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Abstract

An introduction to real-space renormalization transformation (RT) is presented
with as focus geometric fractal aspects. Critical exponents are equivalent to fractal
dimensions. Details of the construction rule of deterministic fractals and the defini-
tion of their fractal dimensions illustrate differences in approach between field theory
and condensed matter physics. The appearance of fractal structures is typically less
obvious within the context of partition functions (equilibrium statistical mechanics
and field theory) and master equations (dynamic processes). A RT amounts to a
reformulation of those construction rules into a form similar to the conventional
ones for deterministic fractals, but on an algebraic level without ever explicitly re-
ferring to the geometric structure. This is illustrated explicitly in the context of the
Sierpinsky Gasket. Its construction rule can be reformulated as a growth process
and also as a partition function.

1 Introduction

In 1973 Hans van Leeuwen and Theodorus Niemeijer (vL&N) [1] transformed
Kadanoff’s [2] qualitative block spin explanation for the thermodynamic scal-
ing laws of Widom [3] and Domb and Hunter [4], into a quantitative tool
for calculating critical exponents at equilibrium phase transitions. They in-
troduced a systematic cluster approximation scheme to evaluate critical ex-
ponents up to arbitrary accuracy and illustrated the method by applying it
to the two dimensional (2D) Ising model on a triangular lattice numerically.
This achievement triggered a flurry of activity during the following decade,
when the real-space RT technique was refined, applied to numerous models,
and used to map out many equilibrium universality classes [5,6]. The impor-
tance of real-space RT as a working tool to calculate scaling properties has
waned in recent years. Other methods, such as Monte Carlo and transfer ma-
trix based finite size scaling techniques are somewhat less elegant, but can
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Fig. 1. Phase diagrams of gas-liquids and ferro magnets

be applied more directly to systems, e.g., with less pre-knowledge about their
order parameters. However, the core RT concepts remain essential in the in-
terpretation of such results, in particular the notion of fixed points, relevant
versus irrelevant scaling fields, and their role in determining corrections to
scaling.

Scale invariance has emerged as a unifying and common phenomena in all
branches of physics and real-space RT has found its way into the standard
statistical mechanics text books [7-9]. These texts present the conventional
algebraic approach, following very closely the review by vL&N [5]. In my own
graduate statistical mechanics course at the University of Washington I take
a more geometric route. Scale invariant structures are not limited to partition
function type construction rules. A geometric approach is more general and
therefore more appropriate for the next generation of physicists. On a geomet-
ric level scale invariance implies the presence of fractal structures. Most senior
physicists are aware of the connections between fractals and real-space RT,
but a detailed presentation seems unavailable, in particular one suitable for
beginning graduate students. This special issue of Physica dedicated to Hans
van Leeuwen is an appropriate place to present such a discussion.

The outline of this paper is as follows: Section 2 contains a short introduction
to scale invariance at equilibrium phase transitions. In Section 3 it is shown
how fractality and scale invariance appear in equilibrium critical phenomena
in the context of finite size scaling (FSS) using the 2D Ising model as exam-
ple. Section 4 contains an overview of the properties of deterministic fractals.
Their conventional recursive construction rule is nothing else than a real-space
RT. The various methods to determine their fractal dimensions are closely re-
lated to techniques used to determine scaling properties in field theory and
condensed matter physics. The construction rules of most physical processes
are not in such a recursive form, and the presence of a fractal scale invariant
structure is typically obscured. A RT is a reformulation of such rules into a
recursive form reminiscent of those for deterministic fractals. The Sierpinsky
gasket (SP-gasket) (one of the deterministic fractals) will be used to illus-
trate this. In section 5 the SP-gasket is generated in the context of a dynamic



process, and its scaling properties are determined from that growth rule by
means of a real-space RT. In section 6 the SP-gasket is generated in terms of
an Ising type partition function and it fractal dimensions are obtained by a
classic vL&N type real-space RT.

2 SCALING IN CRITICAL PHENOMENA

The critical point in phase diagrams of gas-liquids is the end point of the
boiling line where the liquid and the vapour phases become indistinguishable,
see Fig. 1. Their density difference, the order parameter Ap = p,—p,, vanishes.
Cagniard de la Tour (=~ 1820) is credited with having been the first to observe
the disappearance of the meniscus between the gas and liquid. Andrews (~~
1870) performed the first systematic studies of the liquification of CO; [10].

