metal and the
vacuum outside is the work function W . Photons with
energies greater than W , incident on the surface of the
metal, can free electrons from the metal surface.

In the presence of an electric field E , the electron emis-
sion mechanism is modified. Electrons can now tunnel
through the potential barrier, illustrated at right, in a
process known as “field emission.”

A. [20 points] The major factor controlling the field emission rate (for sufficiently small E)
is the WKB barrier penetration factor |T |2. Show that

|T |2 = exp

(
−4

3

W

~

√
2meW

e E

)
,

where me is the electron mass.

B. [10 points] Consider a metal for which the work function W = 2 eV, corresponding to a
light frequency ν = 5× 1014 Hz. Estimate the magnitude of the electric field E , in volts
per cm, required to induce substantial field emission. [Recall that mec

2 ' 5 × 105 eV
and c ' 3× 108 m/s.]
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3.17. HARMONIC TRAP QM

3.17 Harmonic Trap

Raising (b̂†j) and lowering (b̂j) operators for the three modes of oscillation of a particle of mass
M in a potential of the form

V (x̂) = V0 + 1
2

3∑
j=1

Kj x̂
2
j ,

satisfy the commutation relations:

[b̂†j, b̂
†
j′ ] = [b̂j, b̂j′ ] = 0 , [b̂j, b̂

†
j′ ] = δjj′ .

The position and momentum operators are related to the raising and lowering operators by

x̂j =

√
~

2MΩj

(b̂†j + b̂j) , p̂j = i

√
~MΩj

2
(b̂†j − b̂j) , (∗)

where Ωj ≡
√
Kj/M .

A. [5 points] Show that the possible eigenvalues of n̂j ≡ b̂†j b̂j are non-negative.

B. [18 points] Show that b̂j b̂
†
j = n̂j + 1.

C. [10 points] What are the commutators [n̂j, b̂j′ ] and [n̂j, b̂
†
j′ ], and why are the operators

b̂†j and b̂j called raising and lowering operators, respectively?

D. [15 points] Use equation (∗) to deduce the expectation values of x̂2
j and p̂2

j in an eigenstate
of n̂j with eigenvalue Nj.

E. [10 points] A set of noninteracting bosons is in the ground state of such a harmonic
trap, with K1 < K2 < K3. The trap is suddenly switched off, so that the potential is
now uniform. In which direction will the particles spread out most rapidly, and why?
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3.18. HYDROGEN ATOM IN ELECTRIC FIELD QM

3.18 Hydrogen Atom in Electric Field

Consider a hydrogen atom in a uniform external electric field E pointing in the z-direction.
Neglect the spins of the electron and proton so that the Hamiltonian can be approximated
as H = H0 + H1, where H0 = p2/(2µ) − e2/|r|, and H1 = e E · r. Assume that the external
field is sufficiently weak so that H1 � H0. Let |nlm〉 denote the eigenstates of H0, with
corresponding eigenenergies Enlm. You needn’t evaluate explicitly matrix elements appearing
in this problem, but may simply leave them in the form 〈n′ l′m′|O|nlm〉, where O is the
relevant operator.

A. [10 points] Give a first-order expression for the shift in the ground state energy (n = 1,
l = 0, m = 0) due to the external electric field, and then explain why this “linear Stark
effect” vanishes.

B. [15 points] Derive an expression for the second-order shift in the energy of the ground
state. State explicitly the n, l, and m values of all states that are mixed into the ground
state with non-vanishing amplitudes.

Now consider the n = 2, l = 0 first excited state.

C. [5 points] In the absence of an external electric field, explain why this state cannot decay
by emitting a single photon in an electric dipole transition.

D. [15 points] Consider the leading-order effect of a non-zero external field E on the n =
2, l = 0 state. State explicitly the n, l and m values of all states that are admixed into
the n = 2, l = 0 level with non-vanishing amplitudes. Then restrict yourself to admixed
n = 2 levels and find the perturbed eigenstates in the presence of the external field E .
(Neglect splitting of the unperturbed n = 2, l = 0 and n = 2, l = 1 states.) Give the
energy shifts of the perturbed eigenstates.

E. [5 points] Neglect multi-photon decay of the unperturbed (E = 0) metastable n = 2,
l = 0 state and let τ1 denote the decay lifetime of the unperturbed n = 2, l = 1 state.
Express the lifetimes of the perturbed energy eigenstates in terms of |E| and τ1.

Possibly useful information:

Spherical harmonics Y1,1(θ, φ) = −
√

3
8π sin θ eiφ, Y1,0(θ, φ) =

√
3
4π cos θ, Y1,−1(θ, φ) =

√
3
8π sin θ e−iφ.

Clebsh-Gordoan coefficients C〈J1M1, J2M2|J3M3〉: C〈11, 10|11〉 = +1/
√

2, C〈10, 11|11〉 = −1/
√

2.
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3.19. NONRELATIVISTIC HYDROGEN ATOM QM

3.19 Nonrelativistic Hydrogen Atom

Consider the nonrelativistic hydrogen atom where we treat the proton as being infinitely
massive and the electron moving in a stationary Coulomb (1/r) potential. At time t = 0, the
electron in our hydrogen atom is prepared in the state:

ψ(~r, t = 0) = N [2φ211 + 2φ210 + φ31−1].

Here the φnlm = Rnl(r)Ylm(θ, φ) are the normalized energy eigenfunctions with energy eigen-
values

En = −
(

e2

4πε0

)2
me

2~2n2
,

where me and e are the mass and charge of the electron.

A.) (5 pts) Determine the constant N in the expression for ψ(~r, t = 0).

B.) (5 pts) Determine whether the state ψ(~r, t) has definite parity (Pψ(~r, t) = ψ(−~r, t)),
and, if so, determine its parity. Explain your reasoning.

C.) (5 pts) What is the expectation for the energy, 〈ψ|H|ψ〉 at time t = 0 (write your
expression in terms of the En’s)? Explain your work.

D.) (5 pts) Compute L̂2ψ(~r, t = 0) where L̂ is the orbital angular momentum operator.

E.) (10 pts) Compute the expectation value for the z-component of the angular momentum,
〈ψ|Lz|ψ〉, at time t = 0 and find its uncertainty, σLz , (also at t = 0).

F.) (10 pts) What is the probability that a measurement of the energy, at time t′ > 0 will
yield the value E3? E5? Explain your work!

G.) (10 pts) Find the expectation value of the x-component of the angular momentum, 〈Lx〉,
in the state ψ(~r, t = 0). Explain your work. HINT: L±Ylm = ~

√
(l ∓m)(l ±m+ 1)Ylm±1
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3.20. HYDROGENIC STATES QM

3.20 Hydrogenic States

Position space wavefunctions for eigenstates of the hydrogen atom obtained from nonrelativis-
tic quantum mechanics have the form

ψn`m(x) = Rn`(r)Y
m
` (θ, φ) ,

where n = `+1, `+2, · · · , and Y m
` (θ, φ) are spherical harmonics.1 The corresponding energy

levels are given by the Bohr formula

En = −
(

e2

4πε0

)2
m

2 ~2 n2
, (∗)

where m and e are the mass and charge of the electron. (The proton is assumed to be infinitely
heavy.)

A. [5 points] Show that the states with ` = 1 and ` = 0 have a definite parity, and determine
the parity in each case.

B. [20 points] Derive, from the Schrodinger equation, expression (∗) for the ground state
energy E1, and find the radial part of the ground state wave function R10(r) (unnormal-
ized).

1 The ` = 0 and ` = 1 spherical harmonics are Y 0
0 (θ, φ) = 1√

4π
, Y +1

1 (θ, φ) = −
√

3
8π sin θ eiφ, Y −11 (θ, φ) =√

3
8π sin θ e−iφ, and Y 0

1 (θ, φ) =
√

3
4π cos θ.
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3.21. HYPERFINE SPLITTING QM

3.21 Hyperfine Splitting

The hyperfine structure in the ground state of the hydrogen atom is due to the magnetic
interaction between the electron spin S and the proton spin I. Both particles have spin 1/2.
The spin Hamiltonian for this interaction may be written as aS · I, with a a constant. (The
21 cm electromagnetic radiation which is of great importance in astrophysics originates in
hydrogen hyperfine structure transitions.)

A. [5 points] What are the possible values of the total angular momentum F ≡ S + I?

B. [10 points] Find the difference in energy between the eigenstates of the spin Hamiltonian.
Express your answer in terms of the constant a.
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3.22. NEUTRON SPINS QM

3.22 Neutron Spins

A. [8 points] The spin state of a spin-1
2

particle with magnetic moment µ = γ S, in a con-
stant external magnetic field B = êz B0, evolves according to i~ ∂

∂t
|Ψ〉 = −γ SzB0 |Ψ〉.

Assume that the state at time t = 0 satisfies Sx |Ψ〉 = ~
2
|Ψ〉. What is the probability

that at time t > 0 a measurement of the projection of the spin along the x-direction will
yield −~

2
?

B. [15 points] A system of two neu-
trons has zero total spin and zero
orbital angular momentum. The
two neutrons move apart with op-
posite momenta along the z-axis in
an environment with zero magnetic
field. After a certain time, the neu-
tron moving to the left (neutron 1) enters a polarimeter that measures the neutron’s
spin projection along the x-axis. The measurement yields +~/2. After this:

i. [5 points] Give the spin wave function for the neutron moving to the right (neutron
2). This neutron enters a polarimeter that measures the neutron’s spin projection
along the y-axis. What is the probability of measuring +~/2? Justify your answer.

ii. [10 points] Suppose the polarimeter for neutron 2 is instead set at an angle θ with
respect to the x-axis in a plane perpendicular to the z-axis. What is the probability
of measuring +~/2? Justify your answer.

C. [12 points] Now, instead of neutrons, suppose the two particles are spin-1 nuclei, with
the system initially in an L = 0, S = 0 state. The nucleus moving to the left enters a
polarimeter that measures its spin projection along the x-axis. The measurement yields
+~. After this, the nucleus moving to the right enters a polarimeter that measures its
spin along a direction at an angle θ with respect to the x-axis (in a plane perpendicular
to the z-axis). What is the probability of measuring ~? Justify your answer.
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3.23. OMEGA BARYONS IN A HARMONIC POTENTIAL QM

3.23 Omega Baryons in a Harmonic Potential

Consider a particle of mass m moving in a one-dimensional harmonic potential of the form

V (x̂) = 1
2
mω2x̂2 .

A. [10 points] Show that the Hamiltonian for the system can be written in terms of the
operator

â ≡
√
mω

2~

(
x̂+

i

mω
p̂

)
,

and its adjoint. Derive the commutation relation between â and â†.

B. [10 points] Use the fact that the operator â annihilates the ground-state, â|0〉 = 0, to
show that the ground state wavefunction for the system is

〈x|0〉 =
(mω
π~

)1/4

e−
mω
2~ x

2

.

[Simply showing that 〈x|0〉 satisfies the Schrödinger equation is not sufficient.]

The Ω− baryon with spin and parity Jπ = 3
2

+
(a fermion) would be stable in the absence of

weak interactions. For this problem, assume that Ω− baryons are stable.

C. [10 points] What is the spin and parity of the lowest energy eigenstate of a system
comprised of one Ω− moving in a three-dimensional harmonic potential with angular
frequency ω? What is the energy and degeneracy of this state?

D. [10 points] What are the spin and parity assignments of the lowest energy states of
a system comprised of two non-interacting Ω− baryons moving in the same isotropic
three-dimensional harmonic potential?

E. [15 points] A residual interaction between the two Ω− baryons can be approximated by

δĤ = η δ3(r̂1−r̂2) ŝ1 · ŝ2 .

What are the energies of the lowest-lying eigenstates of this system at leading order in
the perturbation given by δĤ ? (The ŝi are spin-operators and the r̂i position operators
of the i’th particle.)

F. [15 points] What are the spin and parity assignments of the lowest energy states of
a system comprised of three non-interacting Ω− baryons moving in an isotropic three-
dimensional harmonic potential?
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3.24. ONE-DIMENSIONAL SCHRODINGER EQUATION (1) QM

3.24 One-dimensional Schrodinger Equation (1)

[30 points] For each case shown in the figure below, make a sketch of a real (not complex)
potential that would generate the stationary wave function shown. Explain your answer in
each case. If you believe there is no such potential, explain why.
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3.25. ONE-DIMENSIONAL SCHRODINGER EQUATION (2) QM

3.25 One-dimensional Schrodinger Equation (2)

A. [5 points] Consider the one-dimensional time-independent Schrodinger equation with
potential

V (x) = W (x) + V0 δ(x− x0) ,

where W (x) is any continuous function. Derive the discontinuity condition for dψ/dx
at the singularity of the potential V (x):

lim
ε→0

[
dψ

dx

∣∣∣∣
x0+ε

− dψ

dx

∣∣∣∣
x0−ε

]
=

2mV0

~2
ψ(x0) .

B. [8 points] Use this result to obtain an equation determining the energies of even parity
energy eigenstates for a particle in the potential

V (x) =

{
λ ~

2m
δ(x) for |x| < a ;

∞ for |x| > a ,

where the real constant λ ≥ 0. Sketch a graph which gives numerical solutions of the
equation.

