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Modern biosurveillance relies on multiple sources of both prediagnostic and diagnostic data, updated daily, 
to discover disease outbreaks. Intrinsic to this effort are two assumptions: (1) the data being analyzed contain 
early indicators of a disease outbreak and (2) the outbreaks to be detected are not known a priori. However, in 
addition to outbreak indicators, syndromic data streams include such factors as day-of-week effects, seasonal 
effects, autocorrelation, and global trends. These explainable factors obscure unexplained outbreak events, 
and their presence in the data violates standard control-chart assumptions. Monitoring tools such as Shewhart, 
cumulative sum, and exponentially weighted moving average control charts will alert based largely on these 
explainable factors instead of on outbreaks. The goal of this paper is 2-fold: first, to describe a set of tools for 
identifying explainable patterns such as temporal dependence and, second, to survey and examine several 
data preconditioning methods that significantly reduce these explainable factors, yielding data better suited for 
monitoring using the popular control charts.

Abbreviations: CDC, Centers for Disease Control; CUSUM, Cummulative Sum; DHS, Department of Homeland Security; DOE, 
Department of Energy; DOW, day-of-week; EARS, Early Aberration Reporting System; ED, emergency department; ESSENCE, 
Electronic Surveillance Systems for the Early notification of Community-Based Epidemicst; GI, gastrointestinal; ORAU, Oak 
Ridge Associated University; ORISE, Oak Ridge Institute for Science and Education; OTC, over-the-counter.

InTroDuCTIon

Monitoring via control charts

Control charts are a tool for monitoring a process param-
eter (such as the process mean) by comparing daily param-
eter estimates to predetermined thresholds called control 
limits. While other methods were proposed and sometimes 
used (1, 2, 3), control charts remain one of the most popular 
monitoring tools in traditional and modern biosurveillance. 
Such charts are applied in the widely used monitoring sys-
tems BioSense (4), RODS (5), Early Aberration Reporting 
System (EARS) (6), and Electronic Surveillance System 

for the Early Notification of Community-Based Epidemics 
(ESSENCE) (7). The classic Shewhart chart for monitoring 
the process mean relies on drawing a sample from the pro-
cess at some frequency (eg, weekly), and plotting the sample 
mean on the chart. Parameter limits are defined such that 
if the process remains in control, all (or nearly all) of the 
sample means will fall within the control limits. If a sam-
ple mean exceeds the control limits, it is assumed that the 
process mean has shifted; in other words, the process has 
gone out of control. An alarm is triggered and an investi-
gation follows to find its cause(s) (8, 9). Figure 1 shows an 
example of a one-sided Shewhart control chart, for detecting 
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increases in the process mean. The dotted line indicates the 
control limit; red points show points exceeding the limit.

To better understand how control charts can be applied 
to biosurveillance data, we discuss both the original and 
intended use of these charts. Statistical control charts, 
invented by Walter Shewhart, were first used in the 1920s to 
monitor factory out-puts in order to discover abnormally high 
rates of product defects. An alarm indicated variance beyond 
the normal operating conditions and the presence of a “spe-
cial cause,” which was usually a faulty process that could 
then be corrected. Control charts have since been applied to 
a growing number of areas beyond industrial control, includ-
ing extensive application to biomedical monitoring (10). The 
three most commonly used control charts are: (1) Shewhart 
charts that monitor values of a sample statistic (eg, the mean 
or standard deviation) or individual counts; (2) cumulative 
sum (CUSUM) charts that monitor cumulative sums of sam-
ple deviations from a target process mean; and (3) exponen-
tially weighted moving average (EWMA) charts that monitor 
an exponentially weighted average of current and past sample 
statistics. While all of the different charts monitor deviations 
from the target value of the process, each one is most effec-
tive at detecting a particular type of deviation from the target 
mean: a single spike, a shift in the process mean, or a gradual 

increase in the mean, respectively (11). Underlying all of 
these methods is the assumption that the monitoring statistics 
are independent and identically distributed (iid), with the dis-
tribution generally assumed normal (although modifications 
can be made for statistics with known, non normal distribu-
tion). While control charts are very effective for monitoring 
processes that meet the independence and known distribu-
tion assumptions, they are not robust when these assump-
tions are violated (12). If the control chart assumptions do 
not hold, they will fail to detect special cause variations and/
or they will alert frequently, even in the absence of special 
cause variations.

Challenges with biosurveillance data

Modern biosurveillance data come from multiple sources 
and in many forms. In general, syndromic data tend to be 
indirect measures of a disease, as opposed to more tra-
ditional diagnostic or clinical data. Examples are daily 
counts of emergency room visits, over-the-counter (OTC) 
or prescription medication sales, school absences, doctors’ 
office visits, veterinary reports, or other data streams that 
could contain an indication of a disease outbreak. The pur-
pose of biosurveillance is to monitor these time series to 
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Figure 1 Sample Shewhart control chart.
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detect disease outbreaks. As in the industrial setting, con-
trol charts are used to monitor such data and detect special 
causes or abnormalities that are potentially indicative of an 
outbreak. However, currently collected biosurveillance data 
violate most of the assumptions required of data monitored 
by control charts. Thus, alarms triggered by control charts 
applied directly to raw syndromic data can arise not from 
actual outbreaks but from explainable patterns in the data. 
Reports of very high false alarm rates from users of current 
syndromic systems lend evedence to this claim.

The explainable patterns are caused by factors unrelated 
to a disease. As an example, it is quite common for doctors’ 
offices to have reduced staffing on weekends. Therefore, a 
syndromic data stream capturing daily doctor visits will 
see an explainable and predictable drop on Sundays, and a 
corresponding increase on Monday. Many syndromic data 
streams demonstrate a marked day-of-week (DOW) effect, 
dropping or increasing in counts over the weekends, with 
an early work-week resurgence or, drop. Holidays and other 
external factors can cause a similar phenomenon. Even the 
release of Harry Potter books has a known effect on hospital 
admissions (13).