The Curie point, 7., in easy-axis ferro magnets and Ising models, is the point
where the distinction between the two ferro magnetic phases (with the major-
ity of spins pointing up or down) vanishes. The ferro magnet becomes a para
magnet. At temperatures high compared to the interaction strength, the spins
behave independently. Below T, they collectively prefer to point in the up or
down direction. This is called spontaneous symmetry breaking. To refer to a
symmetry is quite misleading however. In gas-liquids there is no symmetry
between the vapour and the liquid phase. The essential point is the appear-
ance in phase-space of two non-communicating sectors; the vapour phase and
the liquid phase. Along the boiling line these two sectors switch stability. At
those values of p and T their pressures p(p,1") become equal, and therefore
the vapour and liquid coexist. Similarly, the free energies f(h,T') of the up and
down phase become equal along the first-order transition line in the magnet.
We will use the magnetic language from now on (the canonical instead of the
grand canonical ensemble).

The inter-molecular interactions are responsible for the spontaneous appear-
ance of non-communicating sectors in phase space. Liquids are high-density
collectively self-trapped clouds of molecules. They are adequately described
in terms of molecular field approximations such as the van der Waals equa-
tion of state. The following argument, attributed to Peierls, explains why and
when these two sectors fail to communicate. Along the boiling line the two
phases coexist. Vapour bubbles in the liquid cost only surface free energy.
Their surface tension is roughly of the form n = E;,; — T'Syave, With FEjpy
the interface energy per unit length, and S,,,. the entropy of capillary waves
in the interface. Imagine a thermodynamic fluctuation which evaporates the
entire liquid. It would require an intermediate state where one of the bubbles
grows and spans the entire system. The free energy barrier between the two
universes is therefore of order AF = nLP~!. This barrier becomes infinitely
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Fig. 2. Droplet excitation shape development with temperature

high in the thermodynamic limit, except below the so-called lower critical
dimension Dj, = 1. Therefore, phase transitions between discrete sets of co-
existing phases are impossible in 1D systems with short range interactions
[11]. The same argument yields D, = 2 for systems with continuous degrees
of freedom (so-called Goldstone modes). Elastic deformations in solids are an
example of this. 2D solids of adsorbates on smooth substrates have powerlaw
peaks instead of Bragg peaks [12].

At the critical point the two universes start to communicate. The free energy
barrier vanishes because the surface tension goes to zero. It vanishes as n ~
|T' — T.|”. The correlation length diverges as ¢ ~ |T' — T.|7". The coefficient
v is one of the critical exponents. Two other examples are o and 3. The
order parameter vanishes at 1. as Ap ~ |I' — T.|°, and the specific heat
diverges as C, ~ |T — T,|7®. The values of these critical exponents disagree
with the ones predicted by molecular field theory (o = 0(disc), f# = 1/2, and
v = 1/2). Early observations of such differences where ignored; e.g., those
by Verschaffelt in Leiden around 1900 [13]. This issue was not investigated
seriously until Onsager solved the 2D Ising model in 1944 (o = 0(log), 8 = 1/8,
and v = 1)[14]. He proved that non-mean field values for the critical exponents
are possible within the framework of statistical mechanics.

The critical exponents are universal. The same values, @ = 0.11, 8 = 0.33,
and v = 0.63, apply to all 3D gas-liquids, easy-axis ferro magnets, binary mix-
tures, and the Ising model. Univerality emerged as an empirical fact between
1945-1965. The critical exponents turned out to be independent of most de-
tails of microscopic interactions. Only the number of coexisting phases, their
symmetries, and the dimension D matter. An example of a different univer-
sality class is the so-called 2D 3-state Potts class. It applies to systems with
three coexisting phases with full permutational symmetry (o =1/3, 8 =1/9,
and v = 5/6) [15,16]. Monolayers of He or Kr adsorbed on graphite are a
realization of this [17,18].

Qualitatively te origin of universality can be explained as follows. Consider
the droplet excitations, see Fig. 2. The typical droplet size £ and the surface
tension n are linked to each other by the thermodynamic uncertainty relation



Af ~ kgT. The free energy of a droplet is proportional to Af ~ p¢P=1,
Therefore, ¢ ~ n*®P=1 if we measure 7 in units of kg7 Initially, capillary
wave excitations dominate the reduction of the surface tension and therefore
the increase in droplet size. But close to T, the droplets start to entangle. The
topological rules of how these interfaces (domain walls) can cross and merge
and their symmetry properties become the limiting factors. They determine
how the entropy increases in the direct vicinity of 7. and therefore the value
of the critical exponents. Most details of the interactions at the microscopic
level do not matter.

