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Abstract

Dynamic processes are related to ground state properties of many-
body quantum systems and also to equilibrium critical phenomena. For
example, KPZ type growth of a line interface, describes also the ground
state properties of interacting electrons running around a ring in the
presence of an electric field, and the equilibrium crystal shape at a facet-
ridge endpoint. These equivalences suggest we search for generalizations
of conformal field theory to classify scaling properties of time evolution
operators in D=1+1 dimensions: for Tomonaga-Luttinger liquids and
conformal field theory the “dynamic critical exponent” is equal to z = 1;
for non-relativistic electrons and EW type growth z = 2; and for KPZ
type growth z = 1.5. Phase diagrams of specific models contain all four
dynamic universality classes and the crossover scaling is such that z > 1
typically decreases. The z-theorem explains this. The crossover from
EW to KPZ type growth, and from isotropic to directed percolation are
examples.

1 Introduction

One of the major challenges in contemporary physics is to understand the
universal properties of strongly fluctuating systems, where fluctuations lack
characteristic time and length scales. Scale invariant phenomena are realized
in equilibrium statistical mechanics (STM), in quantum field theory (QFT),
and also in non-equilibrium (NED) phenomena. In most cases they require
the tuning of a parameter, such as temperature at gas-liquid critical points.
Other systems “self-organize” themselves into a critical phase. A recent ex-
ample are sandpile models to describe avalanches . Older examples are the
so-called floating-solid phase of equilibrium adsorbed mono-layers 23 and the
rough phase of equilibrium crystal surfaces *°.

During previous decades scale invariance has been studies primarily in the
context of equilibrium STM and QFT. More recently we are witnessing how
the concepts and methods developed in those fields are generalized to other
branches of physics, in particular to scale invariance in dynamic processes such

as growing interfaces ® and catalytic chemical reactions .
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It is instructive to compare our present understanding of scale invariance
in non-equilibrium systems with that of equilibrium critical phenomena. There
are roughly three stages in such studies. The first one is the data gathering
stage. The existence of scale invariance is being established and universal-
ity classes are being cataloged. For equilibrium critical phenomena this was
achieved in the late sixties, for most non-equilibrium systems dynamic only a
few years ago.

Several new dynamic universality classes have been identified. I will focus
in this talk on two examples: KPZ type surface growth® and directed perco-
lation (DP) 97 In both cases the empirical evidence is mostly numerical in
nature, in particular from Monte Carlo studies ®. It is unfortunate that ex-
perimental realizations are still virtually absent. Experimental evidence was
crucial in the development of the theory of equilibrium critical phenomena®%11,
This goes beyond the fact that critical exponent have been measured with great
accuracy. Experimental realizations are important in setting the agenda. For
example, the development of the theory of 2D commensurate-incommensurate
(C-IC) phase transitions was a direct response to their appearance in adsorbed
mono-layers 3. Disordered flat phases in crystal surfaces were discovered the-
oretically 12, but I did not discover a mechanism to stabilize them without
step-step interactions until I was forced to look into the peculiar topological
properties of Si(100) surfaces 3.

The second stage is to obtain analytical insight in those scaling properties.
Exactly soluble models confirm scaling in equilibrium critical phenomena !4,
Mean field approximations and Landau-Ginzburg theory yield the existence of
upper critical dimensions and of a fixed point in renormalization theory.

For KPZ type growth we reached stage-two only in D=1+1 (one spatial
and one temporal dimension). A few D=1+1 models are exactly soluble 15718
Theoretical renormalization studies of dynamic systems go back to the sev-
enties 1. They emerged from the long tradition of research on Langevin and
Fokker-Planck equations. However, for KPZ type growth the mere existence
of an upper critical dimension is still an issue¢?®. The e-expansion of the KPZ
equation ®1° describes the fixed point structure close to D=2+1, associated
with the reversal of stability of Edwards-Wilkinson (EW) growth with respect
to the non-linear KPZ term. It does not yield a fixed point for the KPZ
universality class except in D=1+1.

For directed percolation we reached stage two. There are no exactly soluble
models, but the field theory is known, Reggion field theory 2!. Unfortunately
the upper critical dimension is large, D, =5. Moreover, field theory ?? suggests
the wrong sign for the stability of isotropic percolation (IP) with respect to
directionality 23.



The third stage is to find a description of the scaling properties in terms of a
massless free field theory. In general this is not possible at all. However, for 2D
equilibrium critical phenomena such a theory emerged during the last 15 years.
Coulomb gas representations (with boundary charges)?%2® and conformal field
theory (CFT) 2% provide a full free field theory description of virtually all 2D
equilibrium phase transitions There is no assurance that this can be generalized
to dynamic processes in D=1+1, but we have a good change since the time
evolution operators of master equations in D=1+1 resemble closely transfer
matrices of 2D equilibrium critical phenomena.