C. [7 points] Draw the wavefunctions of the lowest parity even and parity odd energy
eigenstates. Show the limiting forms of the wavefunctions when λ → 0, and when
λ→∞. Compare with the result of part B.

D. [15 points] In the limit of large but finite λ, determine the period of oscillations if,
at time t = 0, the particle is in a mixture of the lowest even and odd states, ψ =
(ψeven + ψodd) /

√
2. (Determine the period explicitly, i.e., in terms of m, a, and λ.)
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3.26. ONE-DIMENSIONAL SCHRODINGER EQUATION (3) QM

3.26 One-dimensional Schrodinger Equation (3)

A. [12 points] A particle of mass m moves in a one-dimensional potential given by

V (x) = Gδ(x) ,

with G ≥ 0. Derive the boundary conditions for the wave function, and show that the
transmission coefficient through the delta function potential barrier for a given energy
E is given by

T (E) =

(
1 +

mG2

2E~2

)−1

.

(The transmission coefficient is the ratio of the fluxes of probabilities for the transmitted
and incident waves.)

B. [11 points] Now consider the potential

U(x) =

{
Gδ(x) , −a ≤ x <∞ ;

+∞ , x < −a ,

with G again non-negative. In this potential, the wavefunction of an eigenstate with
energy E has the form

χk(x) =

{
α(k) sin k(x+a) , −a ≤ x < 0 ;

β(k) eikx + γ(k) e−ikx , x > 0 ,

where k ≡
√

2mE/~, and α(k), β(k), and γ(k) are functions of k. Consider the situation
where the wavefunction at time t = 0 is given by

Ψ(x, t=0) =

{√
2
a

sin πx
a
, −a ≤ x < 0 ,

0 , x > 0 .

[This situation resembles particle emission from unbound nuclear states, where a particle
is trapped by a barrier and can slowly tunnel through it.] Write an expression (perhaps a
complicated integral that you are not required to evaluate) for the wavefunction Ψ(x, t)
for x < 0 and t > 0.

C. [7 points] For the potential U(x), consider the quantity

Ē =

∫ ∞
0

dxΨ(x, t)∗
(
− 1

2M

d2

dx2

)
Ψ(x, t)

/ ∫ ∞
0

dx |Ψ(x, t)|2 ,

which yields the mean energy ‘outside the barrier’. Will this quantity increase, remain
constant, or decrease with time? Give a qualitative explanation.
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3.27. OSCILLATOR EXCITEMENT QM

3.27 Oscillator Excitement

A. [10 points] A quantum system with Hamiltonian H0 is in energy eigenstate |i〉, with
energy Ei, at time t = −∞. Let |f〉 be another energy eigenstate with energy Ef . A
perturbation, V (t) is applied. Prove that, to first order in time-dependent perturbation
theory, the amplitude corresponding to the system being in the state |f〉 at t = +∞ is:

afi =
1

i~

∫ ∞
−∞
〈f |V (t′)|i〉 eiωt′ dt′ ,

where ~ω ≡ Ef − Ei. Assume Ef 6= Ei, and that the amplitude afi is small, |afi| � 1.

B. [25 points] A charged particle (with charge e) bound in an isotropic three-dimensional
harmonic oscillator potential Vosc = 1

2
k (x2 + y2 + z2) is exposed to an electric field of

the form E = êxE0 e
−|t|/τ . Assume that the electric field is small enough to be treated

perturbatively, and neglect the magnetic field.

i. [18 points] Calculate the matrix element Vn,0 = 〈nx, ny, nz|VE|0, 0, 0〉, where VE is
the potential generated by the electric field, and |nx, ny, nz〉 is the eigenstate of the
Hamiltonian at zero electric field with nx, ny, nz quanta of vibration in the x, y, z
directions, respectively. [Hint: reexpress the Hamiltonian in terms of raising and
lowering operators.]

ii. [7 points] At t = −∞ the system is in the ground state. Calculate the probability
of finding the system not in the ground state after a time much longer than τ .

2003au 136



3.28. PERTURBATION THEORY QM

3.28 Perturbation Theory

The 1s and the 2pz wave functions of the hydrogen atom are:

ψ1s(r) =
e−r/a0√
πa3

0

, ψ2pz(r) = r cos θ
e−r/2a0√

32πa5
0

,

where a0 is the Bohr radius, r = |r| is the radial coordinate, and θ is the polar angle coordinate
defined with respect to the z-axis.

A. [20 points] Find the shift in the energy of the 1s level due to the finite size of the proton
at the lowest order in perturbation theory. Assume the proton is a sphere with radius
R � a0 with a uniform charge density distribution. Neglect relativistic corrections
throughout this problem.

B. [20 points] A constant electric field parallel to the z-axis is applied during a finite time
interval ∆t. Find the transition probability from the 1s to the 2pz state.
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3.29. POTENTIAL STEP QM

3.29 Potential Step

Non-relativistic particles (in three dimensions) impinge on the
potential “step”,

V (x) =

{
V0 , if x1 > 0 ;

0 , otherwise,

illustrated at right.

A. [5 points] Explain why the complete spatial wavefunction which describes particles in-
cident from the left with wavenumber k must have the form

Ψ(x) =

{
eik·x +Reik

′·x , if x1 < 0 ;

T eik
′′·x , if x1 > 0 ,

for some coefficients R and T and wavevectors k′ and k′′.

B. [5 points] What are the wavevectors of the reflected and transmitted waves (in terms
of k)?

C. [10 points] What are the reflection and transmission coefficients? Describe (or sketch)
how they vary with k.

D. [5 points] Show that the angle of incidence (with respect to the x1-axis) equals the angle
of reflection.

E. [5 points] Compute the ratio of the wavelengths of the incident and transmitted waves,
and explain why the potential barrier may be said to have an (energy dependent) index
of refraction n. What is n?

F. [10 points] If k2
1 > 2mV0, show that the direction of the transmitted wave obeys Snell’s

law.

G. [5 points] What happens if k2
1 < 2mV0?

H. [10 points] How might these results for “matter waves” be tested experimentally?

1996sp 138



3.30. PROBABILITY AND MEASUREMENT QM

3.30 Probability and Measurement

Let |ψ1〉 and |ψ2〉 be two mutually orthogonal (and normalized) states of a physical system,
so that 〈ψ1|ψ2〉 = 0 and 〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1. Let αn denote a nondegenerate eigenvalue of
some physical observable A of the system, with |φn〉 the corresponding eigenstate. Define the
amplitudes b1(αn) ≡ 〈φn|ψ1〉 and b2(αn) = 〈φn|ψ2〉.

A. [10 points] In the context of measurement theory, what are the physical interpretations
of |b1(αn)|2 and |b2(αn)|2?

B. [20 points] A particle is in the (unnormalized) state 3|ψ1〉 − 4i|ψ2〉. In terms of b1 and
b2, what is the probability of obtaining a value αn when the observable A is measured?
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3.31. SCATTERING OFF POTENTIAL WELLS QM

3.31 Scattering off Potential Wells

Consider a single particle whose dynamics are governed by the Schrödinger equation

Hψ = − ~2

2m
ψ′′ + V (x)ψ = i~

∂

∂t
ψ

scattering from a 1d-potential well V (x).

A. [15 points] Assume the potential V (x) allows for eigenfunctions of the hamiltonian H
with energy E = ~2k2

2m
that have the following asymptotic behavior:

ψ(x)→
{
Aeikx for x→ +∞
Ceikx +De−ikx for x→ −∞

Use this information to calculate the reflection and transmission probabilities, that is
the ratios of transmitted and reflected probability fluxes to the incoming probability
flux, for a plane wave incident from x = −∞. Explain your reasoning.

B. [20 points] As an example, calculate reflection and transmission probabilities for a wave
with wavenumber k incident from x = −∞ for a delta-function potential, that is of the
form

V (x) = aδ(x)

where a is a constant.

C. [25 points] As a second example consider the potential

V (x) = − b

cosh2(αx)

with b > 0.

i. [15 points] Consider a trial function of the form ψT = N
cosh(αx)

where N is a normal-
ization constant. Determine the normalization constant N so that ψT is properly
normalized and then calculate the expectation value of the Hamiltonian in this trial
state. What can you learn from this calculation about the existence of boundstates?
You may find the following integrals useful:∫ ∞

−∞

1

coshx
= π,

∫ ∞
−∞

1

cosh2 x
= 2,

∫ ∞
−∞

1

cosh3 x
=
π

2
,

∫ ∞
−∞

1

cosh4 x
=

4

3
.

ii. [10 points] Show that for the special case b = α2~2
m

ψ(x) = eikx
~√
2m

(−ik + α tanh(αx))

is an eigenfunction of the Hamiltonian for any real k. What does this imply for the
transmission and reflection probabilities as a function of wavenumber k?
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3.32. SPIN FLIP QM

3.32 Spin Flip

[40 points] A particle of spin 1/2 and magnetic moment µ is placed in a rotating magnetic
field,

B(t) = B0 êz +B1 (êx cosωt− êy sinωt) ,

as is often used in magnetic resonance experiments. Assume that the particle has spin up
along the z-axis (mz = +1/2) at time t = 0, and derive the probability to find the particle
with spin down (mz = −1/2) at some later time t > 0. You may assume t � 1/ω. [It will
be convenient to express your answer in terms of the angular frequencies Ω0 ≡ µB0/~ and
Ω1 ≡ µB1/~.]
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3.33. SPIN MEASUREMENTS QM

3.33 Spin Measurements

A beam of spin 1
2

particles has been prepared. You can measure a chosen spin component of
each particle in the beam. When you measure the z-component of spin on a large sample of
particles in the beam you observe that 50% of the particles have a spin projection +~/2.

A. [5 points] Let |+〉x and |−〉x denote eigenstates of Sx. Could each particle in the beam
be in the state |+〉x? Could each particle in the beam be in the state |−〉x? Explain
your answers.

B. [5 points] Can you propose a measurement of spin components of the beam particles
which would distinguish between the two cases? If you can, say what is measured and
what the results might be. If not, why not?

C. [5 points] In part A, it is assumed that all particles in the beam are in the same state.
Is this assumption required in order to be consistent with your observations? Why or
why not? Explain.
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3.34. SPIN-1/2 SYSTEMS QM

3.34 Spin-1/2 Systems

A. [8 points] Construct the spin-1
2

rotation matrix D(1/2)(αβγ) from the definition of the
rotation operator, for a rotation defined by the Euler angles α, β and γ.

B. [7 points] For a spin-1
2

particle, what are the eigenstates and eigenvalues of the operator

Ŝ · n where Ŝj are the spin-operators and n is the unit vector with Cartesian compo-

nents n = (sin θ cosφ, sin θ sinφ, cos θ). Express the eigenvectors of Ŝ · n in terms of
eigenstates of Ŝz.

Consider an ensemble of spin-1
2

particles. Half the ensemble is prepared in the |+〉 state of

Ŝz, and the other half is prepared in the state |ψ〉 = cos β
2
|+〉+ sin β

2
|−〉.

C. [7 points] What is the density matrix ρ of the ensemble, and what is its trace? Is this
a pure or mixed state?

D. [7 points] What are 〈Ŝz〉 and 〈Ŝx〉?

This ensemble is immersed in a magnetic field oriented in the z-direction.

E. [7 points] What is the time-dependent density matrix?

F. [7 points] Show that a pure state cannot evolve into a mixed state under time evolution
determined by the Schrodinger equation.

G. [7 points] What are 〈Ŝz〉 and 〈Ŝx〉 as functions of time?
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3.35. SPIN-ORBIT INTERACTION QM

3.35 Spin-Orbit Interaction

An electron in a spherically symmetric potential V (|r|) is in an energy eigenstate with quan-
tum numbers S = 1

2
, L = 1, and J = 1

2
. (As usual, S is the spin quantum number, L is the

orbital angular momentum quantum number, and J is the total angular momentum quantum
number.) The electron magnetic moment is

µ = − ~e
2mc

(L+ gS) .

Here −e and m are the charge and mass of the electron, respectively, c is the speed of light,
and g is the gyromagnetic ratio of the electron. At time t = 0, a magnetic field B = B êz is
switched on.

A. [4 points] Write down an expression for the Hamiltonian, including the spin-orbit inter-
action.

In parts B, C, and D assume the magnetic field is arbitrarily weak.

B. [8 points] Which combination of the quantum numbers J , L, S, Jz, Lz, and Sz are good
quantum numbers for the energy eigenstates of this system?

C. [17 points] Calculate the expectation value of the component of the magnetic moment
which is along the J direction.

D. [17 points] At time t = 0, assume that Jx = +1
2
. Calculate the time dependence of the

expectation value of Jx.

E. [12 points] Will your answer to part B change if the magnetic field is made strong? If
not, explain why not. If so, explain how strong the field has to be in order to change
your conclusion.
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3.36. SPIN PROJECTIONS AND SPIN PRECESSION QM

3.36 Spin Projections and Spin Precession

A. [15 points] In the spin 1/2 case, work out the eigenvalue problem for the operator S·n̂
where n̂ is a unit vector in the xz-plane making an angle β < 90◦ with the +z axis.
Find the eigenvalues and corresponding eigenstates in terms of the |±〉 eigenstates of
Sz.