Effect of assumption violations on control Charts

Although different data streams exhibit different be-
haviors, a few explainable patterns exist that are common 
to many series and clearly violate control chart assumptions. 
The presence of explainable components in syndromic data 
leads to a direct violation of the assumption of iid counts. 
These effects have been also seen in traditional surveil-
lance systems (14) but are even more pronounced in syn-
dromic surveillance: due to its more frequent collection, it 
is subject to greater autocorrelation; due to its data source 
being less direct, it is more influenced by components not 
related to disease outbreak. Therefore, in order to increase 
the effectiveness of control chart monitoring for biosurveil-
lance, we must account for these components in the raw 
data. Optimally, once these components are removed, we 
would be left with an iid series. Any shifts in the process 
would then be attributable to unexplained components; the 
likelihood that a shift in the process corresponds to a dis-
ease outbreak would then increase, thereby increasing the 
probability of detection while decreasing the probability of 
a false alarm.

An example of this can be seen by comparing a CUSUM 
chart applied to the series of daily sales of allergy medi-
cation, before (Figure 2, top) and after (Figure 2, bottom) 
preconditioning.

Here, the preconditioning significantly reduces the impact 
of seasonality. It is important to note that it is not simply 
the number of alerts that decreases due to the precondition-
ing (this could be achieved by simply raising the alerting 
threshold) but that the pattern of the alerts changes. Instead 
of multiple alerts and generally high levels for each season, 

we see that there are much tighter spikes after precondition-
ing. The overall level is much lower and the seasonal impact 
is reduced, indicating that other deviations (of more interest) 
would be more easily noticed in the preconditioned data. 
This can be achieved by removing explainable patterns from 
the data. We now describe the most prominent explainable 
patterns found in biosurveillance data and their effect on 
chart assumptions.

The first explainable pattern is cyclic behavior including 
DOW and seasonality: the magnitudes of syndromic data 
often vary widely as a function of the DOW or time of year. 
If left uncorrected, this source of variation inflates the nor-
mal variation assumed by the control chart, thereby lead-
ing to overly conservative control limits. In biosurveillance, 
this can result in outbreaks being detected late or not at all. 
Alternatively, if the control limits are set low enough to 
detect true outbreaks, they will also be low enough to be set 
off by normal seasonal variance, resulting in much higher 
false alarm rates.

The second explainable pattern is daily autocorrelation. 
Because syndromic data typically arrive daily, there is al-
most always a strong degree of auto correlation; sequential 
daily counts are not independent (because so much of the 
variance for sequential days comes from common causes). 
This can result in a higher level of false alerts in CUSUM 
and EWMA charts, as one abnormal count is likely to be 
followed by more abnormal counts.

A third pattern is related to holidays. Holidays strongly 
impact the public’s consumption of health care, drasti-
cally impacting (usually decreasing) many syndromic data 
streams. These outliers artificially increase the sample vari-
ance, causing the same issues as seasonal variation. In addi-
tion, many detection methods are sensitive to these “negative 
singularities” and will falsely report outbreaks when com-
paring new counts to past low holiday values (2).

Finally, particularly for syndromic series with very low 
counts (such as the number of unexpected deaths), the dis-
tribution of daily counts is far from normal, causing stan-
dard control limits to be incorrectly set. Applying control 
charts directly to raw syndromic data will either fail to 
detect actual outbreaks or will frequently alarm, despite the 
absence of actual outbreaks. While a high false alarm rate 
can be accounted for by artificially widening the control 
limits, this will then reduce the power to detect true devia-
tions of interest. The reverse is also true. To remedy these 
problems we propose to remove explainable patterns from 
the raw data in an attempt to come closer to meeting the 
assumptions of control chart methods and, thus, achieve a 
better ratio of detection power to false alarm rate.

If these explainable patterns are not removed, the con-
trol chart assumptions will not be met, and so the resulting 
alerts will be largely based on these patterns. Because they 
can have such a dramatic impact on the quality of the result-
ing control chart analysis, determining the most effective 
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Figure 2 CuSum chart applied to OTC sales data, before (top) and after (bottom) preconditioning.
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TooLS for DETECTInG ExPLaInaBLE PaTTErnS

There are many tools available for detecting explainable 
patterns in the data. Although some of these (notably domain 
knowledge and graph analysis) will require human interven-
tion, this analysis need not be carried out every day; once 
a series has been analyzed, the preprocessing method can 
be chosen and applied continuously, with occasional checks. 
Although it is tempting to completely automate the analysis 
and preprocessing of syndromic data series, human inter-
vention is still a very valuable tool for finding and remov-
ing explainable patterns in the data. We now describe three 
methods for detecting explainable patterns.

Domain Knowledge

The first method for determining temporal patterns in 
syndromic data is to use domain knowledge. From public 
health and medical sources we can learn whether there 
exist DOW effects in counts of ED visits and doctors’ 
office visits. Since many hospitals dramatically reduce 
staffing on weekends (16, 17, 18, 19, 20, 21, 22), counts are 
generally much lower on weekends. We also know that sea-
sonal trends might be present in ED visits for reasons such 
as flu season. Marketing knowledge can tell us that grocery 
shopping is more popular on weekends than on weekdays. 
And for both types, holidays always have exceedingly low 
counts.

Graphs and charts

The second step is to use statistical summaries and graphs 
to quantify such effects and to identify others. Some useful 
statistics and graphs are:

Time plots of each series with zoomed-in views (for detect-
ing local effects such as DOW).

Moving average charts for detecting overall trends, with 
narrow windows for local trends and wider ones for 
global trends. A window of width 7 suppresses DOW 
effects, whereas a width of 28 suppresses (nearly) 
monthly effects.