The first aim of this talk is to illustrate these equivalences between equi-
librium STM, QFT, and the master equation approach to NED phenomena,
The most elementary example of this is the diffusion equation, discussed in
section 2. The phase diagram of the exactly soluble XXZ quantum spin—%
chain is reviewed in section 3. Such equivalences invite us to generalize the
concept of dynamic universality beyond stochastic processes, to all possible
time evolution operators (transfer matrices) in STM. From that perspective
most ordinary 2D equilibrium critical points belong to the conformal dynamic
universality class, and have a dynamic critical exponent z = 1.

Generalizations of conformal invariance are being considered 2728 but we
did not get far yet. Simple guesses do not work. For example, the description
of KPZ type growth in terms of a free field theory with a £*-type dispersion
relation 2° might be a reasonable approximation, but is not exact, because the
finite size scaling (FSS) amplitudes of the mass gap do not obey the correct
amplitude ratios 3°. It is probably too early to tackle the problem from such
a general perspective. First, we need to gather more insight into the general
structure of 141 dimensional time evolution operators.

The Coulomb gas method, the predecessor of CFT, describes excitation
in 2D equilibrium critical phenomena as spinwaves and vortices in free scalar
field theory®!. This requires a sequence of equivalences and mappings between
models. The Coulomb gas description only emerged after considerable insight
into the general structures of 2D equilibrium phase diagrams existed.

Crossover scaling between dynamic universality classes is an important
issue. The XXZ model phase diagram illustrates that many (maybe not all)
dynamic universality classes with z # 1 are located at the edge of the conformal
universality class. Crossover scaling functions are severely restricted when the
crossover field is a redundant non-renormalizing (RNR) type operator, like the
stress tensor in CFT. This leads to the z-theorem in section 4. The change
in dynamic exponent is linked to the value of the crossover scaling exponent.
Sections 5-7 are devoted to applications of the z-theorem, in particular the
crossover from EW to KPZ type growth (section 6), and from isotropic to
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directed percolation (section 7).

2 Statistical Mechanics, Quantum Mechanics, and Master Equa-
tions

Transfer matrices in equilibrium STM, time evolution operators in QFT, and
master equations for NED processes are closely related. This is true to such
an extend that specific phenomena are mathematically identical. The most
trivial example is very familiar. Consider a single quantum mechanical (QM)
particle in a one dimensional box

H=2, (1)

Denote its spatial coordinate by 0 < h < L, such that [h,p] = i, and its wave
function as Z(h), such that

w) = / de Z(h) |h). @)
As we all know, the Schrodinger equation

.0 1 9?

becomes the diffusion equation in Euclidean time 7 = #t.

Consider a random walker. It hops during each time step, with probability
1/(2m) to one of its nearest neighbour sites, or stays put with probability
1—1/(m). The probability to find the walker at site h at time 7, Z(h), obeys
the recursion relation

Zopi(h) = (1 - %)ZT(h)+ i[ZT(h— 1)+ Z.(h+1)]. (4)

This master equation is the discrete time-space equivalent of the above diffusion
equation. The random walk problem is mathematically identical to that of the
single QM particle.

Finally, consider a domain wall in 2D equilibrium STM, for example a gas-
liquid interface. Assume this line spans the entire lattice in the 7 direction,
and (in this specific model) is not allowed to back-track in the 7 direction
(“overhangs” are not allowed). h(7) parameterizes the interface in terms of
the “height” of the liquid with respect to a reference line. The transfer matrix
method for evaluating partition functions leads to a recursion relation identical
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to the Euclidean Schrodinger equation of the QM particle. The Euclidean
action of the quantum mechanical particle is identical to the energy of the
interface

1 0h,
E:/dr im(g) . (5)

The QM wave function is identical to the equilibrium partition function, Z-(h).
Its h-dependence represents the constraint that the interface must end at site
h at the T-edge of the lattice.

The slope-slope correlation function of the 1D interface obeys the simple
relation

(M) M)y - Ly =) 0

by virtue of Gaussian integrals (the equipartition theorem). Splitting Eq.(6)
leads to a Langevin equation

19,
gh(ﬁ)

(n(r2)n(m1))

n

L s(r = m) (1)

2m

with 7 the random noise. This Langevin equation describes random deposition
and evaporation of particles onto a single column of particles. That process is
equivalent to a random walk. The above analysis amounts to an exact deriva-
tion of a Langevin equation from a master equation. This is hardly a surprise
because of the simplicity of this process. It is actually misleading, because
in general master equations and Langevin equations are only approximately
equivalent.