B. [15 points] One of the eigenstates in part A is
(
cos β

2
|+〉+ sin β

2
|−〉
)
. Suppose a particle

is in this state.

i. Find the probability of observing Sx to have a value of -~/2.

ii. Find the expectation value of Sz.

iii. Find the expectation value of Sx.

iv. Check whether your answers are reasonable for the special cases of β = 0◦ and
β = 90◦.

C. [10 points] A spin 1/2 particle initially (at time t = 0) in the state shown in part B
enters a magnetic field B = B0 êz. The particle has a magnetic moment µ = γS, where
γ is a constant.

i. Find the state of the particle at some later time t (expressed in terms of γ and B0).

ii. Use the time dependence of 〈Sx〉 to explain why precession of the spin around the
field direction is expected.
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3.37. STARK SHIFT QM

3.37 Stark Shift

A hydrogen atom is in a uniform electric field E pointing in the z-direction. Express your
answers to the following questions in terms of integrals over the radial functions Rn`(r).

A. [25 points] Find the lowest order non-zero correction to the energy for a hydrogen atom
in the ground state n = 1. Comment on the sign of the result, and on the nature of the
dependence of the energy on the magnitude of the electric field.

B. [25 points] Work out the lowest order non-zero corrections to the energies of the n = 2
states. Discuss how and why these results differ from that of part A.
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3.38. SUPERPOSITION QM

3.38 Superposition

[25 points] Consider a one-dimensional harmonic oscillator with potential centered at x= 0.
Let ψ0(x) and ψ1(x) be real, normalized wavefunctions of the ground and first excited states,
respectively. Consider the wavefunction ψ(x) ≡ Aψ0(x) + B ψ1(x), with A and B real coef-
ficients. Show that 〈x̂〉 (the expectation value of x) for this state is in general different from
zero, and determine the values of A and B that maximize and minimize this expectation value.
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3.39. SYMMETRIC TOP QM

3.39 Symmetric Top

A symmetric top has moments of inertia Ix = Iy and Iz in the body-fixed frame. The system
is described by the Hamiltonian

H =
1

2Ix
(L2

x + L2
y) +

1

2Iz
L2
z ,

where L is the total angular momentum.

A. [7 points] Find the eigenvalues and eigenstates of the Hamiltonian.

B. [10 points] What is the expectation value for a measurement of Lx + Ly + Lz in an
eigenstate of the Hamiltonian?

C. [8 points] Suppose that at time t = 0, the top is in the state |l=3,m=0〉. What is the
probability of obtaining the value ~ from a measurement of Lz at time t = 4πIz/~?

D. [10 points] Suppose that at time t = 0, the top is in the state |l=1,m=0〉. What is the
probability of obtaining the value ~ from a measurement of Lx at t = 4πIz/~?
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3.40. THREE SPINS (1) QM

3.40 Three Spins (1)

Consider a system of three collinear spin-1/2 particles. Nearest-neighbor spins interact, with
the Hamiltonian given by

H = β (σ1 · σ2 + σ2 · σ3) .

The interaction is ferromagnetic, β > 0.

A. [10 points] Show that 〈↑1↓2 |σ1 · σ2| ↑1↓2〉 = −1.

B. [10 points] Show that 〈↑1↓2 |σ1 · σ2| ↓1↑2〉 = 2.

C. [30 points] The ground state of the Hamiltonian is

1√
6

(
|↑1↑2↓3〉 − 2|↑1↓2↑3〉+ |↓1↑2↑3〉

)
.

Show that this is an eigenstate and determine its energy.

D. [5 points] How many independent states does the system have?

E. [15 points] The Hamiltonian is invariant under rotations. Use this information to classify
the eigenstates of the system.

F. [20 points] Sketch a level diagram showing quantum numbers and degeneracy of states.
Make sure the total number of states equals the answer to part D.

G. [10 points] The Hamiltonian also is symmetric under the permutation of particles 1
and 3. Does this give rise to another quantum number? If so, define it and indicate its
value on the level diagram.
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3.41. THREE SPINS (2) QM

3.41 Three Spins (2)

Consider a system composed of three spin-1
2

particles that have nearest neighbor interactions
described by the Hamiltonian

Ĥ = β ( ŝ1 · ŝ2 + ŝ2 · ŝ3 ) = β ŝ2 · (ŝ1 + ŝ3) ,

where ŝj are the spin-operators that act on the j’th particle.1

A. [10 points] The ground state of this system is

|ψ0〉 =
1√
6

[
|↑1↑2↓3〉 − 2 |↑1↓2↑3〉+ |↓1↑2↑3〉

]
.

Show that |ψ0〉 is an eigenstate of Ĥ, and find its energy eigenvalue.

B. [5 points] How many independent eigenstates does this three-particle system have?

C. [10 points] Determine the complete set of commuting operators that specify the eigen-
states of the system, and show that they each commute with Ĥ.

D. [15 points] Find all the eigenstates of this system, along with their energy eigenvalues.
Assuming that β > 0, sketch the spectrum of Ĥ, indicating the total spin and degeneracy
of each level.

1The following Clebsch-Gordan coefficients, 〈j1m1, j2m2|j3m3〉, may be helpful:〈
1
2 −

1
2 , 1 +1

∣∣ 1
2 + 1

2

〉
=
√

2
3 ,

〈
1
2 + 1

2 , 1 0
∣∣ 1
2 + 1

2

〉
= −

√
1
3 .

Matrix elements of the angular momentum operators may also be useful:

〈j′,m′|Ĵ±|j,m〉 =
√

(j ∓m)(j ±m+ 1) ~ δjj′ δmm′ .
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3.42. THREE SPINS (3) QM

3.42 Three Spins (3)

This QM question consists of a single (multi-part) problem worth 100 points.

Consider a system composed of three spin-1
2

particles that have nearest neighbor interactions
described by the Hamiltonian

Ĥ = β ( ŝ1 · ŝ2 + ŝ2 · ŝ3 ) = β ŝ2 · (ŝ1 + ŝ3) ,

where ŝj are the spin-operators that act on the j’th particle.1

A. [10 points] First consider the subspace associated with particles 1 and 2. Show that the
total spin operator in this subspace, Ŝ12 = ŝ1 + ŝ2, satisfies the following commutation
relations, [

Ŝ2
12, ŝ

2
1

]
=
[
Ŝ2

12, ŝ
2
2

]
=
[
Ŝ2

12, (ŝ1 + ŝ2)z

]
= 0.

Thus, depending on the dynamics, the eigenvalues of these operators can provide a useful
labeling for the two-particle states in this subspace.

B. [15 points] Still in the 1-2 subspace, find an expression for

ŝ1 · ŝ2| ↑1↓2〉 ,

and show that

〈↑1↓2 |ŝ1 · ŝ2| ↑1↓2〉 = −1

4
, 〈↑1↓2 |ŝ1 · ŝ2| ↓1↑2〉 = +

1

2
.

C. [5 points] Now we return to the three-particle system and consider first its general
properties. How many independent eigenstates does this three-particle system have?

D. [20 points] Determine a complete set of commuting operators that also commute with
Ĥ and that serve to specify the eigenstates of the system corresponding to the origi-
nal three-spin Hamiltonian. Demonstrate explicitly that each of the chosen operators
commutes with Ĥ. Note in particular that the Hamiltonian is rotationally invariant.

1The following Clebsch-Gordan coefficients, 〈j1m1, j2m2|j3m3〉, may be helpful:〈
1
2 −

1
2 , 1 +1

∣∣ 1
2 + 1

2

〉
=
√

2
3 ,

〈
1
2 + 1

2 , 1 0
∣∣ 1
2 + 1

2

〉
= −

√
1
3 .

Matrix elements of the angular momentum operators may also be useful:

〈j′,m′|Ĵ±|j,m〉 =
√

(j ∓m)(j ±m+ 1) ~ δjj′ δmm′∓1 .

Finally recall the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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3.42. THREE SPINS (3) QM

E. [15 points] For β > 0 the ground-state of the three-spin system is

|ψ0〉 =
1√
6

[ | ↑1↑2↓3〉 − 2| ↑1↓2↑3〉 + | ↓1↑2↑3〉 ] .

Show that |ψ0〉 is an eigenstate of Ĥ, and find its energy eigenvalue.

F. [20 points] Find all the energy eigenstates of the three-spin system, along with their
energy-eigenvalues. Still assuming that β > 0, sketch the spectrum of Ĥ, indicating the
total spin and degeneracy of each level. Check that the total number of states matches
the result in part C.

G. [15 points] Assume that at some initial time (t = 0) the system is in the three-spin
state | ↑1↓2↑3〉. In terms of the quantities already defined in the previous parts of this
problem, find the probability that the system will remain in this three-spin state as a
function of the time t.
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3.43. TIME EVOLUTION QM

3.43 Time Evolution

Consider a particle of mass m moving in a one-dimensional potential

V (x) = −α δ(x) ,

where α is a positive constant.

A. [15 points] Find the energy level(s) and the normalized wave function(s) of the bound
state(s).

B. [25 points] At time zero, the wavefunction of the particle (which is not necessarily an
eigenfunction) is:

ψ(t=0, x) = Ae−β|x| .

with β being an arbitrary positive parameter not related to α.

i. [5 points] Explain qualitatively what happens to the wave function in the limit
t→∞.

ii. [10 points] Find the probability W (x) dx of finding the particle in the interval
(x, x+ dx) in the limit t→∞.

iii. [5 points] Evaluate the integral
∫ L
−L dx W (x).

iv. [5 points] Consider the L → ∞ limit of the integral you evaluated in part (iii).
What is the physical interpretation of this quantity? Compare with the analogous
quantity at t = 0 and qualitatively explain the result.

C. [10 points] Now put the system in a box of width 2L. That is the potential is as above for
|x| < L, but V = ∞ for |x| ≥ L. Qualitatively describe the spectrum of normalizable
eigenstates in this case. How does this change affect the answer to problem B(iv)?
Explain.
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3.44. TIME-REVERSAL QM

3.44 Time-Reversal

The transformation
|α〉 → |α̃〉 ≡ Θ̂|α〉 , |β〉 → |β̃〉 ≡ Θ̂|β〉 ,

is said to be anti-unitary if

〈β̃|α̃〉 = 〈β|α〉∗ and Θ̂ (c1|α〉+ c2|β〉) = c∗1 Θ̂|α〉+ c∗2 Θ̂|β〉 .

A. [8 points] Show that 〈β| η̂ |α〉 = 〈α̃| Θ̂ η̂† Θ̂−1 |β̃〉 for an arbitrary linear operator η̂.

B. [4 points] If Θ̂T is the time-reversal operator, or more precisely the motion reversal
operator, and |k〉 is a momentum eigenstate, what is Θ̂T |k 〉?

C. [8 points] Using the results of part (A) and part (B), show that for a Hamiltonian that is
invariant under time-reversal, the matrix elements of the scattering operator T̂ between
eigenstates of momentum are related by

〈k′| T̂ |k〉 = 〈−k| T̂ | − k′〉 .

D. [10 points] One may choose a phase convention such that Θ̂T |x〉 = +|x〉. By considering
the action of Θ̂T on an arbitrary state |α〉, show that

Θ̂T |l,m〉 = (−1)m |l,−m〉 ,

where the states |l,m〉 are eigenstates of L̂2 and L̂z.

E. [10 points] Prove that

〈α, j,m|T (k)
λ=0 |α, j,m〉 = ±(−1)k 〈α, j,m|T (k)

λ=0 |α, j,m〉

where T
(k)
λ=0 is the λ=0 component of a rank-k spherical tensor that is either even or odd

under time-reversal, so that Θ̂T T
(k)
λ=0 Θ̂−1

T = ±T (k)
λ=0.

F. [10 points] Explain what the result of part (E) implies for the electric dipole moment
of the neutron or electron.
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3.45. TOY NUCLEI QM

3.45 Toy Nuclei

[16 points] Four neutrons and three protons are in a three-dimensional harmonic oscillator
potential described by the Hamiltonian

H =
∑
i

p2
i

2m
+ 1

2
k r2

i ,

where the sum on i is over the particles. There are no interactions between the particles, and
the proton-neutron mass difference is neglected. Find the ground state energy of this system.
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3.46. TRANSMISSION AND REFLECTION (A) QM

3.46 Transmission and Reflection (A)

A particle of mass m moves in a one dimensional potential V (x). The potential vanishes
exponentially fast as x → ±∞, and V (−x) = V (x). Let ψ(x) be a solution of the time
independent Schrodinger equation with a positive energy E,

H ψ(x) = E ψ(x) . (∗)

A. [5 points] Show that the Schrodinger equation (∗) has two linearly independent solutions.

B. [5 points] Show that these solutions can be chosen to be eigenstates ψ± of the parity
operator P (defined by Pψ(x) ≡ ψ(−x)),

P ψ+(x) = +ψ+(x) ,

P ψ−(x) = −ψ−(x) .