Moving standard deviation charts for determining 
whether the seasonal variation is additive or multipli-
cative (that is, if higher values also lead to a greater 
standard deviation, as is normally the case in count 
data). This can suggest using a logarithmic transform 
or a multiplicative seasonality model.

Autocorrelograms are plots of autocorrelations and partial 
autocorrelations at different lags for highlighting per-
iodic effects and temporal dependence. A lag 1 corre-
lation indicates daily autocorrelation, a lag 7 and its 
multiples indicate a DOW effect, and a lag 365 indi-
cates a yearly pattern.

method for removing these patterns from a given dataset is 
very important. The tools used in this paper show quanti-
tative and qualitative methods for comparing methods’ ap-
plicability to a syndromic data series and effectiveness at 
removing the explainable effects.

The paper proceeds as follows: Section 2 describes 
the syndromic data used throughout the paper. Section 3 
describes a set of statistical tools for detecting explainable 
patterns that “contaminate” the data, which make direct 
control-chart monitoring ineffective. We then apply these 
tools to the syndromic data and illustrate their use. The 
paper’s final goal is to survey and evaluate popular meth-
ods for data preconditioning. These methods are aimed at 
removing explainable patterns from the raw data, thereby 
creating “conditioned data” that can be monitored more ef-
fectively using control charts. Section 4 describes different 
preconditioning methods and evaluates their usefulness by 
applying them to syndromic data. A comparison is given in 
Section 5. We conclude and describe future directions in 
Section 6.

DaTa DESCrIPTIon

over-the-counter (oTC) medication sales

The first dataset, from a grocery chain in the Pittsburgh 
area, includes daily sales for seven categories of medica-
tions from August 1999 to January 2001 (15). Average daily 
counts vary largely across different categories, with vary-
ing degrees of weekly and annual dependence. The seasonal 
factor dominates the time series, and would therefore be the 
major cause for alerts in standard control charts. In the fol-
lowing, we use one of the series (throat lozenges) to illus-
trate the behavior of OTC series. Two others appear in the 
Appendix (Asthmatic and Allergies medications).

Chief complaints at emergency departments

The second dataset, from ESSENCE, is composed of 
35 time series representing daily counts of ICD-9 codes. 
ICD-9 codes are the ninth edition of the International 
Statistical Classification of Disease and Related Health 
Problems, published by The World Health Organization 
(WHO) and used worldwide. These ICD-9 codes are gen-
erated by patient arrivals at emergency departments (EDs) 
in an unspecified metropolitan region from Feb, 28, 1994 
to Dec, 30, 1997. The 35 series were then grouped into 13, 
using the, Centers for Disease Control (CDC) syndrome 
groupings. These syndrome groups show a diversity in the 
level of daily counts and in weekly and annual dependence 
across the different syndrome subgroups. The counts for the 
38 holidays contained in the dataset were eliminated. In the 
following we use one series, Gastrointestinal (GI)-related 
ED visits, and two addi-tional ED-visits series (Respiratory 
and Unexplained Deaths) are displayed in the Appendix.
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centrally peaked data and negative values indicating 
larger-tailed data

applying graphs and summaries to data

A close examination of the characteristic plots and sum-
mary statistics can be used to detect different explainable 
patterns in the data. The top row in each of Figures 3 and 
4 present several of these plots for sales of OTC throat loz-
enges (Figure 3) and GI-related ED visits series (Figure 4). 
Corresponding summary statistics are given in the left col-
umns of Tables 1 and 2. See the Appendix for plots and sta-
tistics for four additional series.

Seasonality
The degree of seasonality in the data can often be de-

termined by a visual inspection of the time series at different 
temporal scales. Autocorrelograms (ACF and PACF plots) 
and spectral plots are two additional plots useful in uncover-
ing seasonal patterns. However, one must be careful in using 
spectral plots, as large peaks can mask seasonal variance at 
other scales.

Most of the series in our datasets exhibit a pronounced 
seasonal pattern with peaks during the winter months. 
This can be seen for two of the series in the top left pan-
els in Figures 3 and 4, where throat lozenge sales exhibit a 
3-month cycle and GI-related ED visits exhibit a yearly pat-
tern (see Appendix for similar plots for 4 more series). This 
can also be seen in the relative values of the 365-day ACF 
(sixth column), where a large value indicates a strong yearly 
seasonal component.

Day-of-week (DOW) effect
To detect DOW effects, we first zoom in to a shorter one-

month period of the data. The second column (top row) in 
Figure 3 displays this for throat lozenge sales and in Figure 
4 for and GI-related ED visits. Weekends are highlighted in 
these zoom plots. Another useful tool are ACF and PACF 
plots (columns 5–7 in these Figures). Both series exhibit a 
strong DOW effect: OTC sales have peaks on weekends (due 
to the general trend of high-volume purchasing on week-
ends), and ED visits drop on weekends. The ACF plot for ED 
visits and some of the OTC medications (see Appendix for 
plots of four additional series) shows high autocorrelation at 
lags 7, 14, 21, etc., indicative of a DOW effect. The DOW 
effect is even present in unexplained deaths!

Autocorrelation
Autocorrelograms (graphs of the estimated autocorre-

lation as a function of the lag) are useful for studying the 
correlation of the data series with itself at various lags, and 
can indicate lags that play an important role. As mentioned 
above, the autocorrelograms (columns 5–6 in Figures 3 
and 4 and the Appendix) show high autocorrelation at lags 
7, 14, 21, etc., for most of the series, indicative of a DOW 

Normal probability plots and histograms for assessing 
normality. Skewness and kurtosis statistics are also 
useful for this purpose.

Two additional potentially useful statistics and graphs 
are partial autocorrelations at lag 365 and spectral plots. 
However, we do not use partial auto-correlograms because 
partial autocorrelation values for a 365-day lag are very sen-
sitive to missing values and are not reliable when holidays 
have been removed. We also do not use spectral plots be-
cause they tend to mask weekly seasonality when there is a 
strong yearly seasonality (the size of the weekly peak can be 
so small as to be barely distinguishable).