This elementary example is misleading in another aspect as well. It sug-
gests that every problem in STM has a counter part in QFT and NED. That
is not true. Time evolution operators

(W) 41 =T0); = exp(=H)[¥), (8)

in QM and master equations are much more restricted than transfer matrices
in STM. In QM, the probability to be in micro state h is equal to |Z(h)|?.
Conservation of probability implies that the norm, (¥|¥) = 1 needs to be
preserved in real time ¢ = —i7. This requires H to be Hermitian. In master
equations, Z(h) itself represents the probability to be in micro state k. In that
case, conservation of probability requires that (D|¥) = 1 must be preserved in
time. |D) = [ dz|z) is the “disordered state”. (D| must be the left eigenvector
of T corresponding to its largest eigenvalue, and this eigenvalue must be equal
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to one. STM does not place any such restrictions on its transfer matrices, and
is the most general of the three. In the space of all possible transfer matrices in
D dimensional equilibrium STM, all D=d+1 dimensional QFT time evolution
operators form a subset (the unitary ones), and all D=d+1 dimensional master
equations form another subset (the stochastic ones). In the above free particle
example these subsets accidentally coincide. From the QFT perspective, the
ground state of the particle is “accidentally” the completely disordered k& = 0
momentum state | D). From the master equation perspective, 7 is accidentally
unitary, 71 = 7, because the random deposition process has particle-hole
symmetry.

This elementary example displays “self-organized” criticality. It is a “mass-
less theory”, which lacks a characteristic time scale, and displays “critical slow-
ing down”. Wave packets of type

TTLI2

Z(x) ~ %exp[— = (9)

broaden in time only as a power law. Their width scales as I, ~ /% with
z = 2 the so-called dynamic exponent. The stationary state, |D), can never be
reached (critical slowing down). The dynamic exponent determines the rate at
which the energy (mass) gap, m(L), closes with system size. Consider periodic
boundary conditions, Z(h + L) = Z(h). The energy spectrum, Ey = 5k’
is discrete, since the eigen states are separated by Ak = 27 /L. Therefore,
the gap between the ground state and the first excited state scales as m =
Ey — Ey = 5=k? ~ L™ with z = 2.

There is no reason to limit the concept of dynamic universality to stochastic
transfer matrices. 1t applies to all STM transfer matrices. The stochastic ones
form a subset. Dynamic universality classes are defined by the power with
which the energy gap closes, m ~ L™%.

A typical phase diagram, like the one for the XXZ quantum spin—% chain
discussed in section 4, contains several phases and dynamic universality classes.
Most phases lack scale invariance. The energy gap is non-zero, and the fluctu-
ations are bound by characteristic time and spatial correlation lengths. These
are ordinary disordered phases, (quantum) liquids, solids, insulators, e.t.c. The
most common scale invariant type phase is the one with dynamic exponent
z = 1. This includes Fermi-liquids (metals, the dispersion relation is linear
and therefore z = 1) and relativistic massless bosons (Lorentz invariance). It
also includes all critical points in equilibrium STM with isotropic scaling (rota-
tional invariance). D=2 dimensions is special, the z = 1 dynamic universality
class contains all processes described by conformal invariance.

Non-relativistic free fermions represent the simplest dynamic universality
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class with z # 1. The energy gap scales with z = 2. Anisotropic scaling with
z = 2, is realized in 2D critical phenomena at Pokrovksy-Talapov (PT) type
C-IC transitions 3.

The above two examples are special, in the sense that for both we have
a free field theory description in D=14+1. KPZ type growth and DP type
processes are examples of dynamic universality classes with a non-trivial z #
1 for which we have no free field theory description (yet). Both lie in the
subspace of stochastic time evolution operators. Dynamic universality classes
with z # 1 represent equilibrium critical points with anisotropic scaling. In
D=2 equilibrium critical phenomena anisotropic scaling is typically associated
with so-called Lifshitz points and C-IC phase transitions. Unfortunately, such
Lifshitz points have never been established firmly, except for the above PT-type
transitions with z = 23,

Finally, two general remarks: Most conventional equilibrium critical phe-
nomena universality classes are contained within the z = 1 dynamic conformal
universality class. There is no intrinsic reason why other dynamic universal-
ity classes should lack a similar sub-structure. Secondly, in general dynamic
universality classes are characterized by D-1 independent z-type exponents in-
stead of only one. There is no intrinsic reason why the correlation length in
only one of the D directions should scale differently from the others.

3 The XXZ Quantum Spin-% Chain

The phase diagram of the XXZ quantum spin—% chain, (the 6-vertex model
in 2D STM) is a nice example of these close relations between STM, QFT,
and master equations. In the fermion representation its Hamiltonian takes the
form

1 _ _ _
H = Z Z[ (1 - A) + 4Aan a, — 4Aa;|l-a” a:+1a"+l

n

- 2(a:a;+1 + a;ll—-|—1a;) - 25(“: 1~ a;t+1a;) . (10)

In this formulation the model represents spinless fermions which hop around a
closed chain in the presence of an electric field s pointing along the wire, and
a nearest neighbour interaction A. Notice that H is not Hermitian at s # 0.
This model is exactly soluble by the Bethe Ansatz32. It played a central role
in the development of the theory of 2D critical phenomena and also in recent
work on Fermi-liquid theory.