In 1965 Widom [3] and Domb and Hunter [4] formulated the thermodynamic
scaling postulate. They proposed that all experimental and theoretical evi-
dence could be explained if the the singular part of the free energy takes the
form of a generalized homogeneous function

fsing(uTauH) - b_D sing(byTuTa bgH“H) (1>

b is an arbitrary (scaling) parameter; uy ~ T — T, and uy ~ H are scaling
fields defined locally at T.. ug = 0 coincides with boiling line in gas-liquids.
yr and yy are the fundamental critical exponents. For the Ising univerality
class they take the values: y; = 1.59 and yy = 2.48 in 3D, and y; = 1 (log)
and yg = 15/8 in 2D. All thermodynamic exponents can be expressed in these
fundamental ones; e.g., o« = (2yr — D)/yr and B = (D — yy)/yr. The basic
set of exponents is larger for other universality classes. For example, for the
3-state Potts universality class in 2D: yp = 6/5, yg1 = 28/15, and yg o = 2/3.

Kadanoff [2] explained the empirical thermodynamic scaling law in terms of
the appearance of “droplets inside droplets on all length scales” (see Fig. 2).
and introduced a block-spin transformation to describe this. This was the first
(but only qualitative) real-space RT. The block spin picture is stronger than
the thermodynamic scaling postulate, Eq. (1). It implies Fisher’s finite size
scaling postulate

Filurs wps L) = 577 fo (0T up, 0" up; b7 L) (2)

and also that correlation functions, such as the spin-spin correlation function
g, scale as

gu(ur,ug;r) = b_z(D_yH)gH(byTuT, WYH g b r). (3)

Both lead to the so-called hyperscaling relation, v = 1/y;. How to interpret
such scaling laws is the topic of the next sections. The review papers by Fisher
[19] and Kadanoff et. al. [20], and also the first edition of the text book by
Stanley [21] summarize the status of the field in the late sixties at the threshold
of the renormalization era.

Renormalization traces it origins also within quantum field theory (QFT).



There it arose independently as a cure to divergencies in perturbation theory.
Path integrals in d41 dimensional QFT are equivalent to partition functions
in D=d+1 Statistical Mechanics. The two fields merged in the early 1970-ties
when Ken Wilson for the first time explicitly formulated the concept of renor-
malization [22] and momentum-space type renormalization was introduced in
the ¢*-theory formulation of Ising type critical behaviour [23 25]. Following
this, van Leeuwen and Niemeijer took-up Kadanoft’s block-spin description of
scale invariance, transformed it into a quantitative tool, and thereby intro-
duced the real-space RT method.

3 Fractal geometry and finite size scaling at 7..

The founders of scaling did not have the luxury of computer graphics. Nowa-
days it is easy to generate typical configurations, e.g., by Monte-Carlo (MC)
simulations. Iig. 3 is an example of an Ising spin configuration just below 7.
[26]. Kadanoff’s “droplets inside droplets” are clearly visible. Moreover, also
their coast lines “wiggle inside wiggles”. Mandelbrot [27] popularized the word
fractal for such structures in the late 1970-ties. We will see that each critical
exponent in the basic set {yr,yn, ...} of Eq. (2) represents a fractal dimension.

Consider a square lattice with on each site a spin, 5, = 1. These Ising spins
are subject to a magnetic field and nearest neighbour spin-spin interactions

E=—J Y SuSuy1—h) 5, (4)

<,7>

such that nearest neighbours prefer to be alligned. Define the magnetiation and
energy density as derivatives of the free energy in terms of the dimensionless

coupling constants K = J/kgT and H = h/kgT

wn = (2) - (%) .

with

Z =exp[-Nf(K,H)] = > exp[—&/kgT]. (6)
{Sn}

The total magnetization measures the area of the “land mass” of up-spins
versus that of the “sea” of down spins,

M(K,H)=m(K,H)L” =3 (s;) = (Ny — N_). (7)
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Fig. 3. Typical Ising configuration just below T,

The free energy F'SS postulate implies the following scaling form for the mag-
netization. The derivative of Eq. (2) with respect to ug ~ H yields

m(ur, up; L) = 6P VEm (0T up, 0¥ up; L), (8)
i.e., that the total magnetization scales as
M (ur, upr; L) = 62 M (YT up, 0¥ up; 67" L). (9)

This means that M ~ LY at T, (set ur = uy = 0 and choose b = L). We
say that M scales with dimension yg. Consider a typical configuration from
a large MC run. Define a window with a tunable diameter L. Center it at an
up-spin, more or less in the center of a large droplet. The total magnetization
inside this window scales as M ~ LY#. In the fractal literature, yy is known
as the Haussdorfer dimension [28].