Summary statistics

The following statistics are useful for detecting patterns 
and evaluating and comparing preprocessing methods:

Mean: the sample mean

stdev: the sample standard deviation

weekendMean: the mean from weekends only; deviations 
from the global mean are indicative of the magnitude 
of the weekday-weekend effect.

percentInMin: the percent of values at the minimum value 
for the series; higher values indicate that this is a “low 
count” series.

pacfWeek: the partial autocorrelation function (pacf) coef-
ficient at 7-day lag; greater absolute values indicate 
stronger DOW effect.

acfWeek: the autocorrelation function (acf) coefficient at 
7-day lag; greater absolute values indicate stronger 
DOW effect. If there is no correspondingly large pacf, 
it may be indicative of short-term (shorter than 7-day) 
clustering effects in the series.

acfYear: the maximum acf coefficient at 364- or 365-day 
lag; greater absolute values indicate stronger yearly 
seasonality (364 is preferable because it will be the 
same DOW and often shows a greater degree of cor-
relation than 365).

daysHighPacf: the number of days the series has a “signifi-
cantly high” (greater than 4/ n) pacf; This measure is 
often used for determining the autocorrelation order 
in an ARIMA model, and here can indicate the length 
of significant local (not yearly) seasonality effects.

skewness: the skewness of the series; deviations from 0 indi-
cate nonnormality, with positive deviations indicating 
a positive skew and negative deviations indicating 
negative skew

excessKurtosis: the kurtosis-3; deviations from 0 indicate 
nonnormality, with positive values indicating more 
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METhoDS for PrEConDITIonInG

Several methods exist for removing explainable factors 
from the data. These include model-based methods, which 
assume a particular model and estimate the parameters in that 
model, and data-driven methods, which fit the data nonpara-
metrically rather than attempting to model the causes. The 
methods can also differ in their global versus local nature.

Linear regression models

Regression models are a popular method for capturing 
recurring patterns such as day-of-week, seasonality, and 
trends (23). The classic assumption is that these patterns do 
not change over time, and therefore the entire data can be 
used to estimate them. To model the different patterns, suit-
able predictors are created.

DOW effects can be captured by 6 dummy variables, each 
representing one day of the week (relative to the 
remaining baseline day). If there is only a weekday/
weekend effect, a single dummy variable can be used.

effect. This can also be seen in the higher values for the acf-
Week and pacfWeek statistics (left column in Tables 1 and 
2 and the corresponding tables in the Appendix). In addi-
tion, examining longer lags indicates biannual seasonality 
for throat lozenges sales, while for GI-related ED counts the 
weekly pattern repeats and is stronger than a yearly pattern.

Normality
To evaluate how closely the data follow a normal dis-

tribution, we use histograms and a normal probability plot 
and also examine summary statistics such as skewness and 
excess kurtosis. From the normal probability plots in column 
4 of Figures 3 and 4 we see that both series exhibit signifi-
cant deviations from normality. Throat lozenges (and other 
OTC sales) are skewed to the right; they also seem to be 
slightly more tightly clustered than normal data. GI-related 
(and other) ED counts appear to be bimodal (one peak for 
weekends, one for weekdays). The deviation from normality 
is also seen in the values for skewness and kurtosis in the 
summary tables (Tables 1 and 2).

series

raw data

regression

log_regress

7dayDiff

7dayDiff_holi

holi-winters

zoom hist qqnorm acf (0-30) acf (360-370) pacf (0-30) cusum

Figure 3 Plots for detecting explainable patterns and comparing preconditioning methods for sales of throat  
lozenges, for the raw data (top row) and after preconditioning using different methods.
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series

raw data

regression

log_regress

7dayDiff

7dayDiff_holi

holi-winters

zoom hist qqnorm acf (0-30) acf (360-370) pacf (0-30) cusum

Figure 4 Plots for detecting explainable patterns and comparing preconditioning methods for gi-related eD visits, 
for the raw data (top row) and after preconditioning using different methods.

Table 1 Comparison statistics for sales of throat lozenges, before (“raw data”) and after precondi-
tioning using different methods

 raw data regression log regress 7dayDiff
7day Diff 
holi

holt-
winters

mean 909.12 –2.34e-13 –2.90e-15 17.60 10.15 10.19
stdev 349.65 132.40 0.13 189.49 171.54 116.06
weekendMean 962.88 0.64 0.01 20.68 11.43 25.50
percentInMin 0.01 0.02 0.02 0.02 0.02 0.04
pacfWeek 0.08 –0.01 0.00 –0.22 –0.33 0.07
acfWeek 0.85 0.22 0.21 –0.09 –0.02 –0.02
acfYear 0.28 0.07 0.12 0.05 0.03 0.04
daysHighPacf 6 1 2 8 50 1
skewness 0.25 0.77 –0.18 0.56 –0.17 0.14
excessKurtosis –0.83 3.58 1.20 3.88 1.94 2.94
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Regression models can also be used to integrate external 
information that can assist in removing explainable patterns. 
For example, the seasonal pattern was highly correlated with 
temperature. Figure 5, which shows the relationship between 
counts of throat lozenge sales (in black) and the average daily 
temperature (in red), demonstrates this relationship. There 
is a strong negative relationship between temperature and 
sales: as the weather gets colder, more cough remedy drugs 
are sold. However, the causality of temperature is unclear, 
and we therefore treat it only as a proxy. One way is to cre-
ate alternative temperature-related predictors for capturing 
yearly seasonality. An example is a date function, which is 
a linear function rising to 1 in winter and decreasing to -1 
in summer.