Fig.1 shows the phase diagram. For A > 0 the fermions attract each other
at nearest neighbour sites. Along the line A = 0, where they are free and
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Figure 1: Phase diagram of the XXZ model with attractive interactions between fermions.

non-interacting, the model is trivially soluble by a Fourier transform. At s =0
it describes a conventional d=1 metal with a half-filled conduction band. The
dispersion relation is linear at the Fermi surface and therefore the dynamic
exponent 1s equal to z = 1. The electric field s creates a persistent current
around the wire for s # 0.

The fermions remain massless until A = 1 for all s. The dynamic exponent
remains equal to z = 1. One would expect this, because perturbation theory
in A gives rise in dimensions d>1 to a Fermi-liquid. Naive Fermi-liquid theory
breaks down however in d=1, since the A operator is marginal *. The result-
ing massless interacting fermion phase for A < 1 is nowadays known as the
Tomonaga-Luttinger (TL) liquid®*. At s # 0 it is a chiral TL-liquid. In d=1,
fermion are equivalent to bosons. The low lying plasmon excitations in the
TL-liquid act as bosons. Therefore the entire A < 1 phase is equivalent free
scalar field theory. The detail of this are rather technical 3%3%31 but impor-
tant because these equivalences are at the hearth of CF1' and the Coulomb gas
descriptions of 2D equilibrium critical phenomena. For example, the Baxter
line in the 8-vertex model, and also the critical line of the g-state Potts model
map onto the s = 0 line 3. Moreover, the 6-vertex model describes equilib-

2Each creation and annihilation operator has a critical dimension equal to zp = % Power
counting yields therefore that the interaction operator scales with ) = 2, i.e., has a critical

dimension equal to that of the embedded (space-time) dimension D.
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Figure 2: Growth rule in the D=141 dimensional BCSOS model.

rium crystal surfaces. In that representation the TL-liquid is identical to the
so-called rough equilibrium crystal surface phase .

At A = 1 the interaction become strong enough compared to the zero point
motion that the fermions coalesce into droplets and thus localize. The TL-
liquid transforms into an insulator. The persistent current stops. Surprisingly
this transition in “meso-scopic metallic rings” maps exactly onto the master
equation for KPZ type growth3%16, This is related to the asymmetric exclusion
model representation of KPZ type growth models'?, and adds to other relations
established before, in particular the equivalence of KPZ type growth to the
Burgers equation for randomly stirred fluids, and the directed polymer problem
6,19

Consider a wall built from rectangular shaped bricks as shown in Fig.2.
Nearest neighbour columns differ in height by one half-unit. The interface can
be characterized in terms of steps, by introducing a spin variable S} = +1
at each bond. The growth rule is as follows: Choose one of the columns
at random. A particle adsorbs with probability p (or nothing happens with
probability 1—p) if this column is at the bottom of a local valley, S7 = —1 and
Siy1 = +1. A particle desorbs with probability ¢ (or nothing happens with
probability 1 — ¢) if it is at the top of a local hill, S? = +1 and S}, = —1.
Nothing happens if it is part of a local slope, S; = 57 ;.

This model has been studied extensively in the literature, first by Monte
Carlo simulations ®, and more recently it was realized it can be solved ex-
actly 16, The Master equation, Eq.(8), describes the time evolution of the
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probability distribution

[0) = > Z{Sqh Hsq). (11)
{53}

The time evolution operator has the familiar form

T=1—eN""> Hpni (12)

with

Hony1 = p(l - S,TS;_l_l)é(Sf“ _1)6( rzL+1a 1)
+ q(1 =5, )8(52,1)6(S5 41, —1) (13)

and is equivalent to Eq. (10) for A = 1 and s = (p — q)/(p + q). The XXZ
model is stochastic only along the line A = 1. 7 must be applied N times to
evolve the surface by one unit of time. Without loss of generality we can set
e=p+q=1.

For p = ¢, the dynamic rule is equivalent to a Monte Carlo process to
simulate the equilibrium non-growing d=1 surface. From that perspective it
belongs to the EW dynamic universality class. It is easy to demonstrate, that
the time evolution equations for all correlation functions at A = 1 and s = 0
are linear-diffusion equations. This EW point is known as the KDP point in
the XXZ and 6-vertex model literature. Slater introduced it to describe the
ferroelectric transition in K Hy PO,43?.

KPZ type growth maps exactly onto the transition point of the persistent
current problem. At A = 1 the persistent current in the “meso-scopic metallic
ring” stops. The scaling properties of the fermions at this point are quite
intriguing. The energy mass gap scales as m ~ N7% with z = 1.5,

The phase diagram of the spin—% chain provides us also with a nice ex-
ample of the close relationship between dynamic processes and equilibrium
critical phenomena (in one higher dimension). John Neergaard and I found
that KPZ type growth describes the equilibrium crystal shape properties at
facet-ridge endpoints 3°. The time evolution operator of the BCSOS growth
model becomes identical to the transfer matrix of the 6-vertex model (in the
subspace where 7, is stochastic), when the sites are being updated sequen-
tially instead of at random. The XXZ chain, Eq. (10), represents the so-called
time continuum limit of the 6-vertex model. The latter describes the temper-
ature evolution of equilibrium 2D crystal surfaces. The anti-ferro electric side

of the 6-vertex model describes conventional surface roughening transitions .
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Figure 3: KPZ and EW type critical points in equilibrium shapes of crystals