There are more fractal dimensions hiding in critical configurations. The energy

E=3 (sisj) = (Nyp + Noo = Ny = N_y) (10)
(i:3)

measures the length of the interface “coastline”. The derivative of Eq. (2) with
respect to uy ~ K — K, implies the following scaling form for the energy

Ey(up,up; L) = 0T E (0¥ up, 0¥Fuy; b7 L). (11)



The singular part of the energy scales at 7T, with dimension yr, as E; ~ LY.
The total energy includes also an analytic contribution and therefore scales
as B ~ ALY + BLYT. yr appears only in a so-called correction to scaling
term (the analytic contribution is absent in the magnetization because of spin
up-down symmetry).

We just identified the scaling dimensions of three geometric aspects: the unity
operator (the total area inside the window, the analytic part of the free en-
ergy), the magnetization (the difference in area covered by up versus down
spins), and the energy operator (the length of the interface coastline). Do
other geometric aspects scale with their own fractal dimension as well? The
set of so-called relevant scaling dimensions, those with positive values y,.; > 0,
is finite. This number is set by the phase-rule. There are only two of them for
critical behaviour in the Ising universality class. The coexistence surface must
be of co-dimension 1 in any generic phase diagram since only two phases coex-
ist. The critical surface has co-dimension 2 since it forms its edge. ygy controls
the thermodynamic singularities in the direction across and yr in the direction
along the coexistence surface.

The critical surface is spanned by the set of so-called irrelevant scaling fields,
Uy, those with negative fractal dimensions y;, < 0. These irrelevant scaling
fields can be incorporated into the FSS scaling postulate

Fs(ur,um, iy L) = 677 £ (b ug, ¥ g, 0¥ ;s b7 L). (12)

It is straight forward to show that the leading thermodynamic singularities
along any path across the critical plane uy = up = 0 are identical to those
at the “fixed point” where all u, = 0. This is the explanation of universality
within the context of the scaling postulate. The irrelevant scaling fields are
associated with all other possible geometric aspects that can be represented in
terms of local operators. For example the number of times the coastline touches
itself can be counted by the next nearest neighbour spin-spin operator. In this
sense the number of fractal dimensions in critical configurations is infinite.

Something special happens in 2D equilibrium critical phenomena. They are
conformal invariant and described by 2D conformal field theory (CFT) [29].
In geometric language, conformal invariance implies that on average critical
configurations, like Fig. 3, look the same under any complex function distortion
of space, z = x+1y. For many 2D universality classes “the CFT algebra closes”,
and the set of relevant scaling dimensions {yr, yg, ...} locks-in the values of all
irrelevant exponents as well. They all differ from the relevant ones by integer
amounts, e.g., as yy — n Or Yy — M.

Even in 2D the finite set {yr, yy, ...} does not fully characterize the fractal. It
is possible to ask geometrical questions that cannot be expressed in terms of
local Ising spin operators (nor in terms of dual so-called disorder type string



Fig. 4. Sierpinsky Gasket, y4 = log(3)/log(2)

operators). A typical example is the area of the backbone of the droplets,
where all singly connected branches do not count.

In ¢*theory the irrelevant scaling fields of the Ising universality class are
described by the higher moments and gradients of the magnetization, like ¢"
with n > 4. This suggests a connection between irrelevant scaling fields and
multi-fractality [28].

Conformal invariance must be applicable beyond partition function type con-
struction rules (statistical mechanics, QFT, and master equations). Suppose
we convince ourselves that a particular growth mechanism for 2D trees, cracks,
or whatever, creates structures that are (asymptotically) conformal invariant.
CFT then provides us with a complete list of possible sets {ys, yr, ...} of fractal
dimensions [29].

4 Deterministic fractals

The equilibrium fractal structures discussed above are statistical in nature,
defined in terms of an average over a set of configurations. The following
elementary fractals are deterministic [27]. Fig. 4 shows the Sierpinsky Gasket
(SP-gasket). The area of the up-triangles scales with y4 = log(3)/log(2).
Fig. 5 shows the Peano curve. Its coast line is space filling, i.e., scales with
yr, = log(9)/log(3) = 2. The Peano curve is a special case of the so-called



Fig. 5. Peano’s space filling curve, yz, = log(9)/log(3) = 2

quadratic Koch islands. Fig. 6 shows an example with coastal dimension y;, =

log(8)/ log(4) = 1.5.