The regression model for our data includes daily dummy 
variables (Monday, Tuesday, Thursday, Friday, Saturday, 
Sunday) to account for the DOW effect, a holiday indicator 
(Holiday), an index variable (index) to capture a linear trend, 
and daily average temperatures (Tavg) and monthly dummy 
variables (Jan, Feb, Mar, Apr, May, Jul, Aug, Sep, Oct, Nov, 
Dec) to remove seasonality. Figure 6 shows an ex-ample of 
the resulting time series of residuals (actual value - predicted 
value) for the sales of throat lozenges. This series was later 
used as input into standard control charts.

The main advantage of regression modeling is that it pro-
vides a general yet powerful method to remove variation due 
to factors unrelated to out-breaks. It is relatively effective at 
removing both yearly seasonality and DOW variation. How-
ever, it requires a fairly large amount of data for obtaining 
accurate estimates, especially for long-term patterns.

ratio-to-moving-average indexes

For cyclical data, with virtually any cycle length (weekly, 
monthly, yearly, etc.), we can compute seasonal indexes and 
use them to deseasonalize the data. Seasonal-adjustment 
methods are very popular in business, and government 
agencies like the Bureau of Labor Statistics and the Census 

A global linear trend can be modeled using a predictor 
t that is a running index (t=1,2,3...). Other types of 
trends, such as exponential and quadratic trends, can 
also be captured via a linear model by transform-
ing the response and/or index predictor or by adding 
transformations of the index predictor, such as adding 
t2 to capture a quadratic trend.

Seasonality can be modeled by a sinusoidal trend. The CDC 
use a regression model that includes sine and cosine 
functions to capture a cyclical trend of mortality rates 
due to influenza (24, 25), although these terms will 
not be significant in series without pronounced sea-
sonality. Another regression-based method for dealing 
with seasonality is to fit local regression models, using 
past data from the same time of year (26). Note that ex-
plicit modeling of seasonal variation assumes that the 
seasonal pattern remains constant from year to year.

Holidays can be captured by constructing a dummy vari-
able for holidays or by replacing holiday values with 
missing values.

From our experience as well as other reports in the litera-
ture (27, 28), we find that seasonality effects tend to be mul-
tiplicative rather than additive with respect to the response 
variable. Thus, a linear model where the response is trans-
formed into a natural log (log(y)) is often appropriate. For 
our data series, we fit a linear regression and a multiplicative 
regression, and found that the multiplicative version better 
captured the DOW effect. Both are reported below.

Currently, several biosurveillance systems implement 
some variation of a regression preconditioning. ESSENCE 
uses a linear regression model that includes DOW, holi-
day, and post holiday indicators (7) and BioSense uses a 
Poisson regression with predictors that include a linear 
trend, sine and cosine effects for seasonality, month indi-
cators, DOW indicators and Holiday and day-after holiday 
indicators (29).

Table 2 Comparison statistics for gastrointestinal-related eD visits, before (“raw data”) 
and after preconditioning using different methods

 raw data regression
log 
regress 7dayDiff

7dayDiff 
holi

holt-
winters

mean 117.25 1.97e-14 3.31e-16 2.31 –0.04 0.96
stdev 65.69 27.42 0.28 36.53 30.76 30.10
weekendMean 30.03 1.28e-14 2.65e-16 –0.03 –0.03 –5.61
percentInMin 0.02 0.02 0.02 0.03 0.03 0.03
pacfWeek 0.79 0.19 0.11 –0.29 –0.38 0.15
acfWeek 0.35 0.28 0.15 –0.00 –0.03 0.05
acfYear 0.65 0.05 0.05 0.29 0.15 0.20
daysHighPacf 35 7 7 7 35 35
skewness –0.19 –1.01 –2.99 1.34 0.06 –0.55
excessKurtosis –1.15 5.21 17.43 8.34 5.38 3.68
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Figure 5 Throat lozenge sales (black) and average temperature (red).

0

–400

–200

0

200

400

600

100 200 300

Day

400 500

Figure 6 residuals from a regression model for throat lozenge sales.
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popular method in time series analysis, where the goal is to 
bring a nonstationary time series closer to stationarity (31). 
Differencing has an effect both on removing linear trends as 
well as removing recurring cyclic components. In the con-
text of syndromic data, the only instance where differencing 
was suggested is in (32). They show that a 7-day differencing 
can be effective at normalizing syndromic data.

In our data, the DOW effect is relatively stable through-
out the entire period. We therefore use an order 7 difference. 
The preconditioned time series is simply the difference 
between the value on the current day and the value 7 days 
ago. In addition, we accounted for holidays by removing the 
values on holidays, and then obtaining differenced values 
for the seventh day following a holiday by differencing at 
lag 14 (ie, subtracting the value from two weeks prior). This 
improves the method by removing outliers from known (hol-
iday) causes.

The main advantage of differencing is that it is easy and 
computationally cheap to perform and so provides an excel-
lent basis for comparison. It is very effective at removing both 
weekly and monthly patterns but can result in abnormally 
high results after abnormally low points in the original data 
(called “negative singularities” by (2). Another side effect 
of 7-day differencing is that it creates strong weekly partial 
autocorrelation effects and can increase the variance in the 
data if there is little or no existing DOW effect.

holt-Winter’s exponential smoothing

The Holt-Winters exponential smoothing technique is a 
form of smoothing in which a time series at time t is assumed 
to consist of three components: a level term Lt, a trend term 
Tt, and a seasonality term St. The k-step ahead forecast is 
given by

ŷt + k = (Lt + kTt) St + k – M, [1]

where m is the number of seasons in a cycle (eg, for a weekly 
periodicity m = 7). The three components Lt, Tt, and St are 
updated, as new data arrive, as follows:

Lt = αYt/St – m + (1 – α)(Lt – 1 + Tt – 1) [2]

Tt = β(Lt – Lt–1) + (1 – β) Tt – 1 [3]

St = γYt /Lt + (1 – γ)(St – M), [4]

where α, β, and γ are smoothing constants that take val-
ues in (0, 1). Each component is updated at every time step, 
based on the actual value at time t.