The ferro electric side is less well known. The interactions favour facetting. At
low T two facets meet at a facet-ridge, as shown in Fig.3. KPZ type growth
maps exactly onto the endpoint of this facet-ridge where the two facets sepa-
rate into two P transition lines with rough rounded surface in-between. The
TL-liquid represents the rough phase. The vertical spatial direction represents
time in the fermion model and master equation. A tilt in the vertical direc-
tion is equivalent to a persistent current and finite growth rate. A tilt in the
horizontal direction requires an additional chemical potential term in Eq.(10).
A couples to the temperature such that lines of constant temperature are cir-
cles in Fig.1. The facet ridge shortens with temperature. The point where it
vanishes (the KDP point) maps onto EW type growth 3°.

At PT transitions the surface rounds smoothly*. At facet-ridge endpoints
it changes discontinuously since in KPZ growth the surface has a finite slope
in the time-like direction (it grows). The dynamic exponent z = 1.5 translates
into anisotropic scaling. The correlation lengths in the horizontal and vertical
direction diverge with different exponents.

Why did we not know about KPZ type scaling for a long time already?
After all, Lieb solved the 6-vertex model in 196732. Many aspects of the Bethe
Ansatz solution have only been worked out very recently. In retrospect, the
“KPZ” critical point is visible in Fig. 38 of the famous review paper by Lieb
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and Wu3?, but it took van Beijeren and Nolden*, Dhar'®, Gwa and Spohn ¢,
Bukman and Shore 33, Kim '®, and many others, to work out the details.

4 Is there a z-Theorem for Dynamic Processes in D=1+17

Crossover scaling plays an important role in our quest towards a free field
description of z # 1 dynamic scaling. The crossover towards z = 1 conformal
field theory class is of particular interest, because phase diagrams like Fig.1
suggest that generically z # 1 theories lie at the edge of the TL-liquid. The
following almost trivial example suggests that crossover scaling properties are
severely restricted.

Consider the 1D free fermion model, i.e., eq. (10) at A = s = 0 but in the
presence of a chemical potential term patay . The fermions are non-relativistic
when the chemical potential coincides with the bottom of the energy band,
E(k) ~ k?. There the massgap scales as m ~ (27/N)? because the momenta
are spaced as Ak = 27/N. This implies that zg = 2. The fermions are
relativistic at kg > 0. There the massgap scales as m ~ 47kp/N and z; = 1.
The crossover scaling function m = (kp + 27 /N)? — k% = 4zkp /N + (27/N)?
has two important properties. Firstly, the crossover exponent ys, at kp =
0 (defined as dm/dkp ~ N~*°%¥:) is equal to the change in the dynamic
exponent: y. = zp — z3 = 1. Secondly, the FSS amplitude of the massgap
is not a constant in the metal, but a universal number multiplied with the
rapidity kp.

This property has deep roots. The metal phase belongs to the conformal
z = 1 dynamic universality class. The rapidity couples to the stress tensor,
which lies at the core of CFT. This is a redundant operator which does not
renormalize under scale transformations (a RNR-type operator). The rapidity
does not change under renormalization. Systems with different rapidity are
equivalent apart from a scale factor kp.

The rapidity represents lattice anisotropy in ordinary critical phenomena.
Ising critical points on a square lattice and a rectangular lattice are identical by
a rescaling the unit of length in one direction. Contours of constant correlation
are ellipsoids instead of spheres. &, and &, diverge with the same exponent,
o~ Er ~ |T—Tc|_1/yT. Many 2D critical points can be mapped into the z = 1
TL-liquid in Fig.132%. Changing lattice anisotropy corresponds to changing
the slope of the Fermi surface. The scaling properties inside the TL-liquid are
strictly proportional to the rapidity.

Suppose that energy gap crossover scaling functions are of the generic form

m~ A/N* + B A\/N* (14)
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with A and B universal numbers and A the rapidity scaling field associated
with the RNR-type crossover operator. If this is true, dynamic processes with
larger z should be unstable. This is somewhat similar to multi-critical points
in CFT, which have a larger central charge ¢ according to the “c-theorem”
39 Moreover, the dynamic exponents of non-trivial theories would then follow
from the y. = zy — z; relation by calculating the crossover exponent in the
unstable theory with larger z.