C. [5 points] Show that ψ+(x) and ψ−(x) have the asymptotic behaviors

ψ+(x) ∼ cos(kx+ δ+(E)) ,

ψ−(x) ∼ sin(kx+ δ−(E)) ,

as x → +∞ (neglecting overall multiplicative factors), where k ≡
√

2mE/~2, and the
phase shifts δ±(E) are real functions of E that vanish when V (x) = 0.

D. [5 points] Consider an alternate set of two linearly independent solutions ψ1(x) and
ψ2(x) satisfying the boundary conditions

ψ1(x) ∼ eikx as x→ +∞,
ψ2(x) ∼ e−ikx as x→ −∞.

In the opposite limits,

ψ1(x) ∼ a(E) eikx + b(E) e−ikx as x→ −∞,
ψ2(x) ∼ a′(E) e−ikx + b′(E) eikx as x→ +∞.

Find a′(E) and b′(E) in terms of a(E) and b(E). Explain your reasoning.

E. [25 points] A particle of energy E is incident on the potential from x = −∞. Show that
the probability R that the particle is reflected, and the probability T that the particle
is transmitted, are given by

R = |r(E)|2 and T = |t(E)|2 ,

with the reflected and transmitted amplitudes determined by the phase shifts,

r(E) = 1
2
(e2iδ+ − e−2iδ−) ,

t(E) = 1
2
(e2iδ+ + e−2iδ−) .

F. [5 points] What is the reflection coefficient R for a particle of energy E incident from
x = +∞?
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3.47. TRANSMISSION AND REFLECTION (B) QM

3.47 Transmission and Reflection (B)

Consider the potential V (x) = −α δ(x), with α > 0.

A. [20 points] Find all bound state energies and wavefunctions, and give their parities.

B. [20 points] Now consider positive energy scattering states. Show that tan δ+(E) =√
mα2/(2~2E), and find δ−(E).

C. [10 points] Find the reflection coefficient for a particle of energy E incident on the
potential from x = −∞, and show that the amplitude of the reflected wave r(E),
analytically continued to complex E, has a pole at E = −mα2/(2~2). What is the
physical significance of this value of E? [Hint: Note that 1

2i
(eiδ − 1) = eiδ sin δ.]
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3.48. TWO-DIMENSIONAL OSCILLATOR QM

3.48 Two-dimensional Oscillator

Consider a two-dimensional harmonic oscillator with potential

V (x) = 1
2

(k1 x
2 + k2 y

2) .

Let Enxny denote the energy of the unpertuebed state |nx, ny〉. Add a perturbation ∆H ≡ λxy
and determine, at first order in λ, the shift in the eigen-energies E00, E10, and E01. Do this:1

A. [5 points] For the non-symmetric case, k1 6= k2.

B. [10 points] For the symmetric case, k1 = k2.

C. [10 points] Describe the transition between cases A and B, i.e., determine the eigenen-
ergies for the “quasi-symmetric case”.

D. [5 points] What criterion determines the domain of applicability of the result in part A?
What criterion determines the domain of applicability of the result in part B?

1For a one-dimensional harmonic oscillator, recall that x =
√

~
2mω (a+ a†) with a†|nx〉 =

√
nx + 1 |nx+1〉

and a|nx〉 =
√
nx |nx−1〉.
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3.49. TWO SPINS QM

3.49 Two Spins

Two spin-1
2

particles interact via the Hamiltonian

H = σ1 · σ2 ,

where σ1 and σ2 are Pauli spin matrices acting on the indicated particle.

A. [5 points] Rewrite the Hamiltonian in terms of

σz =

(
1 0
0 −1

)
, σ− =

(
0 0
1 0

)
, σ+ =

(
0 1
0 0

)
.

B. [5 points] Rewrite the Hamiltonian as a 4× 4 matrix using the eigenstates of σz1 and σz2
as a basis.

C. [5 points] Find the energy levels and eigenstates of H using this 4× 4 matrix.

D. [5 points] Write the rotation operator R(α), which rotates the spins through an angle α
about the x-axis, in terms of Pauli-spin operators σx, σy, and σz.

E. [5 points] Show that for α = π/2 your rotation operator reduces to

R(π/2) = 1
2
(1− iσx1 )(1− iσx2 ) .

F. [5 points] Show by explicit evaluation that [R(π/2), H] = 0.

G. [5 points] Rewrite H in terms of the total angular momentum J ≡ σ1 + σ2.

H. [5 points] Relate and identify the eigenstates of H in terms of those of definite angular
momentum.

I. [5 points] How do the eigenstates of H transform under the rotation R(π/2)?

J. [5 points] What is the ground state expectation value of σx1 σ
x
2 ?
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3.50. UNREAL HELIUM QM

3.50 Unreal Helium

Consider two different single electron atomic wavefunctions ua(r, s) and ub(r, s). which are
occupied by two electrons. Neglect the Coulomb repulsion between the electrons.

A. [7 points] Show that a properly normalized two-particle wave function is

Ψ(r1, r2, s1, s2) =
1√
2

[
ua(1)ub(2)− ub(1)ua(2)

]
,

where 1 and 2 denote both space and spin coordinates of the indicated electron.

B. [7 points] Show that the expectation value of the mean square separation of the electrons
is 〈

(∆r)2
〉

= (r2)a + (r2)b − 2(r)a · (r)b + 2|rab|2 .

where

(r)a ≡
∫
d3r u∗a(r, s) r ua(r, s) ,

(r2)a ≡
∫
d3r u∗a(r, s) r

2 ua(r, s) ,

rab ≡
∫
d3r u∗a(r, s) r ub(r, s) ,

and summation over spins is implied.

C. [7 points] Show that the expectation value of r vanishes if states a and b have the same
parity, so that 〈

(∆r)2
〉

= (r2)a + (r2)b + 2|rab|2 .

D. [7 points] If the two electrons also have different spin directions, show that rab = 0 so
that 〈

(∆r)2
〉

= (r2)a + (r2)b .

E. [7 points] Now show that electrons having the same spin directions are on average further
apart than those with different spin directions. The contrast between parts D and E is
an example of what fundamental physical effect?
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Chapter 4

Thermodynamics and Statistical
Mechanics

4.1 Atmospheric Physics

The thickness of the atmosphere is small compared to Earth’s radius, so one may consider the
acceleration of gravity g to be constant. Assume that the atmosphere is entirely nitrogen.1

A. [15 points] The condition for hydrostatic equilibrium can be written as

dP (z)

dz
= f(P (z), T (z)) ,

where z is the height above the Earth’s surface. Find the function f . Check that for
T = const. the result is consistent with Boltzmann’s distribution.

B. [10 points] The temperature profile T (z) is often approximated by a linear function of
height,

T (z) = T0 − Γ z .

Show that the pressure P (z) is proportional to a power of temperature,

P (z)

P (0)
=

(
T (z)

T (0)

)β
,

and find the exponent β.

1Possibly useful information: Boltzmann’s constant kB ' 8.6×10−5 eV/K, proton mass mp ' 938 MeV/c2,
electron mass me ' 0.511 MeV/c2, deuteron mass md ' 1875 MeV/c2.
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4.1. ATMOSPHERIC PHYSICS SM

T T0
z

Now consider an ideal hot air balloon, whose envelope is made
of a very elastic material that can stretch and contract with
almost no tension. In other words, the pressure inside the bal-
loon differs negligibly from the pressure of the surrounding air.
The envelope of the balloon is also an ideal thermal insulator,
with negligible mass.

Initially the balloon is at sea level, z = 0, occupies a volume V0,
and has the same temperature T0 as the surrounding air. The
air inside the balloon is heated to some temperature T1 > T0.
The balloon is then released and starts to rise.

C. [20 points] Show that if β is smaller than some βcrit, or Γ > Γcrit, then the balloon will
go up forever (at least until one of our assumptions breaks down). Find the numerical
value for Γcrit.

D. [15 points] Assume now that the temperature does not depend on altitude, or Γ = 0.
By attaching a (nearly massless) string to the balloon, the ascent of the balloon may be
used to do work. The balloon pulls the string during its very slow ascent to its maximum
height. What fraction of the initial heat Q used to warm the air inside the balloon from
T0 to T1 is converted to work? Give a numerical value of this fraction for T1 = 2T0.
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4.2. BASIC KINETIC THEORY (THIS PROBLEM HAS 2 PAGES) SM

4.2 Basic Kinetic Theory (this problem has 2 pages)

A. [15 points] A homogenous, isotropic gas has a velocity (~v) distribution such that 〈~v〉 = 0
and m

2
〈v2〉 = 3

2
kBT , where kB is the Boltzmann constant and T the temperature. The

brackets indicate averaging over all N molecules. Assume that the gas molecules have
zero size and experience no collisions among themselves. The gas is placed in a container
of volume V whose side walls have a mass much larger than the molecule mass m. The
wall is impenetrable to the molecules, they reflect back elastically. Derive the average
momentum imparted on a single planar wall per unit time and unit area. From this
show that the pressure of the gas is given by the ideal gas law

pV = NkBT.

Part B-D: For the remainder of the problem study the following generalization of the ideal
gas. The effects of finite size molecules as well as 2-body short range interactions can be
modeled by the van der Waals equation of state(

p+
aN2

V 2

)(
V

N
− b
)

= kB T ,

where a and b are material dependent constants.

B. [15 points] The isothermal curves p(V ) of this van der Waals gas are displayed in the
graph on the top of the next page. In particular, note the occurrence of two extrema
for low temperatures that smoothly merge at a point with p = pc, V = Vc and T = Tc.
Determine pc, Vc and Tc in terms of a, b and N .
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4.2. BASIC KINETIC THEORY (THIS PROBLEM HAS 2 PAGES) SM
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C. [15 points] Determine the sign of the compressibility

β = − 1

V

∂V

∂p

∣∣∣∣
T fixed

for T above and below Tc, and explain the consequences the sign of β has for the stability
of the system. Use this to explain what happens to a physical system when its volume
is reduced isothermally at T < Tc. In particular, explain whether it follows the isotherm
and, if not, what it does instead.

D. [5 points] Based on these considerations, sketch the phase diagram of the van der Waals
gas in the p− T plane. For any phase transition, indicate whether the transition is first
or higher order.
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4.3. BOSE-EINSTEIN CONDENSATION SM

4.3 Bose-Einstein Condensation

Consider a non-interacting non-relativistic Bose gas in a macroscopic three-dimensional box
of volume V .

A. [10 points] Write down the appropriate partition function and derive an equation that
gives the occupation number as a function of energy at a given temperature and chemical
potential.

B. [10 points] Consider a gas composed of a finite number of particles. Make a sketch of
the chemical potential as a function of temperature. Does it go to zero? If so, indicate
wether this happens at T → 0 or at some other temperature.

C. [10 points] Compute the critical temperature, Tc, above which practically all the particles
are in excited states, but below which a significant number is in the ground state.

D. [10 points] Does the pressure at low temperatures (T < Tc) depend on the particle
density? If yes, how. If no, explain. What is the pressure of the ideal Bose gas at
T = 0?

Consider now what happens for an infinite system, V →∞, in different dimensions, 1d, 2d, 3d:

E. [10 points] Can a non-relativistic ideal Bose gas of a given number density of particles
undergo Bose condensation in d = 1, 2, 3 dimensions? Explain.

Useful Mathematical formulas∫∞
0
xn−1 e−x dx = Γ(n), with n > 0

∫∞
0

x
ex−1

dx = π2

6

Γ(n+ 1) = n Γ(n); Γ(1/2) =
√
π

∫∞
0

x3

ex−1
dx = π4

15∫∞
0
e−ax

2
dx = 1

2

√
π
a

∫∞
0

sin(x)
x

dx = π
2∫∞

0
x2e−ax

2
dx = 1

4

√
π
a3

when a > 0
∫∞

0
e−ax

2
cos bx dx = 1

2

√
π
a
e−b

2/4a∫∞
0

sin3(x)
x3

dx = 3π
8

∫∞
0

ln ex+1
ex−1

dx = π2

4∫∞
0

xn−1 dx
ex−1

= Γ(n)
(

1
1n

+ 1
2n

+ 1
3n

+ · · · · ·
)∫ π

2

0
sin2n+1 x dx =

∫ π
2

0
cos2n+1 x dx = 2·4·6·····(2n)

1·3·5·····2n+1
π
2∫ π

2

0
sin2n x dx =

∫ π
2

0
cos2n x dx = 1·3·5·····(2n−1)

2·4·6·····2n
π
2
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4.4. CLASSICAL AND QUANTUM STATISTICS SM

4.4 Classical and Quantum Statistics

Consider a particle (with further characteristics to be specified below) having two energy
levels, 0 and ε. You are given a system consisting of two such noninteracting particles in
contact with a thermal reservoir at temperature T .

A. [16 points] What are the energy levels and degeneracies of the system if:

i. the particles obey classical statistics and are distinguishable?

ii. the particles obey Bose-Einstein statistics with spin-0?

iii. the particles obey Fermi-Dirac statistics with spin-1/2? In addition to the degen-
eracy also specify the total spin in each energy level.

iv. the particles obey Bose-Einstein statistics with spin-1? In addition to the degen-
eracy also specify the total spin in each energy level.