For our data we use the multiplicative seasonality version 
because the seasonal effects in our syndromic time series 
are generally proportional to the level Lt. An additive formu-
lation is also available (33, 34).

The principal advantage of this technique is that it is data 
driven and highly automatable. The user need only to spec-
ify the cycle of the seasonal pattern (eg, weekly), and the 

Bureau use such methods to report figures, such as monthly 
unemployment rates.

A simple method to compute indexes is the ratio-to-moving-
average method. This is also the basis for the X-11 and X-12 
systems used by the Census Bureau (30). The idea is to estimate 
and remove any linear trend from the data, and then to estimate 
the seasonal component in the de-trended data. To compute 
DOW seasonal indexes the following algorithm is used:

1. Estimating the trend: For each day, compute the moving 
average with a 7-day window centered around that day. 
For example, for a Tuesday and a window of 7 days, we 
compute the average of the 3 previous days (Sat, Sun, 
Mon), the value on Tuesday itself, and on the 3 following 
days (Wed, Thur, Fri)

2. Removing the trend: Divide the daily value by its corre-
sponding moving average. These are the raw seasonals.

3. Estimating seasonality: Compute the average of all raw 
seasonals for the same day (eg, the raw seasonal for each 
of the Tuesdays are averaged across the entire period).

4. Scale the averages so that they sum to 1.

This algorithm gives multiplicative indexes, where each 
index gives the percentage of counts on that day relative to 
the weekly average. For example, an index of 1.2 for Tuesday 
would mean that Tuesdays have 20% higher counts than the 
average weekly count. A similar process can be followed to 
compute monthly indexes, or any other fixed period.

It is possible to compute and remove multiple seasonal 
cycles with different periods, such as a weekly cycle and an 
annual cycle. For the syndromic data we tried both a 7-day 
seasonal adjustment (DOW effect) and a yearly adjustment 
(done using approximate monthly seasons: 365-day period, 
12 seasons), as well as combinations of the two (first, weekly 
adjustments, then yearly; and vice-versa). While the 7-day 
procedure is quite effective at removing weekly patterns, it 
obviously does not remove yearly seasonality. The yearly 
deseasonalization technique is somewhat effective at remov-
ing DOW and seasonal patterns, but less so than the other 
methods described in this section. Seasonal adjustments via 
ratio-to-moving-average indexes should only be performed 
on the raw count data; if this method is performed on nor-
malized data centered around zero (such as regression resid-
uals), it frequently generates abnormally high results due to 
division by an average very close to zero, thereby creating 
highly unrepresentative results.

Differencing

Differencing is the operation of subtracting a previous 
value from a current one. The order of differencing gives 
the vicinity between the 2 values: an order 1 differencing 
means that we take differences between consecutive days 
(yt − yt−1 ), whereas an order 7 differencing means subtract-
ing the value of the same day last week (yt − yt−7 ). This is a 
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examining the CUSUM charts, we also see that this results in 
a narrower, more sharply peaked set of alerts. These graphs 
also show the effect of preconditioning on the autocorrelation 
and on normality. Autocorrelation at lags of 7 (and its mul-
tiples) are greatly reduced, as are very large lag auto correla-
tions. The Holt-Winter’s smoothing appears to best remove 
the daily autocorrelation, while regression modeling retains 
some of this autocorrelation. Multiplicative regression models 
are better than additive models, especially when seasonality 
is present. And finally, 7-day differencing appears to per-
form reasonably well, except for creating large negative lag 
7 autocorrelations and partial-autocorrelations. Including the 
holiday correction does remove these negative partial autocor-
relations, indicating that holidays do require special treatment 
in the preprocessing step. When moving from high-count to 
low-count series (eg, Unexplained Death), we find that Holt-
Winter’s smoothing becomes infe-rior to other methods and is 
not able to capture the cyclic patterns well (see Appendix).

Although seasonality can be relatively well accounted for, 
there are still difficulties in creating normally distributed 
residuals for some data series; mainly, this seems to be due 
to a strong, centrally peaked distribution, as indicated in the 
histograms and the high excess kurtosis. This is especially 
true for low-count series. However, compared to the raw 
data, there is definitely improvement in eliminating multiple 
modalities and in getting closer to normality.

ConCLuSIonS, LIMITaTIonS, anD fuTurE WorK

This paper emphasizes the need to account for explain-
able patterns in biosurveillance data before applying the 
widely used control charts. We present several well-known 
methods for removing such effects and compare their use-
fulness. Although we focus here on data that is used in tem-
poral monitoring using control charts, such preprocessing 
can also be helpful in spatial and spatio-temporal monitor-
ing when an underlying iid assumption exists, such as in the 
widely used spatio-temporal scan statistic (35).

One future direction is to create an automated applica-
tion that uses these preconditioning methods to explore and 
categorize each data series, providing recommendations and 
rationales for various methods to the end user. This auto-
mated expert system could help practitioners determine 
the methods that would best precondition their data, while 
allowing them to include domain knowledge. Such a sys-
tem could perform this function by analyzing the above 
statistics, selecting appropriate preconditioning methods, 
and then displaying graphical plots to illustrate the reasons 
for each suggested method. The user would then be able to 
assess which patterns are reasonable in a particular dataset 
and, based on the system’s output, to choose the preferred 
preconditioning operation(s).

This paper provides a general framework for data precon-
ditioning, but there are several improvements that can follow. 
First, the tools and methods described here are all aimed at 

3 smoothing parameters. The choice of smoothing param-
eters depends on the nature of the data and the degree 
to which the patterns are local versus global. A study by 
Burkom Murphy, and Shmueli (28) considered a variety of 
city-level time series, both with and without seasonal effects. 
They recommend using the smoothing coefficients α = 0.4; 
β = 0; and γ = 0.15 for seasonal series and α = 0.1; β = 
0; γ = 0.15 for non-seasonal series. Following this guide-
line, we used the first settings for each series that exhibited a 
1-year autocorrelation higher than 0.15, and the second set-
ting otherwise. In addition, we applied the modification sug-
gested in (28), which does not update the parameters if the 
actual value deviates from the prediction by more than 50% 
(to avoid the influence of outliers).