Eq.(14) is too simplistic, but many of it properties are valid in general.
Counsider the crossover scaling of the energy gap between an unstable dynamic
multi-critical point, at s = 0, and a dynamic critical line, at s > 0,

m(N=1,s) = b0 m(bN "L, b s) ~ N0 F(NVes), (15)

The multi-critical point has dynamic exponent zg, and y; is its crossover scaling
exponent in the s-direction. F'(u) is a scaling function. Along paths with fixed
s # 0 the massgap must scale with dynamic exponent z;, m ~ N~?'. This
implies that the scaling function F(u) must behave in the large u limit as
F(u) ~ w(?0=#1)/¥s  This determines the power with which the amplitude of
the mass gap vanishes or diverges on approach of the multi-critical point:

m ~ N~ s(Fo=20/ys (16)

This is nothing unusual. The same analysis applies to any expectation value
O (for example magnetization) at the crossover from e.g., a multicritical point
to a critical line in conventional equilibrium critical phenomena

(’)(N_l,s) = b_ﬂo(')(bN_l,byss) (17)

with z( the critical dimension of the operator (. The amplitude of the massgap
vanishes or diverges on approach of the multicritical point, depending on the
sign of &g — «1. This simply reflects the details of how the renormalization flow
lines emerge from the multicritical point.

Suppose that from the perspective of the critical line at s > 0 the crossover
field is an exact scaling field, a RNR-type operator, such that s does not
renormalize. The naive choice to parameterize the crossover field, s, might
not be the natural one. Let A be the underlying rapidity-type parameter
along the critical line in terms of which all scaling amplitudes are strictly
proportional (or inverse proportional as explained below). Assume that close
to the multicritical point, A ~ s”. In the above crossover from non-relativistic
to relativistic fermions, the chemical potential g is the naive choice for s, but

the rapidity is the proper one, A ~ kp ~ s/2 e,z =1

3
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Assume that all scaling amplitudes along the critical line are strictly pro-
portional to A. This condition, m ~ N?'s% severely limits the crossover scaling
properties. Eq. (16) implies the exponent equality z; = zo — zy,. The critical
exponents, zg and y,, of the unstable dynamic universality class completely
determine the dynamic exponent, z;, of the stable one provided we know the
value of z.

In the free fermion example we reach an edge of z = 1 CF'I' where the
rapidity vanishes. In such cases £ > 0 and the dynamic exponent always
decreases, z1 < zg. It is also possible that the rapidity diverges at the edge. In
those cases x < 0 and the dynamic exponent always increases, z; > zg. These
two possibilities are equivalent by the following space-time duality.

Consider the STM representation, and reformulate the problem by running
the transfer matrix horizontally instead of vertically (turn the lattice over 90
degrees). This interchanges the role of time and space. [; ~ [% /s transforms
under [, «— {; into {; ~ (lﬁ.s)l/z. Each dynamic universality class with dynamic
exponent z is therefore equivalent to a dual one with 2’ = 1/z. An example of
this is discussed by Doochul Kim 38,

Eq.(15) describes the scaling of the inverse correlation length in the time-
like direction, m = ¢!, for a semi-infinite lattice directed in the time-like
direction. In the dual representation the lattice is semi-infinite in the spatial
direction. The dual energy gap m’ represents the inverse correlation length in
that set-up. Therefore, Eq.(15) transforms as

m/(N71,s) = b= 2om/(bN =1 p¥s/?05) ~ N™H20 p(NYs/705) (18)

Along paths with fixed s # 0, the dual massgap must scale as m’ ~ N~1/21,
This determines (as before) the power with which the amplitude vanishes,

=1 2o 1 1 1 x

m ~ N7 5% 30 521/ ~ N7 5 g7 51 (19)
using the relation z; = zy — zy;. Under space-time duality the crossover
scaling exponents transforms therefore as: z§ = 1/z0, 2| = 1/2z1, ¥, = ys/z0,
and ¥’ = —x/z;. The dual exponents still obey the exponent equality z} =
zy — @'yl. Therefore, for each theory with z > 1 and a vanishing A there
exists an equivalent dual one with 2z’ = 1/z and a diverging A’. In the dual
formulation the dynamic exponent of the unstable theory is always smaller,
z > 2.

The z-theorem can be summarized as follows: At the crossover between
dynamic universality classes the dynamic exponent zy of the unstable theory
and z; of the stable one, are relates by the exponent equality

Zo = 21 + xYs (20)
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provided that the crossover parameter s represents an exact scaling field which
does not renormalize, and that the amplitude of the massgap along the critical
line is strictly proportional to a parameter which scales as A ~ s” close to the
multicritical point.

5 Crossover into the Conformal z=1 Dynamic Universality Class

One of the most eye catching features of Fig.1 is that the TL-liquid phase is
surrounded at its edge by dynamic critical points with z # 1. This includes
PT transitions (non-relativistic fermions), KPZ and EW type growth, and
also directed percolation as discussed below in section 7. Kosterlitz-Thouless
transitions are the only z = 1 type critical points on the TL-liquid edge, as far
as | know. They describe roughening transitions from a flat non-tilted phase
into the rough (TL-liquid) phase. The crossover exponent is marginal, y, = 0.
KT transitions are weak infinite-order transitions because of this marginality.