B. [8 points] In statistical mechanics, one often finds that the canonical partition function
for a system of N indistinguishable, noninteracting particles is Z = ZN

1 /N ! where Z1 is
the partition function for a single particle. Briefly explain the range of validity of this
result, and in particular explain why it does not hold for case A-ii above.

C. [26 points] Suppose you are told that the system above is definitely composed of either
spin-1/2 fermions or spin-1 bosons.

i. [5 points] What is a thermodynamic observable which can be used to distinguish
the two cases? Briefly explain why, on general grounds, you expect that your
observable can distinguish between the two cases.

ii. [16 points] For both cases (fermion or boson) calculate the temperature dependence
of your chosen observable from part i.

iii. [5 points] Give a qualitative description of how one could actually measure your
observable from part i.
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4.5. CLAUSIUS-CLAPEYRON RELATION SM

4.5 Clausius-Clapeyron Relation

Consider a fixed amount (say, N molecules) of a substance than can be in two phases (e.g.,
liquid and gas, or liquid and solid). Consider the (T, P ) phase diagram. Let the phase-
transition line be given by P = Pp.t.(T ).

A. [10 points] Write down the condition of equilibrium on the phase-transition line.

B. [15 points] Show that the slope of this line is

dPp.t.

dT
=

Q

T (V2 − V1)
,

where Q is the heat of transition, and V1 and V2 are the volumes the two phases occupy
on the two sides of the phase-transition line.

C. [5 points] Does the temperature of transition from ice to water increase or decrease with
increasing pressure?

D. [20 points] Consider a liquid-gas phase transition. Suppose the volume in the linquid
phase is much smaller than the volume in the gas phase, V1 � V2. Assume the gas is
ideal, and the the heat of transition is constant. Show that the logarithm of the phase
transition pressure has the functional form

lnPp.t.(T ) = A−B/T .

What is the constant B?
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4.6. COLD COPPER SM

4.6 Cold Copper

A. [20 points] Why is the specific heat of copper at low temperatures, around 1 K or
less, proportional to temperature? What is the main reason for the deviation of the
specific heat from linearity at slightly higher temperatures? A few sentences outlining
the essential physics is sufficient.

B. [25 points] The spin of a copper nucleus is 3/2, so the energy levels of a copper nucleus in
a magnetic field B are of the form −mBµ, where m has the values 3/2, 1/2, −1/2, −3/2.
Derive expressions for the magnetization M and magnetic energy UM of noninteracting
copper nuclei in a magnetic field B at temperature T , in the temperature region

kBT � µB ,

where kB is Boltzmann’s constant.

C. [25 points] Show that the contribution of the nuclear spins to the entropy per atom can
be written in the form

SM = kB ln 4− 5µ5B2

8kBT 2
,

in this temperature regime. For this part, you may find it helpful to use the thermody-
namic identity ∂UM/∂T = T∂SM/∂T . Both sides are expressions for the heat capacity.

D. [30 points] If the nuclei in copper metal are magnetized at a temperature of 0.20 K in a
field of 0.70 T, and then the magnetic field is switched off reversibly and adiabatically,
what will be the final temperature of the metal when the field B is zero?

[The specific heat of copper at low temperature T , in the absence of a strong magnetic
field, is γkBT per atom, where γ = 8.36 × 10−5 K−1. For a copper nucleus, µ =
7.47× 10−27 J/T. The Boltzmann constant kB = 1.38× 10−23 J/K.]
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4.7. FREE EXPANSION SM

4.7 Free Expansion

Consider a process in which a gas of initial temperature T occupying an initial volume V
expands its volume from V to V + ∆V in such a way that the total internal energy E of
the gas remains constant. The goal of this problem is to work out the associated change in
temperature.

A. [10 points] Describe how such an expansion from V to V + ∆V at constant E could be
realized experimentally.

B. [10 points] Show that for ideal gases the temperature drop due to the expansion has to
be zero. A few sentences are sufficient.

C. Now consider a non-ideal gas whose pressure is no longer governed by the ideal gas
expression but instead is taken to be a general function of the temperature and the
volume, P = P (T, V ). The goal in this subproblem is to determine the temperature
drop due to the expansion of this non-ideal gas. The answer will be expressed in terms
of P (T, V ) and its derivatives.

i. [8 points] Suppose the change in volume δV is small. We want to determine the
differential change in temperature, (∂T/∂V )E. Show that this quantity obeys the
following relation: (

∂T

∂V

)
E

= −(∂E/∂V )T
(∂E/∂T )V

.

ii. [15 points] Express (∂T/∂V )E in terms of P = P (T, V ) (and its derivatives), and
the specific heat CV = (∂E/∂T )V .

D. [7 points] Determine the change in entropy per unit volume associated with this expan-
sion of the gas and show that it is always positive.
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4.8. EINSTEIN SOLIDS SM

4.8 Einstein solids

Throughout this problem you may need to make use of the relationship between entropy, S,
and the number of quantum states or multiplicity of the system, Ω

S = k ln Ω

and of the definition of temperature, 1/T = (∂S/∂U)V .

A. [12 points] Consider an Einstein solid, i.e., an idealized model for a crystal with N
atoms, as N independent oscillators, each capable of oscillating in the 3 dimensions of
space with energy given by E = (n + 3N/2) ~ω. Show that the number of quantum
states of the system for n quanta of energy distributed in N 3d oscillators is given by:

Ω =
(n+ 3N − 1)!

n!(3N − 1)!

Explain clearly how you obtain the number of quantum states. Calculate the entropy.

(Hint: It may help you to first calculate the number of ways of distributing one quantum
of energy, n = 1, in one 3d oscillator and to repeat for three quanta of energy, n = 3, in
one 3d oscillator...)

B. [10 points] Use the definition of temperature to calculate the temperature dependence
of the internal energy, U = n~ω, of an Einstein solid at high temperatures. Calculate
the specific heat at high temperatures.

C. [14 points] Two Einstein solids, A and B, with number of atoms NA � 1 and NB � 1
are placed in thermal contact. Assume further that there are many energy quanta per
oscillator so that n � NA, NB . Calculate what fraction of the total energy is in
solid A at equilibrium. Calculate the entropy of each of the solids and of the system at
equilibrium.

D. [14 points] Imagine that aliens deliver into your hands two objects, C and D, made
of substances whose multiplicities increase linearly with internal energy and number of
‘atoms’, like Ω = a N U/ε, where ε is some quantum of energy and a is a constant. The
objects have initial internal energies U i

D = 2 U i
C but D has four times the number of

‘atoms’ as C, ND = 4 NC . When placed in thermal contact, will energy spontaneously
flow from C to D or from D to C? What will be the ratio of the final internal energies,
U f
C/U

f
D, long after they have been placed in thermal contact?
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4.9. ENTROPY CHANGE SM

4.9 Entropy Change

A. [5 points] Consider a monoatomic dilute gas in a container of volume V . Let P (v) be
the velocity probability distribution of each molecule. Which of the following formulas
represents the entropy associated with this distribution function?

S = kB

∫
d3v logP (v) , (1)

S = −kB

∫
d3v P (v) logP (v) , (2)

S = kB

∫
d3v e−P (v) logP (v) . (3)

B. [10 points] The total entropy S of a monoatomic ideal gas is the sum of two terms:
its positional entropy Sx and its momentum entropy Sv. Positional entropy Sx is of no
interest to us; it remains constant throughout this question because the volume does
not change. At time t = 0 the system is prepared in a configuration where each particle
has velocity v with probability

P (v) =

{
(4

3
πv3

0)−1 if |v| ≤ v0 ;

0 if |v| > v0 .

Calculate the ideal gas entropy Sv for this initial condition.

C. [10 points] Calculate the internal energy U0 of the ideal gas in this initial configuration.

D. [10 points] The above gas is allowed to reach thermal equilibrium while in thermal
contact with the surrounding air, which is at temperature TR. The initial condition in
part B was chosen such that U0 = 3

2
NkBTR.

Derive the formula for the entropy of this gas after it reaches thermal equilibrium. There
are many ways of doing this: e.g., as a derivative of the canonical partition function, or
by choosing the correct formula in part A.

E. [5 points] How much heat has been exchanged between the gas and the surrounding air
during the equilibration process?

F. [10 points] Did the gas gain or lose entropy? Did the surrounding air gain or lose
entropy? Base your answers on the second and first laws of thermodynamics, and
reconcile this with your results in the above parts.
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4.10. EQUIPARTITION SM

4.10 Equipartition

A. [10 points] Formulate in words the content of the equipartition theorem in classical
statistical mechanics.

B. [10 points] An ideal gas is localized in space by a radial potential,

U(r) = κ r3 .

What is the contribution of the potential to the average energy per particle when the
gas is at a temperature T?

C. [10 points] Discuss your result in part B in the context of your answer in part A.
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4.11. EXCITABLE PARTICLES SM

4.11 Excitable Particles

Consider a set of non-interacting, stationary particles, each having two internal energy levels.
The excited state lies ε above the ground state in energy and is n-fold degenerate.

A. [5 points] Calculate the Helmholtz free
energy f(T ) per particle.

B. [10 points] The figure on the right shows
a set of internal energy per particle
curves u(T ). One of them corresponds
to this two level system — which one?

C. [10 points] Estimate the energy gap ε
and the degeneracy n of the excited
state from the u(T ) curve in the figure.
(Recall that kBT ' 1/40 eV at room
temperature.)
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4.12. GAMBLING SM

4.12 Gambling

Gambling may be considered as a one-dimensional random walk. The probability q of moving
to the left and the probability p = 1−q of moving to the right in the random walk represent
the probability that the gambler loses or wins on a specific bet. For each step n, the step size
sn to the left (losing) is equal to the amount bet bn. The step size to the right (winning) is D
times larger, Dbn. In other words, the gambler receives D times the amount of the bet when
he wins. The parameters p, q and D are set by the gambling establishment. The gambler has
the freedom to choose the total number of bets N and the amount bn of each bet, for a given
total gambling budget B, where B =

∑N
n=1 bn. Assume for this problem that the gambler

keeps any proceeds of each individual bet bn separate from his original budget B and does
not reinvest them.

A. [15 points] The “first law of gambling” states that there is no way of varying the number
and amount of one’s bet within a given budget B that will enhance ones “expected”
(average) winnings, w̄, defined by:

w̄ =
N∑
n=1

s̄n ,

where sn ∈ {−bn, Dbn} is the result of a given bet bn, and s̄n is the average result if it
could be repeated many times. Calculate w̄. Show that it is consistent with the first
law of gambling stated above.

B. [9 points] The mean square fluctuation in the expected winnings is given by:

∆w2 =
N∑
n=1

∆s2
n =

[
pD2 + q − (pD − q)2

] N∑
n=1

b2
n .

How do these fluctuations scale with the number of bets N in the special case where all
bets are for the same amount, bn = b? How do they scale with N for equal sized bets
within a given budget B?

C. [8 points] Describe (without extensive calculations) how the gambler can maximize or
minimize these fluctuations by using his freedom to choose both N and the distribution
of bets {bn} for a given fixed budget B.

D. [8 points] Gambling establishments set the odds against you — they select p, q and D
so that w̄ < B. Describe how the gambler can use the fluctuations to maximize his
changes of ending up with more money than he started with.
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4.13. HARD RODS SM

4.13 Hard Rods

Consider a one-dimensional gas of N identical hard “rods” of length a and mass m, whose
centers are confined to a region of length L (see figure). The Hamiltonian for this system can
be taken to be

H =
N∑
i=1

p2
i

2m
+

∑
1≤i<j≤N

φ(|xj − xi|) , (1)

where xi denotes the location of the center of the i’th rod, and φ(∆x) is an interaction
potential,

φ(∆x) =

{
+∞ for |∆x| < a ;

0 for |∆x| > a .
(2)

Note that this form for the potential implies that the centers of neighboring rods can’t get
closer than a distance a apart, and that otherwise they don’t interact.

A. [14 points] By integrating over momenta, the partition function can be written in the
form

Z(N,L, T ) =
AN

N !

∫ L

0

dx1

∫ L

0

dx2 . . .

∫ L

0

dxN e
−β

∑
1≤i<j≤N φ(|xj−xi|) , (3)

where β ≡ 1/(kBT ). What is the coefficient A? Your answer should be given in terms
of m and T .

B. [14 points] Show that
Z = (A [L− (N−1) a])N/N ! , (4)

by performing the xi integrations, noting that the exponential in Eq. (3) is either 0 or
1 because of the form assumed for the potential φ. One way to do this is to restrict the
integration to the case 0 ≤ x1 < x3 . . . xN ≤ L, and then multiply the answer by N ! to
account for all permutations of this configuration.

C. [14 points] Compare the result for Z in Eq. (4) for a gas of rods to the partition function
for N non-interacting particles confined to a line of length L (an ideal gas) and explain
the difference between the two.