The conventional construction rule for these objects is iterative in nature.
Define an initial figure, Fo (the initiator) and a modification rule G (the gen-
erator). For the SP-gasket the conventional initiator is a single up-triangle,
and G is the rule that each up-triangle be divided into three up-triangles, see
Fig. 4. F,, = G"Fy is the n-th stage figure. The limiting process

lim F, = lim G"Fy (13)

N—oo N—oo
defines the fractal. Each application of G enhances the resolution by a scale
factor b. The lattice cutoff shrinks as a, = ao/b", while the overall size of the
object ¢ remains constant. I call this the “field-theory construction rule”. ¢
is like the size of a particle in QFT. Lattice cutoffs are introduced in gauge
theories to regulate divergencies, and are removed at the end (after solving
the lattice model) by a procedure analogous to Eq.(13). In condensed matter
physics the lattice cutoff is typically a given constant. Instead, the “droplet
size” ¢ diverges. Define a scale transformation Sy, which blows-up the figure
by a factor b. The alternative rule

: ! : n

Jim F, = &go(sbg) Fo (14)
creates the same fractal structure, but with a,, = ag and &, = b™¢. 1 call this
the “condensed matter construction rule”. Later, we will identify the inverse
process with a renormalization transformation.

RT = (S:G)7". (15)

RT’s involve two steps: (i) Removal of all details at length scales a <[ < ba,
Gt (ii) Restoration of the cutoff to its original value, S; .

The fractal dimenions can be calculates in several ways. Imagine a fully devel-
oped fractal in the field-theory representation, F,,. Cover it with an infinite
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Fig. 6. Koch Island, y;, = log(8)/log(4) = 1.5

sequence of nested windows W, = bDWnH with decreasing area’s. A(W,,) is
the amount of aspect of type A (area, length,...) inside window W,,. A fractal
dimension can be defined as

lim AW,,)

—— = p¥. 16
n—oo A(Wn+1) ( )

This definition reproduces the usual values of y4 for conventional objects. For
example, center this set of windows on top of an arbitrary analytic curve in D
dimensional space. Measure the total length L(W,) of the curve inside each
window. The curve must become a straight line at small enough length scales
(by definition, since it is analytic), therefore

L(W,
lim (W)

— YL 17
=00 L(Wata) "

with y;, = 1, as it should be for any one dimensional object.

For the SP-gasket the natural choice for the scale factor is b = 2. Choose
rectangular shaped windows with aspect ratio v/3. Center them such that
they share their left lower corner and are placed on top of the left corner of
an up-triangle. “Obviously” the “number” of up-triangles inside each W(n) is
a factor 3 larger than in each W(n + 1). Therefore, the fractal dimension of
the area of up-triangles is equal to y4 = log(3)/log(2). Non of these A(W),)
is countable however. Fach of them is “zero”. Our Euclidean yard sticks can
deal only with objects of integer dimensionality. Since we measure area we get
stricktly speaking

AW,) 3 x “zero”
AW,1)  “zero”

=3, (18)

Renormalization emerged in QFT to regulate precisely these types of diver-
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gencies. Measuring lengths does not help. The total length of all line segments
inside the windows yields

L(W,) 3 x “0”
L(Wn+1) Uag?

=3, (19)

The SP-gasket has the peculiar property that the area of its up-triangles scales
with the same dimension as their coast lines, y4 = yr, = log(3)/ log(2).

Imagine a fully developed condensed matter type fractal F. . This requires a
piece of paper of infinite size, i.e., that we take the so-called thermodynamic
limit. Cover F'., with a set of nested windows W,, = b=PW, ., with increasing
area’s . We are zooming-out instead of zooming-in. The fractal dimension is
now defined as

. AW,) _
lim ———— = b4 20
This definition is equivalent to the FSS approach described in the previous
section. The cut-off removes all counting and measure problems.

The field theoretical zooming-in type definition focusses on local features. For
example, it is possible to center the nested windows onto the edge of the
fractal. Most fractal structures (but not the SP-gasket) have different scaling
dimensions for the same aspect at their edge than inside their bulk. With
the condensed matter type construction rule (in its naive form) the boundary
vanishes to infinity, and the F'SS definition of y4 naturally reproduces the bulk
value of y4.