The notion that many, if not all dynamics universality classes with z # 1
live on the edge of the z = 1 conformal theory (TL-liquids) is exciting. It should
be helpful in constructing free field theories for z # 1 type scaling, but how is
still an open question. The z-theorem implies a relation between the critical
exponents zg and z; = 1, the crossover exponent y, and the precise power x
with which the rapidity of the TL-liquid vanishes or diverges. Unfortunately
it does not predict the value of zy from the scaling properties of the TL-liquid
only.

In Fig.1, the crossover scaling cascade between dynamic universality classes
is such that z always decreases until it reaches its “natural lower bound” z = 1.
This is due to the fact that all dynamic universality classes in Fig.1 have a dy-
namic exponent z > 1 and the rapidity of the TL-liquid always vanishes, z > 0.
By space-time duality, there exists also a cascade where the dynamic exponent
always increases until it reaches z = 1, in which all dynamic exponents are
smaller than one, z < 1, and the rapidity in the TL-liquid always diverges,
z < 0.

Are there any realizations of crossover scaling with z > 1 and « < 07
The crossover from KPZ type growth to free non-relativistic electron theory
(PT transition) might be one of them. Fig.1 becomes three dimensional when
we include the chemical potential term pa}a; into Eq.(10). The TL-liquid is
bound in the g direction by two PT transition planes. See also Fig.3. One
plane corresponds to a metal-insulator transition to the state with zero fermion
density and the other to the opposite state where all sites are occupied. These
planes merge along the KPZ line in Fig.1. In these planes z = 2 while along
the KPZ line z = 1.5. The unstable theory (the KPZ growth line) has a
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smaller dynamic exponent than the stable one (the PT planes). Inside the PT
planes, the curvature of the dispersion relation £y = Ak? plays the same role
as the rapidity for relativistic fermions. The amplitude of the energy gap is
proportional to A, m = A(2x/N)?. The z-theorem requires that A diverges on
approach of the KPZ line. This is plausible, because the merging of the two
PT planes represents a collapse of the band width. It would be useful to check
this in detail.

In section 3 it was assumed that the rapidity type parameter vanishes or
diverges as a powerlaw at the multicritical point in terms of the naive crossover
scaling field,s ~ A”. In some cases this function will be more singular. KPZ—
PT type crossover might be an example of this. The naive crossover parameter
should be abolished in favour of the natural one as early as possible.

6 Crossover from EW to KPZ type Growth

The z-theorem is much more powerful in the reverse mode, when the properties
of the multicritical universality class are known, but those of the z; critical line
are not. Suppose we know the exact values of zy and the crossover exponent
Yys. Moreover, assume that on general grounds it is clear that the crossover
operator is a RNR-type operator along the z; critical line in term of a certain
A parameterization, such that we know the value of . The dynamic exponent
z1 along the critical line is then fully determined.

An example of this is the crossover from EW to KPZ type growth in
D=1+1 (the line A = 1 in Fig.1). EW type growth is trivial. The Langevin
equation is the linear diffusion equation with noise. Its exponents follow from
power counting: zp = 2 and y, = % The non-linear term in the KPZ Langevin
equation is expected to be a RNR field. The KPZ equation is equivalent to
the Burger’s equation for randomly stirred fluids. In that context the scaling
properties must be Galilean invariant. This implies that systems at a different
s are equivalent apart from a scale factor s; i.e., that s itself is the proper
scaling field, « = 1, and must play the same type of role in KPZ type growth
as the stress tensor does in TL-liquids.

The z-theorem, zx pz = zgpw — s, immediately reproduces the well known
value zgpz = 1.5. It is amazing that the dynamic exponent of the non-linear
KPZ Langevin equation follows from simple power counting in the linear EW
theory.

One of the conventional derivations of zx py, employs the exponent equal-
ity o + 2 = 2%, between the dynamic exponent z and the roughness exponent
a of the stationary state. This equality follows from Galilean invariance. The
dynamic exponent must be equal to zgpz = 1.5 if the roughness exponent
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is equal to o = % In the stationary state surface height differences scale as
8h ~ %) with o = % if beyond a certain correlation length scale the probability
to go up or down along the surface is random. This is a reasonable assump-
tion (in D=1+41) and consistent with all numerical evidence. The z-theorem
derivation seem more general, however. It does not make any reference to the
stationary state.

John Neergaard and I studied EW—KPZ crossover in more detail in the
context of the BCSOS growth model of section 33°. The (simplest) form of the
crossover scaling function Eq.(14) does not apply, because a special symmetry
in the BCSOS model requires that the energy gap is even in the growth field.
Not too many simple formula’s obey both y. = zg — z; and m ~ As/N?1. One
of them is

A
=+ [1+4 Bs?N]-. (21)

m

We tested this ansatz numerically for systems sizes N < 1830, It is accurate
within 7% for all values of s. More recently Doochul Kim studied this issue
analytically, using the Bethe Ansatz '8. Eq.(21) is a good approximation, but
not exact.