D. [14 points] In the limit that N →∞ and L→∞, with the density ρ ≡ N/L held fixed,
compute the free energy per particle, f = − lnZ/(Nβ), from the partition function in
Eq. (4). Use Stirling’s formula, lnN ! ' N lnN −N .

E. [14 points] In the same limit as in part D, compute the pressure of the gas as a function
of the density ρ (i.e., compute the equation of state).
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4.14. HARMONIC OSCILLATOR SM

4.14 Harmonic Oscillator

Consider a harmonic oscillator which has energy levels En = (n+ 1
2
) ~ω.

A. [8 points] Give an estimate of the temperature T , below which significant deviations
from classical statistical behavior occur.

B. [8 points] Calculate the entropy of the harmonic oscillator as a function of temperature.

C. [9 points] Take the classical limit for the entropy and give a physical explanation for its
value.
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4.15. HELMHOLTZ FREE ENERGY SM

4.15 Helmholtz Free Energy

Someone measured the Helmholtz free energy F as function of
temperature T for a particular system at constant volume V .
The figure shows a schematic plot of the results. The axes are
not labeled. It might be a plot of F (T ) or T (F ). The following
line of arguments will determine which one it is:

A. [7 points] Transform the conventional form of the second law of thermodynamics, based
on dQ = dU + p dV and the relation between entropy, S, and heat, into an equivalent
form involving F (T, V ) by means of a Legendre transformation, and show that(

∂F

∂T

)
V

= −S .

B. [7 points] Explain why the isochoric heat capacity, CV , must be positive.

C. [8 points] Express CV /T as a second derivative of F .

D. [8 points] Is F (T ) convex or concave? Which of the two variables is plotted along the
vertical axis?
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4.16. IDEAL FERMIONS IN ANY DIMENSION SM

4.16 Ideal Fermions in any Dimension

Consider an ideal gas of spin-1
2

fermions with energy spectrum ωp ∝ pα, confined in a box of
volume V in n spatial dimensions.

A. [10 points]

i. From the definition of the partition function of the grand canonical ensemble,

Z =
∑
n

e−β(En−µNn) ,

show that for our system of fermions the partition function can be written as

Z =
∏
p,s

[
1 + e−β(ωp−µ)

]
,

where the product is taken over all values of momentum and spin of a single electron.

ii. Define the thermodynamic potential Ω(V, T, µ) so that Z = e−βΩ. This thermo-
dynamic potential is related to the pressure through Ω = −PV . Show that the
pressure for our system is

P = 2T

∫
dnp

(2π~)n
ln
[
1 + e−β(ωp−µ)

]
.

B. [10 points] Show that the internal energy E and pressure P satisfy E = (n/α)PV .

C. [10 points] Show that the pressure is an homogeneous function of T and µ of order
(n/α) + 1,

P = T (n/α)+1f
(µ
T

)
,

where f is some univariate function. In other words, if one increases both T and µ by
a factor of λ, then P increases by a factor of λ(n/α)+1 .

D. [15 points] By using the result derived in part C, and thermodynamic relations, show
that in adiabatic processes, the ratio µ/T remains constant.

E. [5 points] Show that the equation for an adiabat is PV 1+(α/n) = const.
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4.17. IDEAL GAS ENTROPY SM

4.17 Ideal Gas Entropy

Throughout this question, clearly state and justify any assumptions or approximations you
make. Note that parts A and B are independent.

A. [15 points] Two samples of an ideal gas (X and Y ) are each confined in upright cylinders.
Both are initially in equilibrium and are at the same pressure P0 and temperature
T0 = 300K. Each occupies a volume V0. The cylinder containing sample X is sealed at
the top by a piston of mass M . The piston can move without friction, but no gas can
enter or leave the cylinder. The cylinder containing sample Y has a fixed volume.

Each cylinder is placed in thermal contact with a reservoir at Tres = 400K. The two
samples are allowed to come to equilibrium with the reservoir. (The system of cylinders
and reservoir is isolated from the rest of the universe.)

i. Can the process of heating sample X be considered reversible or must it be con-
sidered irreversible? Explain.

ii. Is the entropy change of sample X greater than, less than, or equal to the entropy
change of sample Y ? Explain. (If either sample undergoes no entropy change, state
so explicitly.)

B. [20 points] Two fixed partitions divide an insulating box into three compartments of
equal volume. The left and right compartments each contain n moles of an ideal gas
at standard temperature and pressure; the middle compartment is evacuated. Two
processes, each starting from the same initial conditions, are described below.

In process 1, the two partitions are removed simultaneously. The system is allowed to
come to equilibrium. In process 2, the right-most partition is removed first. The system
is allowed to come to equilibrium. Then the left-most partition is removed and the
system is allowed to re-equilibrate.

i. Is the absolute value of the change in entropy of the system composed of the entire
box and its contents in process 2 greater then, less than, or equal to that for process
1? Explain.

ii. Calculate the change in entropy of the system composed of the entire box and its
contents for process 2.
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4.18. IDEAL GAS ZAP SM

4.18 Ideal Gas Zap

A. [15 points] For an ideal gas, show that the molecular specific heats at constant volume
(cv) and pressure (cp) are related by cp = cv + kB, where kB is Boltzmann’s constant.

B. [15 points] Consider an ideal monoatomic gas at room temperature and pressure, T0 =
300K, p0 = 105 Pa. A pulsed laser beam deposits an energy E in a small volume V in
10−9 seconds. If no volume increase occurs during this short interval, show that there
is a pressure rise ∆p = (γ−1)E/V and a temperature rise ∆T = (T0/p0)(γ−1)(E/V ),
where γ = cp/cv.

C. [15 points] Assume that this volume expands before there is any heat transfer to the
surrounding gas. What is the final density of the gas? What is its final temperature?
You may express your answers in terms of the initial pressure and temperature p0 and
T0 of the room temperature gas and the ∆p you found in part B.

D. [7 points] It is straightforward to make nanosecond laser pulses with microJoules of
energy that are focused to a diffraction limited spot. Assume the laser pulse deposits
10−6J of energy uniformly in sphere of radius 2 × 10−6 m. Return to your formulas in
parts B and C and use these values to estimate: (i) the local pressure rise ∆p immediately
following absorption of the laser pulse, (ii) the temperature rise ∆T , and (iii) the final
temperature after expansion.

E. [8 points] The answers you got in part D should be quite far above room temperature and
pressure. Discuss the validity of the assumptions (energy deposition before expansion,
and then expansion before heat loss) you made in obtaining these values.
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4.19. IDEAL PARAMAGNET SM

4.19 Ideal Paramagnet

A system consists of N localized non-interacting spin 1/2 particles in a magnetic field B =
B êz. The energy associated with each magnetic moment µ is ε = −µ · B. The system is
quantum-mechanical: the z-component of each magnetic moment is µz = sz gµB, where g is
the g-factor, µB is the Bohr magneton, and sz can take the values ±1/2.

A. [10 points] To what value will the total energy of the system tend (i) as T → 0 K? (ii)
as T →∞? Explain. To what value will the entropy tend in the same limits? Explain.

B. [10 points] Explain which of the following proposed graphs of entropy as a function of
temperature (for some arbitrary field strength B) could possibly be correct. Qualitative
reasoning is sufficient.

Explain how the graph would change, if at all, if (i) the field had a greater magnitude
and (ii) the field were zero.

C. [15 points] Derive an expression for the magnetization of the system as a function of
temperature and applied field.

D. [15 points] Show that the entropy of the system is given by:

S = NkB

{
ln

[
2 cosh

(
βgµBB

2

)]
− βgµBB

2
tanh

(
βgµBB

2

)}
,

where β = 1/(kBT ) with kB the Boltzmann constant.
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4.20. JOULE FREE EXPANSION SM

4.20 Joule Free Expansion

“Joule free expansion” is a type of process where a gas expands while in thermal and mechan-
ical isolation. It can not exchange heat or mechanical energy with the environment, or any
other object. The temperature of a classical dilute gas (an ideal gas) does not change during
such a process. This is not true for a quantum gas. Consider a gas of fermions. For simplicity
let it be one dimensional: N electrons moving freely along a wire of length L. (Ignore Coulomb
interactions.) Assume that the energy eigenstates of the fermions are of the familiar form

En =
~2k2

2m
, k =

2πn

L
, with n = 0,±1,±2, · · · .

A. [15 points] Show that at zero temperature the Fermi momentum kF and the Fermi
energy EF are functions of only the density ρ ≡ N/L, and have the form

kF ∼ ρa , and EF ∼ ρb .

Determine the exponents a and b.

B. [10 points] Show that the total zero temperature energy per particle has the form

u(ρ) ∼ ρc .

Determine the exponent c.

C. [15 points] Assume that at room temperature the Fermi energy is much larger than kBT
such that the specific heat can be estimated in the same manner as for electrons in a
metal. Only the fermions close to the Fermi level are thermodynamically active, and
they can be treated as behaving classically, obeying the equipartition theorem. Show
that the specific heat per particle has the form

c ∼ ρd T e .

Determine the exponents d and e.

D. [15 points] The above results combine into the following low temperature approximation
for the energy per particle

u(ρ, T ) ' a0 ρ
c + a1 ρ

d T e+1 ,

with a0 and a1 constants. Make some reasonable guesses for c, d, and e if you were
unable to determine their values in parts A–C.

Suddenly the length of the wire changes and the fermions undergo a Joule free expansion
process. (This might be realizable in the context of nanotubes.) Determine from the
above formula whether the Fermi gas temperature increases or decreases during this free
expansion process.

E. [15 points] Does your answer agree with your physical intuition? Discuss this briefly.
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4.21. FREE EXPANSION SM

4.21 Free Expansion

A gas of initial volume V and initial temperature T is allowed to expand into vacuum (which
has zero pressure), thereby increasing its volume to V + δV . The task is to compute the
associated temperature change of the gas, δT , as a result of the expansion.

A. [10 points] Show that for ideal gases the temperature drop has to be zero. A few
sentences are sufficient.

B. [10 points] Suppose the change in volume δV is small. We want to determine the differ-
ential change in temperature, (∂T/∂V )E. Show that this quantity obeys the following
relation: (

∂T

∂V

)
E

= −(∂E/∂V )T
(∂E/∂T )V

.

C. [20 points] Express (∂T/∂V )E in terms of the equation of state P = P (T, V ), and the
specific heat CV = (∂E/∂T )V .

D. [10 points] Determine the change in entropy per unit volume associated with this ex-
pansion of the gas and show that it is always positive.
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4.22. LANDAU DIAMAGNETISM SM

4.22 Landau Diamagnetism

Solving Schrödinger’s equation for an electron in a uniform magnetic field B = B êz yields a
set of energy levels (known as Landau levels) given by

ε(pz, n) =
p2
z

2m
+

~e|B|
mc

(
n+ 1

2

)
. (∗)

Here, e is the electron charge, pz ∈ [−∞,∞] is the electron momentum in the z-direction, and
the quantum number n = 0, 1, 2, · · · ,∞. The degeneracy of each state is g = 2L2e|B|/(2π~c)
when states are confined to lie within a cube of linear size L (with L much larger than
any microscopic scale). The electron magnetic moment is neglected in the result (∗), and
throughout the rest of this problem.

A. [10 points] Write down the logarithm of the grand canonical partition function for this
gas of (non-interacting) electrons in a magnetic field. Do not evaluate the sum or
integral.

B. [20 points] Calculate the fugacity z = eβµ in the high-temperature limit. Express the
result in terms of the particle density N/V .

C. [20 points] In the same high-temperature limit, show that the zero-field magnetic sus-
ceptibility is negative (indicating diamagnetic response) and varies as −1/T . Compute
the numerical coefficient multiplying −1/T .
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4.23. MAGNETIC COOLING SM

4.23 Magnetic Cooling

A. [10 points] Consider a system of N identical non-interacting spins with associated mag-
netic moment µ, at a finite temperature T , and in an external magnetic field of mag-
nitude B. (This is a very crude model of paramagnetic salts.) Consider an adiabat on
the (T,B) plane. Is dB/dT positive or negative on the adiabat? You only need to give
a qualitative argument.

Now consider a piece of paramagnetic salt in an external magnetic field B. The energy of the
system satisfies the equation

dE = T dS +B dM ,

where M is the magnetization. The paramagnetic salt satisfies the Curie law: the magneti-
zation, as a function of external field and temperature is

M = a
V B

T
,

where a is some constant and V is the volume, considered to be constant. It also follows the
Schottky law: the specific heat at zero magnetic field is

CB(T,B=0) =

(
∂E

∂T

)
B=0

=
b V

T 2
,

where b is another constant.

B. [20 points] Show that the specific heat at constant magnetic field cB(T,B) is

cB(T,B) =
V

T 2

(
b+ aB2

)
.

C. [20 points] Find the equation for the adiabats on the (T,B) plane.
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4.24. MAGNETIC ONE-DIMENSIONAL CHAIN SM

4.24 Magnetic One-dimensional Chain

A chain-like molecule is composed of N rigid straight line segments
connected by hinges that can only be in two states, namely at an angle
θ = 0 or π. The figure on the right shows a typical configuration (but
with the θ = π angles slightly smaller than 180◦ for graphical clarity).
Each rigid line segment carries a magnetic moment µ aligned with the
segment, and the magnetic field points in the x-direction, B = B êx.
Since all line segments point in the x-direction, all magnetic moments
point either along or opposite to the magnetic field.