The Holt-Winter’s method is very effective at capturing 
yearly seasonality and weekly patterns. Although it is not 
straightforward to tune the smoothing parameters, the set-
tings provided here proved generally effective for our syn-
dromic data. One point of caution should be made. As in any 
method that produces one-step-ahead predictions, a gradu-
ally increasing outbreak is likely to get incorporated into the 
background noise, thereby masking the outbreak signal. One 
solution is to generate and monitor k-day-ahead predictions 
(k > 1) in addition to one-day-ahead predictions.

METhoD CoMParISon

We compare the effectiveness of different methods by 
examining the preconditioned series for explainable patterns 
and evaluating their conformity to the iid normal assumption. 
In particular, we evaluate the degree of seasonality (weekly 
and yearly) in the data by examining the average autocorre-
lation and partial autocorrelation values at one week and one 
year lags. Normality is evaluated by examining the skew-ness 
and excess kurtosis, as well as histograms and normal prob-
ability plots. While numerous methods and combinations 
and variations of methods were examined, results from only 
five methods are presented. These five were chosen based on 
the ability to reduce explainable effects (and resulting false 
alarms in standard control charts). The methods are: residuals 
from regression on the counts, residuals from a linear regres-
sion on log(counts), 7-day differencing, 7-day differencing 
modified for holidays, and forecast errors from Holt-Winter’s 
exponential smoothing. Figure 3 compares a the precondi-
tioned lozenge sales series across the five methods using the 
proposed graphs from Section 4 as well as a CUSUM chart. 
A similar comparison is given for the GI-related ED visits in 
Figure 4. Summary statistics and charts for these series are in 
Tables 1 and 2. Statistics and figures for additional precondi-
tioned OTC series and ED series are given in the Appendix.

Overall, all 5 methods greatly improved the data quality for 
syndromic surveillance via control charts, and therefore each 
method seems suitable as a first preprocessing step. In partic-
ular, we find that differencing, regression, and Holt-Winter’s 
smoothing each significantly reduces seasonal patterns; by 



Implementation and Comparison of Preprocessing Methods for Biosurveillance Data 13

Advances in Disease Surveillance 2008;6:1

Finally, we note again that syndromic counts on holidays 
are dramatically different from other days. Since the num-
ber of holidays is too small to incorporate into our pre-
conditioning methods, we suggest explicitly labeling them 
and removing them from consideration, in order to improve 
reliability. We strongly urge the use of some mechanism to 
account for holidays, as they are an explainable cause of sig-
nificant variation.

From a theoretic detection perspective, the principal con-
cern with any preconditioning technique must be its effect 
on the sensitivity and timeliness of alerting mechanisms. 
While proper data preconditioning should result in fewer 
false alerts due to non-outbreak variation, and a higher 
probability of detecting actual outbreaks, improper pre-
conditioning can result in unexpected and even unreliable 
performance. It is therefore essential to study the effects of 
preconditioning using different methods and to assess the 
robustness of the results.

From an operational perspective, the main concern with 
data preconditioning techniques will be the presentation of 
alerts and the data streams causing the alerts to the end user. 
A health monitor using an electronic syndromic surveillance 
system that receives an alarm will typically want to examine 
the raw data stream causing the alert. With preconditioning, 
the alerting data stream will potentially not resemble the 
original data stream, reducing the end user’s belief or faith in 
the system. This aspect of data visualization and user inter-
face must be addressed from the end user’s perspective.
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aPPEnDIx a

Complete Summary Statistics for Syndromic Data

Below are summary statistics for the raw counts coming from 
each of 7 series of OTC medication sales (asthmatic remedies, 

Over-the-counter medication sales

 asthma allergies Cough.Syr nasal.Spray Tabs Tabs.Time Throat.Loz

mean 13.15 211.34 557.78 158.36 499.14 79.61 909.12
stdev 4.66 47.53 256.25 47.76 193.11 26.21 349.65
weekendMean 14.59 250.04 599.52 179.47 564.01 92.30 962.88
percentInMin 0.01 0.01 0.01 0.01 0.01 0.01 0.01
pacfWeek 0.17 0.28 0.15 0.30 0.33 0.20 0.08
acfWeek 0.06 0.55 0.83 0.71 0.78 0.62 0.85
acfYear 0.03 0.20 0.25 0.25 0.24 0.07 0.28
daysHighPacf 14 7 8 9 8 7 6
skewness 0.58 0.83 0.80 0.61 1.02 1.23 0.25
excessKurtosis 1.22 0.65 1.33 0.42 2.18 3.55 -0.83

Chief complaints at emergency departments

 Bot Like fever GI LGI uGI hemr ill Lesion

mean 17.33 79.66 117.25 94.81 22.43 14.95 24.12
stdev 12.64 41.73 65.69 53.83 13.33 9.45 12.16
weekendMean 0.96 39.90 30.03 24.23 5.79 3.71 9.45
percentInMin 0.15 0.02 0.02 0.02 0.02 0.03 0.02
pacfWeek 0.51 0.52 0.79 0.78 0.65 0.61 0.61
acfWeek 0.39 0.46 0.35 0.35 0.33 0.29 0.25
acfYear 0.58 0.47 0.65 0.63 0.56 0.52 0.52
daysHighPacf 42 28 35 35 35 35 35
skewness -0.06 1.01 -0.19 -0.15 0.09 0.20 -0.00
excessKurtosis -1.10 1.63 -1.15 -1.17 -0.56 -0.62 -0.96

