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OBJECTIVE 
This paper describes a Bayesian approach to syn-
dromic surveillance.  The method provides more in-
terpretable inference than traditional frequentist ap-
proaches.  Bayesian methods avoid many of the prob-
lems associated with alpha levels and multiple com-
parisons, and make better use of prior information.  
The technique is illustrated on simulated data. 

BACKGROUND 
Syndromic surveillance needs to be (1) transparent, 
(2) actionable, and (3) flexible.  Traditional frequen-
tist approaches to syndromic surveillance, such as 
cusum charts [1] and scan statistics [2], tend to fail on 
all three criteria.  First, the validity of the assump-
tions is generally difficult to check and the methods 
are hard to modify; second, the false positive rate 
makes it impossible to be both sensitive to true signal 
and resistant to spurious signal; and third, the imple-
mentation usually requires significant hand-tinkering 
to adjust background rates for known seasonal affects 
and other identifiable influences. 

In contrast, Bayesian methods use explicit models 
that can be scrutinized by all. Also, the Bayesian 
analysis gives a clean probability statement concern-
ing whether a disease outbreak has occurred.  And 
the Bayesian machinery is a mathematically simple 
way to incorporate new information.  Berger [3] pro-
vides an introduction to Bayesian statistics. 

METHODS 
To be concrete, we present the simplest realistic ver-
sion of Bayesian syndromic surveillance.   Thus we 
assume that only one kind of syndrome is reported 
(so that the data are univariate counts), and we do not 
detail all of the issues in model specification. 

Suppose hospital i reports the number of cases of 
fever on day t, denoted by Yi(t). The natural model 
for the counts is a Poisson distribution (but more 
complicated models can also be considered, such as 
the overdispersed Poisson---the Bayesian method 
applies there as well, in an analogous way).   

The mean of the Poisson is the sum of the back-
ground rate for time period t and the product of an 
indicator variable and an epidemic rate.  If the indica-
tor variable is 0, then there is no outbreak; thus the 
product is 0 and one expects counts that are in line 
with the background rate for high fever.  But if the 
indicator variable is 1, then the count is the sum of 
the background rate and the epidemic rate.   

The indicator variable is the key element.  It is a la-
tent variable, because it cannot be observed directly, 
but the information in the counts permit the analyst to 
calculate the probability the value of indicator vari-
able is 1.  If this probability is large, then there is a 
very good chance that an epidemic condition exists. 

There are many details.  First, one needs to use the 
generalized linear model to estimate the background 
rate for fever at hospital i on day t. This entails the 
use of historical data and covariate information about 
weekend/weekday effects, flu season, and so forth.  
(Or one could do a fully Bayesian analysis with the 
covariates, but the computational burden grows 
quickly.)  Second, one needs to take account of the 
neighborhood structure.  If all hospitals in a city 
show a moderate elevation in their fever counts, this 
probably means that there is outbreak; the strategy 
for combining the information uses an two-state 
Markov process model [4].  The state (disease or no 
disease) at one hospital affects the probability that 
neighboring hospitals are in a specific state.  There 
are other issues; one that is less important than one 
might guess is the model for epidemic rate---in out-
break detection, almost any sensible model works. 

RESULTS AND CONCLUSIONS 
Simulations of reasonable Bayesian models indicate 
that the method can perform well.  It is impossible to 
make a direct comparison to frequentist methods 
unless one has a decision rule on when to declare that 
an outbreak has occurred, or unless one has real data.  
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