A. [15 points] Calculate the entropy S(N, T ) of the chain.

B. [15 points] Calculate the average distance between the end points of the chain,

D(N, T ) = 〈x(N)− x(0)〉 .

C. [15 points] Calculate the root-mean-square fluctuations in the endpoint separation,

∆D(N, T ) =
√
〈[x(N)− x(0)]2〉 − 〈x(N)− x(0)〉2 .

D. [15 points] Discuss your result in part C in the limit of very high temperatures from the
perspective of random walks. In case you did not succeed in solving part C, you should
still be able to predict how ∆D(N) depends on N using random walk arguments.
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4.25. ONE-DIMENSIONAL CONDUCTORS SM

4.25 One-dimensional Conductors

A. [10 points] The figure on the right shows the band struc-
ture of a one dimensional conductor, i.e., the energy
E(k) of an electron as a function of momentum k (in
units of inverse lattice spacing). The band width ∆ ≡
E(π) − E(0) = 10 eV. At T = 300 K, the electron oc-
cupation number of the highest energy state in the band
is equal to n(π) = 0.001. What is the location of the
chemical potential relative to the bottom of the band?

B. [15 points] Let the same E(k) represent the energy levels
of bosons instead of electrons. Discuss (in a few sentences)
under what circumstances the chemical potential is pos-
itive, zero, and negative compared to the bottom of the
band.
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4.26. MAXWELL-BOLTZMANN DISTRIBUTION SM

4.26 Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution for a collection of simple molecules of mass m is

Φ(x, y, z, px, py, pz) dτ =
e−βεdτ∫∞
−∞ e

−βε dτ
, (1)

where dτ ≡ dx dy dz dpx dpy dpz, β = 1/kBT , and the total energy ε ≡ (p2
x + p2

y + p2
z)/2m +

U(x, y, z), with U(x, y, z) an external potential. Momentum is non-relativistic, p = mv.

A. [20 points] Integrate over the coordinates x, y, and z, and show that Eq. (1) reduces to
the product of three factors of the form:

Ψ(vx) dvx =

(
βm

2π

)1/2

e−βmv
2
x/2 dvx , (2)

with similar expressions for the velocity components vy and vz. Sketch the distribution
function Ψ(vx) as a function of vx.

B. [10 points] Show that the average kinetic energy associated with each velocity component
is 1

2
kBT , in agreement with equipartition of energy.

C. [20 points] Derive the speed distribution function f(v) dv and sketch f(v) as a function
of v.

D. [20 points] Suppose that some of the N molecules within a container of volume V can
escape in the x-direction over a potential barrier of height E0. Derive an expression
for the number which escape per second per unit area. Begin by considering a small
area dS perpendicular to the x-axis, and evaluate the number of molecules/sec which
approach dS using Eq. (2), then integrate to include only those molecules which have
energy greater than E0.

E. [10 points] Free electrons in a metal obey Fermi-Dirac rather than Maxwell-Boltzmann
statistics. Sketch the Fermi-Dirac distribution in energy for a free electron gas and
compare it with a sketch of the classical Maxwell-Boltzmann distribution at, say, room
temperature. Explain qualitatively how the two distributions change with temperature.

F. [10 points] Give an order of magnitude estimate for the average electron speed at room
temperature according to the classical Maxwell-Boltzmann distribution. Compare with
the electron speed at the Fermi surface in a metal according to the Fermi-Dirac distri-
bution.

G. [10 points] Photoelectron emission experiments on a clean metallic surface in high vac-
uum show that electrons in metals obey Fermi-Dirac rather than Maxwell-Boltzmann
statistics. Explain qualitatively how such an experiment might be performed. Recall
Einstein’s theory of the photoelectric effect, hν = 1

2
mv2 +Wb, where Wb is the potential

barrier height at the surface of the metal. Describe how the wavelength or frequency
dependence of the photoemitted electrons would differ for the Maxwell-Boltzmann and
Fermi-Dirac distributions. Assume that ultraviolet photons up to say 10 eV can be used,
and that Wb = 2.0 eV.
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4.27. MIXTURE OF ISOTOPES SM

4.27 Mixture of Isotopes

Consider a solid consisting of a mixture of two different isotopes. Treat the isotopes as
classical objects, which are completely identical except for an infinitesimal difference in mass
that allows us to distinguish the two types.

A. [10 points] If the number of atoms of isotope 1 is N1 and that of isotope 2 is N2, so that
the concentration of isotope 1 is c1 = N1/N , where N = N1 + N2, what is the increase
in the entropy of the solid from the value it would have if all N atoms were of isotope
1? (In other words, what is the entropy of mixing?)

B. [15 points] Consider a solid and a liquid which are in coexistence with each other at
the melting temperature Ta. Each is a mixture of the above two types of isotopes. The
solid has a concentration c

(s)
1 of isotope 1 and the liquid a concentration of c

(`)
1 . Assume

that c
(`)
1 < c

(s)
1 � 1. Is the temperature Tb where the pure solid melts (the one with

c
(s)
1 = 0), less or greater than Ta? Explain your answer. A qualitative physics argument

is sufficient (although a quantitative result is also acceptable).
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4.28. NATURAL GAS SILO SM

4.28 Natural Gas Silo

Natural gas is often stored in large cylin-
drical silos like the one in the figure on the
right. It has volume V = HA, with height H
and cross sectional area A. The number of
monoatomic gas molecules N inside the silo
is small enough for it to be treated as a classi-
cal ideal gas. The gravitational field g points
vertically down.

In the following, assume that the temperature of the gas is low enough for the variation in
potential energy of the gas molecules with altitude to be important. You need to include it
in the following calculations.

A. [10 points] Evaluate the canonical partition function and show that in the thermody-
namic limit the Helmholtz free energy has the form

F = −kBTN

[
c+ log

A

N
+

5

2
log T + log

(
1− e−mgH/kBT

)]
,

with c a constant.

B. [5 points] Evaluate the derivative of the free energy with respect to A,(
∂F

∂A

)
H,T,N

.

What physical quantity does this derivative represent? What type of physical process
does it relate to? What type of term in the first law of thermodynamics does it represent?

C. [10 points] Evaluate the derivative of the free energy with respect to H.(
∂F

∂H

)
A,T,N

.

What physical quantity does this derivative represent? What type of physical process
does it relate to? What type of term in the first law of thermodynamics does it represent?

D. [15 points] Derive the formula for the isochoric (constant volume) heat capacity CV .

E. [5 points] For all silos on Earth, one can safely ignore the variation of the gravitational
energy of the gas molecules with height inside the silo. Estimate (in the form of a
formula) the characteristic temperature Tg above which this is a good approximation.

F. [5 points] Show that your formula for the heat capacity CV in part D reduces far above
Tg to the conventional ideal gas formula for an ideal gas in which the gravitational
potential is completely ignored.
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4.29. NUMBER FLUCTUATIONS SM

4.29 Number Fluctuations

A. [10 points] Derive the relation between particle number fluctuations and particle number
susceptibility of an arbitrarily interacting gas (in contact with a reservoir with which
both heat and particles may be exchanged),

〈(∆N)2〉 ≡ 〈N2〉 − 〈N〉2 = T
∂〈N〉
∂µ

∣∣∣∣
T

.

B. [15 points] Using this relation (or any other valid approach), show that the number
of particles N and the occupation number nk for a specific momentum k satisfy the
conditions:

i. 〈n2
k〉 − 〈nk〉2 = 〈nk〉(1 ± 〈nk〉) for quantum statistics. Indicate which sign corre-

sponds to bosons, and which to fermions.

ii. 〈N2〉 − 〈N〉2 = 〈N〉 for classical statistics.

C. [15 points] For a spin-1
2

ideal Fermi gas at a temperature T small compared to the Fermi
energy (T � εF ), evaluate 〈(∆N)2〉 /〈N〉, and express the result in terms of T/εF .
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4.30. PARTICLES IN HARMONIC POTENTIAL SM

4.30 Particles in Harmonic Potential

Consider two non-interacting particles with the same mass in a one-dimensional harmonic
potential with frequency ω. Find the free energy of the system in the following cases:

A. [9 points] The two particles are distinguishable.

B. [9 points] The particles are identical bosons.

C. [9 points] The particles are identical spinless fermions.

D. [13 points] The particles are spin-1/2 fermions.
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4.31. PENDULUM OSCILLATIONS SM

4.31 Pendulum Oscillations

A pendulum hangs in a room, in equilibrium with the air in that room, at temperature
T = 300 K and 1 atm pressure. The pendulum consists of a mass, m = 1.0 kg, at the end
of a massless string of length ` = 10 cm. Its natural frequency, for small amplitudes, is
ν0 = (10 Hz)/2π = π

2

√
g/`, with g ' 10 m/s2 the acceleration of gravity. The Boltzmann

constant kB ' 1.4× 10−23 JK−1.

A. [8 points] What is the average potential energy of the pendulum?

B. [12 points] What is its root mean squared amplitude of the oscillation?
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4.32. PHOTON GAS SM

4.32 Photon Gas

Consider a photon gas in a conducting rectangular cavity.

A. [15 points] For a given mode frequency ω, derive (stating assumptions) the average
number of photons 〈n〉 in this mode.

B. [10 points] Derive the root-mean-square fluctuations in n. Compare it with part A: are
the photon number fluctuations always greater or less than the mean?
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4.33. PHOTONS AND RADIATION PRESSURE SM

4.33 Photons and Radiation Pressure

A. [20 points] Consider a 3-dimensional photon gas with energy spectrum E = ~cq where
q = |q| is the magnitude of the wave vector. Solve the questions below using quantum
statistical mechanics.

i. [5 points] Discuss why the chemical potential of this photon gas is zero.

ii. [8 points] Show that the radiation pressure of the photon gas is

p =
4σ

3c
T 4 ,

where σ = π2k4/(60~3c2).

iii. [7 points] Show that the energy density u of the photon gas can be expressed as
u = 3p.

B. [20 points] You are given an evacuated container of volume V whose walls are perfectly
reflective for electromagnetic radiation.

i. [6 points] By considering the density of states of the 3-dimensional photon gas in
the container, show that the energy U of the gas is a linear function of V .

ii. [7 points] Starting from the second law of thermodynamics and using Maxwell’s
relations, derive the general relation(

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P .

iii. [7 points] Using the results of parts B.i. and B.ii., prove that the radiation pressure
is given by p = a T 4 where a is an undetermined constant. The result u = 3p,
which was derived statistically mechanically in part A.iii., may be used here.
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4.34. QUANTUM PARTICLES IN HARMONIC OSCILLATOR SM

4.34 Quantum Particles in Harmonic Oscillator

[50 points] Consider quantum particles of mass m in a potential V (x) = m ω2

2
x2 in one dimen-

sion at temperature T .

A. [10 points] Calculate the canonical-ensemble partition function for each case listed below.
Express your results in terms of the dimensionless parameter α = ~ω

kT
.

i. [5 points] A single particle in the oscillator potential.

ii. [5 points] N spinless and distinguishable particles in the oscillator.

B. [10 points] For the two cases above, obtain expressions for and make sketches of the
average energy, E, and specific heat, CV , as a function of the temperature.

C. [20 points] Now consider particles in the oscillator.

i. [15 points] Calculate the canonical-ensemble partition function for each case listed
below and express it as an expansion in ξ = e−α. Keep terms up to order ξ4.

• Two indistinguishable spinless particles.

• Two spin-1/2 particles, one with spin up and the other with spin down.

• Two indistinguishable spin-1/2 particles, both with spin up.

ii. [5 points] Rank the entropy at a given temperature for the first and last of the
three cases listed above.

D. [10 points] Consider now spinless and indistinguishable particles (bosons) in a 1-dimensional
harmonic oscillator with chemical potential, µ, being held by external conditions, but
allowed to vary. Indicate whether this system will, under certain conditions, yield a
large number of particles in the ground state. If yes, indicate under what conditions. If
not, explain why.
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4.35. QUANTUM STATISTICS SM

4.35 Quantum Statistics

A container of fixed total volume V is divided into two compartments by a wall which is
heat conducting, but impermeable to gas particles. One compartment contains N particles of
an ideal Fermi gas A, while the other compartment contains N particles of a different ideal
Fermi gas B. The masses of the particles of the two gases are equal, but the particles of gas
A have spin 1

2
and the particles of gas B have spin 3

2
. The two compartments have the same

temperature.

A. [15 points] Assuming that the two compartments have the same pressure, find the ratio
VA/VB at very high temperatures. (Both gases are non-relativistic.)

B. [15 points] Assume that the chemical potentials in the two compartments are equal.
What is VA/VB? What is the ratio of pressures PA/PB?