The proper definition of fractal dimension is in terms of a limiting process
applied to partially developed fractals F7,. Let A(F’,,) be the total amount
of aspect A inside object F’,,. The following procedure to calculate y,4

. AF ) o,
A T (21)
avoids the measure problem of the field-theory rule and also the thermody-
namic limit problem of the condensed-matter rule. Let’s apply this to Koch
Islands, like those in Fig. 5 and Fig. 6. Their coast lines have fractal dimension
yr, = log(p)/log(b) because during each S,G-step all line segments become a
factor p longer.

The set of figures F’,, reminds us of how droplets evolve along the coexistence
line towards 7.. Compare Fig. 2 to Figs. 4-6. In the next sections we will find
out how Eq.(21) leads naturally to the scaling postulates of section 2 and to
renormalization flow through a phase diagram.

12



5 The Sierpinsky Gasket as a growth process

The conventional construction rules for deterministic fractals presented in the
previous section lead naturally to scale invariant structures. Ising model crit-
ical configurations are constructed according to the partition function rule. It
also leads to scale invariance, but this is far from obvious from simply looking
at this rule. In this and the next section we are going to play a game. We will
define a dynamic Markov process and a partition function which obviously
give rise to the SP-gasket. However, we must pretend not to be able to draw
nor visualize this geometric structure (Fig. 4). It is like not being able to gen-
erate Fig. 3 for the Ising model. Instead, we are required to demonstrate scale
invariance algebraically directly at the level of these two alternative construc-
tion rules. It takes some self-discipline (to distinguish honestly between what
you know and what you are not supposed to know) but this is worth it.

Consider the following Markov process on a triangular lattice, see Fig. 7.
Associate with each site an Ising spin. The site is occupied (empty) if S;, =
+1(—1). Interpret the vertical (down) axis as time 7. At time 7 = 1 only one
site is occupied. The time evolution is deterministic. The value of each spin
S;+ 1s determined by the values of the two just above it as

Sir==Sii1, 1541, 1- (22)

1—5,7—1
This rule must be satisfied in every down-triangle of the triangular lattice.

The “MC-simulation” is rather trivial. By inspection it becomes clear very
quickly that this rule produces the SP-gasket up to level F/ at time 7 = 2V,
(Each up-spin represents an up-triangle in Fig. 4). But we are not supposed

to know this in our game.

We are allowed to record the time evolution of observables like the total mass.
This is analogous to a measurement of thermodynamic quantities at gas-liquid
critical points. The total mass M of the space-time cluster does not grow
uniformly. Mass extinctions at all time scales create a very irregular curve
M (7). We will discover however empirically the scaling law

M(r) ~ 194 with ya =log(3)/log(2). (23)

if we plot M only at times 7 = 2". How can we derive this algebraically without
being aware of the SP-gasket configuration explicitly? We will acchieve it by
applying the inverse of the “condensed matter construction rule”, Eq.(14),
directly onto the Markov process.

The empirical fluctuations in M(7) suggest we try scale factor b = 2, and
reformulate the local update rule of the spins at time 7 in terms of those at

13
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Fig. 7. Sierpinsky gasket as a growth pattern
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time 7 — 2 instead of 7 — 1. The original Markov process will be replaced by a
new one for spins at even times and every other site only. The temporal and
spatial resolution will be decreased by a factor 2. In general, such a new rule
is more complex than the original one, but we are “lucky”. The spins on the
triangular space-time lattice can be grouped into four sublattices. The rule
reproduces itself exactly within each sublattice separately.

Sir==5i_1 ;21541 ;o1 = —[= 81,250 —2][— Siyr—25i41 - 5]
= _Si—l,T—QSH—l,T—Z- (24>

The value of spin 5;, depends only on Si41,-2 and S;_1 ,_» which are part
of the same sublattice. As far as the dynamics is concerned, we never have
to look at the spins on the other 3 sublattices. They are linked only by the
initial condition at time 7 = 1,2. When you start the growth rule on one
sublattice you must start it on two of the three others as well according to
the original rule. This must give rise to three identical structures. Therefore,
the total mass of the entire structure at time 7 is equal to three times the
mass on one sublattice, M(7) = %Ms(r). Moreover, the growth rule on each
sublattice is identical to that on the entire lattice. Therefore, the total mass
of entire structure at time 7/b is equal to the mass on one sublattice at time
7. These two facts together imply that

M) = %M(T) (25)
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and confirms the empirical scaling relation Eq.(23). This is an example of
a renormalization transformation. We implemented the inverse of the “con-
densed matter construction rule”, Eq.(15), directly onto the growth rule, and
thus derived Eq.(21) algebraically.