 Lymph neuro rash resp Shk Coma unxplDth  

mean 6.98 37.93 81.99 500.95 5.50 0.58
stdev 4.87 22.26 46.47 275.90 3.69 0.92
weekendMean 1.58 7.87 20.93 175.85 2.02 0.23
percentInMin 0.09 0.02 0.02 0.02 0.07 0.62
pacfWeek 0.54 0.62 0.78 0.76 0.43 0.13
acfWeek 0.21 0.33 0.27 0.45 0.20 0.02
acfYear 0.42 0.61 0.59 0.64 0.32 0.05
daysHighPacf 28 35 36 57 28 14
skewness 0.36 -0.33 -0.19 0.31 0.84 2.42
excessKurtosis -0.62 -1.30 -1.17 -0.57 1.50 10.82  

allergies remedies, cough syrup, nasal decongestion spray, tabs 
and caps, tabs released over time, and throat lozenges) and 12 
series of emergency department visits related to different symp-
toms (Botulism-like, fever, GI, lower GI, upper GI, hemorrhagic 
illness, localized cutaneous lesion, lymphadenitis, neurological, 
rash, respiratory, shock/coma, and unexplained death).
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preprocessing methods) for two OTC series and two ED vis-

its series.

aPPEnDIx B

Additional Syndromic Series Comparison Tables

In the following we provide summary statistics compar-
ing the original series and the preprocessed series (using five 

Chief complaints at emergency departments
resp raw data regression log regress 7dayDiff 7dayDiff holi holt-winters

mean 500.95 -3.53e-14 1.08e-16 8.87 -0.47 5.89
stdev 275.90 120.34 0.24 140.27 116.97 113.56
weekendMean 175.85 -7.06e-14 9.99e-18 -0.45 -0.45 -18.82
percentInMin 0.02 0.02 0.02 0.03 0.03 0.03
pacfWeek 0.76 0.30 0.09 -0.22 -0.31 0.17
acfWeek 0.45 0.38 0.27 0.00 0.04 0.04
acfYear 0.64 0.14 0.02 0.26 0.12 0.19
daysHighPacf 57 35 6 52 42 35
skewness 0.31 -1.08 -3.68 1.54 -0.03 -1.13
excessKurtosis -0.57 6.55 23.31 14.01 12.89 8.21

unxplDth raw data regression log regress 7dayDiff 7dayDiff holi holt-winters

mean 0.58 -1.30e-16 2.57e-17 0.00 0.00 -0.18
stdev 0.92 0.89 0.44 1.22 1.22 1.18
weekendMean 0.23 -1.39e-16 1.60e-17 0.00 0.00 -0.04
percentInMin 0.62 0.02 0.02 0.03 0.03 0.03
pacfWeek 0.13 0.06 0.04 -0.49 -0.49 0.28
acfWeek 0.02 -0.00 -0.01 -0.04 -0.05 0.23
acfYear 0.05 0.01 0.00 0.00 0.00 0.03
daysHighPacf 14 0 0 56 56 14
skewness 2.42 2.32 0.86 0.05 0.03 -0.11
excessKurtosis 10.82 11.75 -0.04 7.91 7.91 7.57

Over-the-counter medication sales
allergies raw data regression log regress 7dayDiff 7dayDiff holi holt-winters
mean 211.34 -7.79e-14 -2.19e-15 1.39 -0.02 1.49
stdev 47.53 30.52 0.13 42.04 37.34 29.26
weekendMean 250.04 0.91 0.01 2.85 0.12 9.50
percentInMin 0.01 0.02 0.02 0.02 0.02 0.04
pacfWeek 0.28 0.04 0.07 -0.30 -0.36 0.11
acfWeek 0.55 0.22 0.21 0.00 0.00 0.07
acfYear 0.20 0.13 0.14 0.11 0.13 0.05
daysHighPacf 7 1 1 8 57 0
skewness 0.83 0.99 0.50 1.61 0.03 0.37
excessKurtosis 0.65 2.30 0.93 13.93 1.01 0.94

asthmatics raw data regression log regress 7dayDiff 7dayDiff holi holt-winters

mean 13.15 -7.01e-17 -7.96e-16 0.10 0.02 0.05
stdev 4.66 4.18 0.31 5.99 5.92 4.43
weekendMean 14.59 0.02 0.00 0.26 0.08 0.25
percentInMin 0.01 0.02 0.02 0.02 0.02 0.04
pacfWeek 0.17 -0.00 -0.01 -0.52 -0.51 -0.10
acfWeek 0.06 -0.01 -0.01 0.00 -0.00 -0.02
acfYear 0.03 0.02 0.01 0.03 0.03 0.02
daysHighPacf 14 0 0 21 28 0
skewness 0.58 0.35 -0.63 0.15 0.15 0.31
excessKurtosis 1.22 0.50 0.81 0.30 0.37 0.20
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aPPEnDIx C

Additional Syndromic Series Comparison Charts

In the following we provide plots for detecting explain-
able patterns and for comparing the original series and the 

preprocessed series (using five preprocessing methods) for 
two OTC series and two ED visits series. Figure 1 shows the 
plots for OTC allergy remedies sales; Figure 2 for asthmatic 
remedies sales; Figure 3 for respiratory-related ED visits; 
and Figure 4 for ED visits labeled “unexpected deaths.”

Figure 1 Plots for detecting explainable patterns and comparing preconditioning methods for OTC allergy remedies 
sales, for the raw data (top row) and after preconditioning using different methods.
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Figure 2 Plots for detecting explainable patterns and comparing preconditioning methods for OTC asthmatic reme-
dies sales, for the raw data (top row) and after preconditioning using different methods.
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Figure 3 Plots for detecting explainable patterns and comparing preconditioning methods for respiratory-related eD 
visits, for the raw data (top row) and after preconditioning using different methods.
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Figure 4 Plots for detecting explainable patterns and comparing preconditioning methods for eD visits labeled 
“unexplained death,” for the raw data (top row) and after preconditioning using different methods.
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