The z-theorem is not limited to D=1+1. What does it predict for KPZ
scaling in D>27 Galilean invariance of the Burger’s equation is valid in all
dimensions. It tells us that s is a RNR-~type operator, and suggests that all
scaling amplitudes are proportional to s in all dimensions. This seems to be
at odds with the fact that the EW fixed point changes stability in D=2+1.
The crossover exponent is equal to y; = (3 — D)/2. In the KPZ e-expansion
a new unstable fixed point appears at finite s in D>38. It is plausible that
the “strong coupling” KPZ fixed point has no relation whatsoever to the EW
fixed point in D>3.

7 Crossover from Isotropic to Directed Percolation

Directed percolation (DP) has emerged in recent years as one of the most
common dynamic universality classes. It applies to a wide array of dynamic
processes, ranging from flow through a porous medium in an gravitational
field, forest fires and epidemic growth, to surface chemical reactions?. In 141
dimensions the DP critical exponents are known accurately from numerical
studies in the early eighties?, zpp = 1.58, but analytic insight in these values
is still lacking.

At first, it seems likely that the z-theorem will give useful information
about DP, when applied to the crossover from isotropic percolation (IP) to DP.
IP is described by z = 1 TL-liquid theory and therefore completely understood.
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Field theory ?? suggests that IP (the known theory) is unstable towards DP,
just like in EW — KPZ type growth.

The result is somewhat disappointing. Per Frojdh and 1 studied the
crossover from IP to DP by representing the combined problem as a random
cluster model. A parameter r controls the spontaneous birth of new forest
fires. We obtained the exact crossover exponent at IP (r = 1) using Coulomb
gas methods in D=2: ypp = yr — 1. IP is stable since in 2D ypr = 3/4 41

We checked this numerically with FSS. The results confirm that at all
intermediate values of 0 < r < 1 the scaling properties of the model are the
same as at IP. The correlation length in the time-like direction diverges with
the same power as the spatial one &, ~ &, ~ |p — pc|1/yT. r only affects their
amplitude ratio. So the scaling properties of forest fires in which new fires can
ignite are different from those where spontaneous ignition is forbidden.

Our formula ypp = yr — 1 suggests that IP changes stability between
2 < D < 3;in accordance with the field theory result close to the upper critical
dimension. This is hard to swallow. We developed an intuitive argument 23
which suggests that DP at » = 0 is unstable not only in 2D but in all dimensions
(that the scaling properties of forest fires at intermediate values r are in the
same universality class as IP).

This intuitive argument is not necessarily at odds with our exact result.
The crossover operator at IP is a gradient, and therefore suspect. Such oper-
ators can be integrated-up into a surface term and sometimes vanish from the
theory altogether. How to reconcile this with the field theoretical RT study by
Frey et. al?? is yet unclear. They find in dimensions close to D,=5, a RG flow
from IP towards DP. Our model is microscopic and well defined, while their
field theory seems somewhat difficult to interpret in the intermediate regime.

The crossover from IP to DP turns out to be yet another example of a
crossover from the z = 1 conformal class to a z # 1 dynamic universality class,
with the stress tensor of CF'T' the crossover operator. Like KPZ growth, DP
lives at the edge of ¢ = 1 CFT. To check this explicitly, Per and I are studying
the crossover scaling at the DP point numerically in more detail. The rate
at which the CFT rapidity vanishes (the exponent x) must agree with the
crossover exponent y,. These are difficult quantities to evaluate numerically.
Our current results are in agreement with the z-theorem, but the numerical
convergence 1s not good enough to clearly demonstrate this.

8 Conclusions

The first purpose of this talk was to illustrate that master equations of non-
equilibrium processes are equivalent to transfer matrices of equilibrium statis-
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tical mechanics (in one higher spatial dimension), and also to the ground state
properties of quantum field theories. Equilibrium STM transfer matrices form
the larger class. Dynamic universality classes should be defined in that more
general context, and not be limited to stochastic time evolution operators.

In D=1+1 dimensions, many (if not all) z # 1 dynamic universality classes
are located at the edge of the z = 1 conformal class. This suggests that free
field theory descriptions for z # 1 scaling phenomena might exist in D=1+1;
yet unknown generalizations of CF'T'. The study of crossover scaling properties
is a first step into this direction. In section 4, I formulate the z-theorem,
i.e., a condition between the change in dynamic exponent and the crossover
exponent. The crossover from EW to KPZ type growth, and from isotropic to
directed percolation are examples where the z-theorem is satisfied.

In the title of this talk the existence of the z-theorem is presented as a
question. Its validity requires that the crossover parameter does not renormal-
ize under scale transformations, a RNR-type operator. There is no intrinsic
reason why the crossover operator must always be of this type. The z-theorem
helps us to identify such RNR-operators in each dynamic universality class.
This 1s one of the essential tasks in our quest towards a free field representa-
tion. In z = 1 CFT that operator is the stress tensor and it properties lie at
the core of conformal invariance.
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