C. [20 points] Let the temperature be zero, find the ratio VA/VB so that the two compart-
ments have the same pressure.
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4.36. REFRIGERATING IDEAL GASES SM

4.36 Refrigerating Ideal Gases

Consider a block of refrigerating material and three samples that need to be cooled. In the
temperature range of interest, 0.01 ≤ T ≤ 0.1K, the heat capacities of the three samples are
approximately given by

Sample F CF = (π2/2)NF kB (T/TF ) , (1)

Sample B CB = 1.9NB kB (T/TB)3/2 , (2)

Sample C CC = (3/2)NC kB . (3)

Here kB = 1.38 × 10−23 Joule/Kelvin is Boltzmann’s constant, and NF , NB, and NC are the
numbers of particles in each sample. Sample F is an ideal Fermi gas with TF = 2K. Sample B
is an ideal Bose gas with TB = 2K. Sample C is a very dilute classical mono-atomic ideal gas.

The refrigerating block consists of a paramagnetic type solid. At zero external magnetic field
the lowest two levels of the paramagnetic ions are separated by an energy TR = ∆ε/kB =
0.003 K, with all other excitation energies (divided by kB) above 10 K. In the temperature
range of interest the heat capacity of the refrigerating block has the form:

Refrigerator R CR = (1/4)NR kB (TR/T )2 , (4)

with NR the number of particles.

A. [15 points] Derive the canonical partition function of a classical mono-atomic ideal gas,
Z = (1/N !)(V/h3)N(2πmkBT )3N/2, with V the volume, m the mass of the particles, and
h the Planck’s constant. Derive the heat capacity (3) from Z.

B. [25 points] Calculate the partition function for the paramagnetic substance R, for tem-
peratures T ≤ 1K, and then use your answer to derive the heat capacity. Show all your
work. Justify the approximations needed to arrive at the result (4). Neglect vibrations
of the crystal lattice, etc.

C. [20 points] Explain intuitively, using Fermi surface and quasi-classical ideal gas proper-
ties, why the heat capacity of an ideal Fermi gas is proportional to temperature.

D. [20 points] All three samples are at an initial temperature T1 = 0.1 K, and the refriger-
ating block R is at T2 = 0.01 K. Calculate NF/NR, NB/NR, and NC/NR, assuming that
these ratios are fine-tuned in such a way that when any of the samples is brought in
thermal contact with the refrigerator, the final equilibrium temperature is Tf = 0.05 K
for all three processes.

E. [20 points] For a given value NR, it is possible to cool down many more liquid 4He
particles than liquid 3He particles. Why is that so? Describe the relevant physics going
on in samples F and B as they are being cooled down.
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4.37. ROTATING CYLINDER SM

4.37 Rotating Cylinder

Consider an ideal gas which is confined in a cylinder rotating around its axis with a frequency
Ω. The radius R of the cylinder, the temperature T , the number of particles N , and their
mass m, are given.

A. [25 points] Find the frequency-dependent part of the free energy, F (Ω), in the rotating
system of coordinates.

B. [25 points] Find the angular momentum of the system in the lab frame. (Use the
fact that the rotation is equivalent to the existence of a potential u(r), where r is the
perpendicular distance from the axis of the cylinder.)
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4.38. RUBBER BAND VERSUS GAS SM

4.38 Rubber Band versus Gas

Useful approximation: lnN ! ≈ N lnN −N for N →∞ (Stirling’s approximation).

A. [20 points] Consider a classical ideal gas of identical non-interacting molecules.

i. [15 points] Derive an expression for the entropy and express it in terms of its
temperature, T , its volume, V , and the number of molecules, N , for large N . Show
your work.

ii. [5 points] Note that the conservation of energy, dE = TdS − PdV , implies that
there are two possible contributions to the pressure: an ‘entropic’ one, T ∂S/∂V ,
and an energetic one, −∂E/∂V . Derive expressions for these two contributions to
the pressure.

B. [30 points] Consider a simplistic model for a polymer chain of the kind of which rubber
bands are made. We will consider the polymer as made of N molecules of length d linked
together end-to-end. The angle between successive links can be either 0 or 180 degrees,
as shown in the figure below, with the same potential energy. Assume that N is even
and that the system is at temperature T .

i. [10 points] Show that the number of arrangements that yields length L = 2 m d is

g(N,m) =
N !

(N
2

+m)!(N
2
−m)!

,

where m is a positive integer. Clearly indicate the reasoning needed to derive this
result.

ii. [8 points] Calculate the force needed to keep the chain at a given length, L. Com-
ment on differences or similarities with respect to part A.ii regarding the relative
contributions of the entropic versus energetic contributions to the force.

iii. [7 points] By what amount does the energy of a system of polymers at temperature
T change when a link flips direction so as to increase the overall length L by 2d?
What is the ratio of the probabilities for these two configurations? Briefly explain
your answer to these questions.

iv. [5 points] Consider having a polymer chain extended by applying a force to it.
Derive an expression for its average length. Would the average length increase,
stay the same, or decrease if the temperature is increased? Explain.
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4.39. STABILITY AND CONVEXITY SM

4.39 Stability and Convexity

Someone has calculated the entropy S as a function of energy U
for a particular system. The figure on the right is a schematic
plot of the results. The axes are not labeled. It might be a plot
of S(U) or U(S); i.e., the vertical axis might represent S or
U . Show that thermodynamic stability requirements determine
which one it is. Specifically:

A. [5 points] Write down the second law of thermodynamics.

B. [5 points] Write down the calorimetric definition of heat
capacity.

C. [10 points] Derive from parts A and B the relation be-
tween the heat capacity and the second derivative of the
energy with respect to entropy.

D. [10 points] Determine from your answer to part C whether
U(S) is convex or concave. Which of the two variables is
plotted along the vertical axis?
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4.40. THERMAL ZIPPER SM

4.40 Thermal Zipper

Consider a “zipper” of N parallel links that can be opened only from one end. The zipper is in
equilibrium with its environment at temperature T . The energy required to open link j is ε if
link j−1 is open, but is infinite if link j−1 is still closed. Similarly, link j can be closed with a
decrease in energy −ε only if link j+1 is already closed. Link N cannot be opened under any
circumstances. Assume that the open state of a link is g-fold degenerate to account for the
large number of rotational conformations of the open structure. This model has been used as
a starting point for understanding the thermally-driven unbinding of the DNA double-helix.

A. [10 points] Find the canonical partition function of the system. Express it in terms of
x ≡ g exp(−ε/kT ).

B. [15 points] Show that the average number of open links 〈s〉 is

〈s〉 =
x

1− x
− NxN

1− xN
.

C. [20 points] Suppose g > 1. The previous result implies that for large N the number of
opened links becomes large as x → 1. Why does this happen, given that opening up a
link costs an energy ε? Explain this fact using the free energy F = E − TS.

D. [20 points] A Taylor series expansion of lnZ about x = 1 reads

lnZ = lnN − 1
2
(N−1) η + 1

24
(N−1)(N−5) η2 +O(η3) ,

where η ≡ 1 − x. Use this result to evaluate the heat capacity at x = 1. You may
assume N � 1 if it simplifies the calculation.
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4.41. THERMODYNAMIC RELATIONS SM

4.41 Thermodynamic Relations

For each of the following thermodynamic conditions, describe a system or class of systems (the
components or range of components, temperatures, etc.) which satisfy the specified condition.
Confine yourself to classical, chemical systems of constant mass.

A. [5 points]

(
∂U

∂V

)
T

= 0.

B. [10 points]

(
∂S

∂V

)
P

< 0.

C. [5 points]

(
∂T

∂S

)
P

= 0.
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4.42. TWO-DIMENSIONAL BOSONS SM

4.42 Two-dimensional Bosons

Consider an ideal gas of spin-0 bosons of mass m in two dimensions.

A. [20 points] Starting from the grand canonical ensemble, show that the average occupancy
of a state with energy ε is

n̄(ε, T ) =
1

e(ε−µ)/kT − 1
.

This is, of course, a general result independent of the number of spatial dimensions.

B. [15 points] Consider a sub-area of the two-dimensional space with size Lx × Ly. Write
down, without proof, the (non-relativistic) energy-momentum relationship ε(kx, ky) for
the bosons. Then use your energy-momentum relationship together with the result of
part A to show that the total number of particles can be expressed as:

N = LxLy
mkT

2π~2

∞∑
j=1

ejµ/kT

j
.

Feel free to work in the limit where Lx and Ly are arbitrarily large,

C. [15 points] Based on the result of part B, is Bose-Einstein condensation expected to
occur in two dimensions? Explain your answer.
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4.43 Two Levels

A particular quantum system has two different energy levels, the ground energy E0 = 0,
and the excited energy E1. The ground state is non-degenerate, and the excited state has a
degeneracy of n, i.e., there are n distinguishable states of energy E1. At a temperature of T :

A. [6 points] Give the free energy of the system.

B. [6 points] Give the probability that the excited state will be occupied.

C. [6 points] Give the average energy of the system.

D. [12 points] Give the entropy of the system. Calculate or state the values as T → 0 and
T →∞. Explain why these results are reasonable.
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4.44 Two Levels and Beyond

A. [20 points] Consider a two-level system with energy states 0 and ε.

i. [10 points] In the canonical ensemble, derive an expression for the heat capacity of
the two-level system.

ii. [10 points] In the 1970’s, it was discovered that the low-temperature heat capacity
of insulating glasses is linear in T . Approximate the internal degrees of freedom for a
glass as a superposition of independent two-level systems with a broad distribution
of energy differences g(ε)dε. Show that the heat capacity of a glass is given by
CV (T ) ∼ Ak2

BT g(0), where A is a constant of order unity.

B. [20 points] A myoglobin molecule in solution can either have exactly one adsorbed O2

molecule, or else zero adsorbed O2 molecules. Let ε denote the energy of an adsorbed
molecule of O2 relative to an O2 in solution at infinite distance from the myoglobin.

i. [12 points] Approximate the O2 molecules in solution as an ideal gas (exclude
rotational and vibrational degrees of freedom). Prove that the chemical potential
of an ideal gas is µ = kBT log(n/nQ), where n is the particle density and nQ =
(MkT/2π~2)3/2.

ii. [8 points] Prove that the fraction of myoglobin molecules with an adsorbed O2

molecule is given by

f =
n

nQ exp(ε/kBT ) + n
,

where n is the concentration of O2 molecules in the surrounding solution.

C. [20 points] Consider a gas of free electrons at T = 0. An electron in a magnetic field
has an energy of ±µBH according to whether the spin is parallel or antiparallel to the
field H .

i. [5 points] Sketch the spin-dependent density of states and indicate a typical occu-
pancy.

ii. [15 points] Show that the spin paramagnetic susceptibility is 3
2
nµ2

B/µ0, where n is
the electron density and µ0 is the chemical potential at T = 0.
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4.45 Van der Waals Gas

A. [10 points] Using a Maxwell relation, show that:(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P .

(U is the internal energy, V is the volume, T the temperature, and P the pressure).

B. [20 points] A van der Waals gas has the following equation of state(
P +

aN2

V 2

)(
V

N
− b
)

= kB T ,

where N is the number of particles, kB is Boltzmann’s constant, and a and b are two
positive constants. Show that, at a given temperature, the specific heat at constant
volume CV of a van der Waals gas with a fixed number of particles N is independent of
its volume. Use an appropriate Maxwell relation.

C. [20 points] This van der Waals gas, initially occupying a volume V at temperature Ti,
undergoes a free expansion (i.e., an expansion in which U remains constant) up to a
slightly larger final volume V + ∆V . Does the temperature of the gas rise or drop? If
needed, use the relation derived in part A. Is the interaction between the molecules of
the van der Waals gas attractive or repulsive? Explain.
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4.46 White Dwarfs

Consider a degenerate Fermi gas of N identical spin-1
2

nonrelativistic fermions of mass m
confined in a volume V . Neglect the interaction between fermions.

A. [8 points] Find the ground state energy.

B. [12 points] Find the heat capacity at constant volume CV .

The final evolutionary state of a star whose mass is not too high is a white dwarf. In white
dwarfs, matter is highly compressed, so the electrons are not pinned to nuclei, but move freely.
White dwarfs are very cold so electrons form a degenerate Fermi gas. The pressure of this gas
is balanced by the gravitation force.

In the rest of this problem, consider a simplified model in which the white dwarf is a sphere
with uniform density. Assume the white dwarf is made out of electrons and 12C nuclei. The
12C nucleus has equal numbers of protons and neutrons. The kinetic energy of the 12C nuclei
can be neglected, but gravitational energy cannot be neglected.

Order of magnitude estimates are sufficient — you may ignore O(1) pure numerical coefficients.

C. [12 points] By minimizing the total energy of the star with respect to the radius, derive
the relationship between the mass and radius of a cold white dwarf. Assume the electrons
in the star are nonrelativistic.

D. [8 points] Can a white dwarf be in equilibrium if the electrons are ultrarelativistic?

E. [10 points] Estimate the maximal mass of a white dwarf and compare it to the mass of
the Sun. Some physical constants which might be useful are:

mp c
2 = 0.94 GeV, MPl ≡ (~c/G)1/2 = 1.2× 1019 GeV/c2,

me c
2 = 0.51 MeV, Msun = 1.2× 1057mp.
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