6 A real-space RT for the Sierpinsky Gasket

An important aspect of RT’s is their representation as flows through phase
diagrams. To illustrate this, we need to create the SP-gasket in terms of a gen-
erating function and a tunable parameter. Consider the set of finite resolution
SP-Gaskets, F, see Fig. 4. Assign a chemical potential p to every up-triangle.
Each F] has a Boltzmann weight exp[—pM, ], with M,, its total mass. For each
value of p the thermodynamic average is centered around a finite resolution n.
The fully developed fractal appears only at g = 0. By reducing p we improve
the resolution of the fractal, in complete analogy with droplet size evolution
along the boiling line in gas liquids.

The following partition function generates this ensemble average. It looks
somewhat complicated, since we insist on using the Ising model formalism,
such that we can implement the vL&N real-space RT scheme literally. Con-
sider the same triangular lattice with Ising spins S(z,7) = %1 as in the previous
section and Fig. 7, but time 7 is now a second spatial coordinate j.

1

pl-F(u)] = 2= 3 expl—yn (S, + 1)) (26)
{Si,J}l* r
r = (t,7) denotes the position of each spin and * represents the following

constraints on the allowed spin configurations. In each down-triangle the spins
must satisfy the relation

Si415i1 ;5

o1
1+ 3.7

— 1. (27)

Only two mistakes are allowed, both in the same but unspecified row 3 = 2",
with n an integer. In that row all spins are down S, = —1, such that the SG-
gasket can terminate. Moreover, in the first row 7 = 1 all spins must be down
except for one, such that only one SP-gasket exists. These constraints ensure
that this Ising model reproduces an ensemble of finite resolution SP-gaskets.

Let’s construct a vL&N type real-space RT. Define diamond shaped cells on
the triangular lattice, see Fig. 8. The cell-grid can be laid down in 4 ways.
Choose the one where the up-spin in the first row, at 7 = 1, coincides with
the top-spin inside one of the cells in the first row. Associate with each cell
a cell-spin variable or = £1. with R the coordinate of the center of the
cell. Relabel all original spin variables in terms of the cells R and their local
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Fig. 8. diamond cells for the Sierpinsky gasket real-space RT

position, k = T, R, L, B, inside each cell. Define also a weight function P for
each cell, normalized as

Z P(O’R; {SR,k}> =1. (28)

ocr==%1

Eq.(28) must be satisfied for all possible configurations of the original spins
{S%x}. One common type choice is

explp o (St + Sr+ Sp + SB)]

P(o;{Sk}) = cosh[p(St + Sg + St + SB)]

(29)

with p a free parameter. This form reduces to the so-called majority rule in
the limit p — co. We are following vL&N [5] exactly. Next, the left hand sides
of Eqgs.(28), the weight functions, are inserted into Z. This is harmless, since
they are all normalized to one. It introduces summations over the cell spin
variables. Finally, we switch the order of the summations and perform the
summation over the original spin variables

zZ=3 e~ 3h ) (Sr+1) 3 [HZ’P((;R;{SR,k})]e—%uzr(Sr+l)
{ST}7* {Sr},* R oR
= 3 e (30)

{UR}7*

The resulting cell-spin model has the exact same structure as the original spin
model, but the lattice constant has increased by a factor two (b* = 4 is the
number of spins in each cell).

Eq.(30) defines the relation p'(p,p). This is the so-called RT equation. It
defines a flow through parameter space. Fixed points, p/ = p, must have
infinite or zero correlation length since ¢ = £/b. All points that flow to the
same critical fixed point (those with ¢ = oco) must have infinite correlation
length. All of them are critical points and belong to the same universality
class.

The RT does typically not close in the sub space with only one type of inter-
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action. Each RT step generates longer and longer ranged interactions. In prac-
tice, the strengths of those interactions remain small, and decay fast enough
with range that the model remains intrinsically short-ranged. However, the
non-closure means that we need to apply approximations to the fundamental
trace:

e~ 0 Lot — N[ Pog; {Sra))] e 74 2D, (31)

{S-}x R

The basic premise is that the RT’eqs are analytic at 7., and therefore that any
type of conventional perturbation theory can be applied to evaluate Eq.(31).
The thermodynamic singularities originate from fluctuations at large length
scales. The cell spins are meant to carry these. The original spins fluctuate,
but the coupling with the cell spins (which are frozen in Eq.(31)) removes
the long range correlations between them. Not all choices of the cells and
P will have this property. In particular, the RT eqs. are not analytic if the
symmetries of the cells do not conserve the symmetries of the coexisting phases
[5,6]. In our example we can avoid such complications. Our cells are already
commensurate with the intrinsic scale factor 2 of the SP-gasket and we will
find that for the majority rule (the p — oo limit of Eq.(29) the RT closes with
p as only parameter.

FEach diamond shaped cell could be in 2* spin-configurations. Only 2 of them
occur, see Fig. 8: the “occupied” state Sy = Sg = S, = —Sp = 1, and the
“empty” state Sy = Sgp = S = S = —1. Algebraically this follows from the
fact that the boundary condition only allows these two cell configurations in
the first row, and that the constraint Eq.(27) can reproduce only those two.
For the majority rule the “occupied” and “empty” states relate one-to-one to
the value of the cell spin . All other aspects of the constraint * carry-over
exactly onto the cell spins as well.

At finite p the cell spins would have a finite probability to be “down” (o =
—1) in the “occupied” state and to be “up”’(ox = 1) in the ”empty-state,
thus creating vacancies inside the SP-gasket or starting new SP-gaskets. Such
excitations can be described by replacing the 5;, 5;5; = —1 contraint in each
down triangle by an three-body interaction BS;S;S%. The coupling constant B
is infinitely strong in Eq.(26). At finite p the RT equation does not close any-
more in the one parameter space pu and requires the approximations schemes
mentioned above.

Assume the majority rule. The trace over the original spins factorizes over the
cells:

_1

e 3H' (or+1) _ 3" Plor; {Si}) ¢~ 34(S7+Sr+SL+SB) (32)
{Sk}
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and yields

=3 (33)

This is the RT flow equation. It is a linear equation. In general, RT eqgs. are
non-linear. The precise form of Eq.(33) is hardly a surprise, and easy to an-
ticipate due to the simplicity of the problem. However, it is instructive to see
it appear in detail within the vL&N formalism.

Let’s follow the conventional real-space RT type analysis of the renormaliza-
tion equations. First we search for the fixed points of the RT flow. This is a
non-trivial issue when the RT equations are non-linear. In our case g = 0 is
the critical fixed point.

The RT trace preserves the total free energy

Fip L) = F(4, ) (34)

with L the size of the lattice. This is not an accident. The RT is designed to
reproduce the FSS scaling postulate Eq.(2), it’s baked into it. The free energy
density (per site) transforms as

Pl L) = 7 F (), (35)

In our case this reduces to

Pl D) = b2 4 ) (36)

with y4 = log(3)/ log(2) by inserting our explicit form of the RT flow equation.
In general, for non-linear RT equations, the RT will be linerized at the fixed
point, and the eigenvalues, A\; = b¥, of that linear transformation matrix yield
the values of all fractal dimensions.

The free energy is the generating function of local observables, see Eq.(5). For
our case, its derivative with respect to p, see Eq.(26), gives the expectation
value of the total mass of the up-triangles of the SP-gasket. Combined with
the above free energy scaling relation this yields

M) = (aa—j) Y} (37)

Compare this with the definition of fractal dimension in section 4, Eq.(21). We
obtained onces more the fractal dimension of the SP gasket but now the RT
equation y'(x) is doing the counting for us. We represented the “condensed
matter construction rule” in terms of y and a flow through parameter space.
We evaluated the fractal dimension without any explicit reference to the actual
geometric structure.
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7 Closing Remarks

The real-space RT’s of section 6 and 7 for the SP-gasket are quite transparant
and simple. They serve the main purpose of this paper, to illustrate the ba-
sic concepts by pointing out the close relationship between geometric fractal
properties and renormalization theory. These R1’s are exact. In real life, con-
struction rules are typically not “exactly soluble” and exact R1’s are very
rare. The advantage of the RT approach is that approximations to the RT
rule automatically preserve scale invariance. They avoid the molecular field
values of the critical exponents. Renormalization is the appropriate context
to perform perturbation theory for scale invariant phenomena. Examples of
such approximation schemes are presented elsewhere, e.g., in the review by
Niemeijer and van Leeuwen [5] and also in the standard text books [7-9]. In
his first paper on RT, Wilson [22] used the analogy of a ball rolling down a
hill. The problem we face is to describe the properties of a singular function
(the free energy at T.; the hill; the fractal). It is advantageous to define a
differential equation (the RT; the construction rule for determinsitic fractals),
one that has the singular points automatically built into its solutions. Instead
of straight perturbation theory (low or high temperature expansions analyzed
with padé approximants) applied to the singular function itself, perturbation
theory is now being applied onto the coefficients of that differential equation,
which are much better behaved because they are analytic at those singular
(critical) points.
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