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Animals continue to be recognized as a potential source of surveillance data for detecting emerging infec-
tious diseases, bioterrorism preparedness, pandemic influenza preparedness, and detection of other zoonotic 
diseases. Detection of disease outbreaks in animals remains mostly dependent upon systems that are dis-
ease specific and not very timely. Most zoonotic disease outbreaks are detected only after they have spread 
to humans. The use of syndromic surveillance methods (outbreak surveillance using prediagnostic data) in 
animals is a possible solution to these limitations. The authors examine microbiology orders from a veterinary 
diagnostics laboratory (VDL) as a possible data source for early outbreak detection. They establish the species 
representation in the data, quantify the potential gain in timeliness, and use a CUSUM method to study counts 
of microorganisms, animal species, and specimen collection sites as potential early indicators of disease out-
breaks. The results indicate that VDL microbiology orders might be a useful source of data for a surveillance 
system designed to detect outbreaks of disease in animals earlier than traditional reporting systems.

Medical Subject Headings: Animal Diseases; Bioterrorism; Communicable Diseases, Emerging; Disease 
Outbreaks; Epidemiology; Sentinel Surveillance; Zoonoses.
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Introduction

Emerging infectious diseases are newly recognized, clin-
ically distinct, or known diseases that are increasing in inci-
dence in a given place or specific population (1). More than 
35 such diseases have been reported in humans between 
1980 and 2003 (2). Many emerging pathogens are zoonotic 
(capable of infecting both humans and one or more species 
of lesser animal) (3–5). Indeed, organisms that can infect 

multiple species are 2 to 4 times more likely of being associ-
ated with an emerging infectious disease than those that are 
specific to a single host (3,4,6). 

Although humans serve as the main reservoir for only 3% 
of all zoonotic pathogens (3), discovery of zoonotic disease 
outbreaks has often relied on the identification of human 
cases rather than surveillance in animals (5,7). Detection 
of a zoonotic disease outbreak in an animal population first 
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could possibly result in control efforts that prevent or greatly 
reduce human morbidity such as postexposure prophylaxis 
of contacts or quarantine of animals (7,8). Improved surveil-
lance systems and methods in animals might specifically 
benefit pandemic influenza preparedness (9–11), bioterror-
ism defense (12–15), and response to other public health 
threats (16,17). 

Disease surveillance continues to develop as a core veter-
inary activity (18); however, regulatory programs and efforts 
to eradicate specific diseases have typically directed dis-
ease surveillance in animals (19). Therefore, these activities 
tend to be very disease specific and limited in their ability 
to detect other diseases, especially those that present with 
nonspecific signs (20–22). Analysis of prediagnostic data 
(ie, syndromic surveillance) may provide a solution to the 
disease-specific limitations of current surveillance systems 
used for animals. Systems using such analytic methods do 
not focus on any specific disease, but rather capture inci-
dence of nonspecific, health-related events that may be indi-
cators of disease. A key feature of many of these systems is 
the use of preexisting electronic data such as found in data-
bases of registration, accounting, or inventory records. 

Although scarcer in the veterinary community, sources of 
data exist that appear to be similar to those used by early out-
break detection systems for humans. We considered VDLs 
one of those sources. Veterinary diagnostic laboratories exist 
in three sectors: public laboratories usually associated with 
government agriculture departments, schools of veterinary 
medicine, and commercial laboratories. These facilities typ-
ically maintain electronic records of test orders and results 
that include animal species, date, and geographical refer-
ences (eg, ZIP code). We hypothesized that the following:

1. � Microbiology order records of VDLs would pos-
sess the qualities of representativeness and timeliness 
required for use in an early outbreak detection system. 
Representativeness and timeliness establish, in part, the 
quality of the data, one of the criteria important to build-
ing a successful system. Representativeness is a deter-
mination of how well records in the system describe the 
target population and indicates the potential to accurately 
determine the distribution of cases by time and place. 
The presence of a species may be a more important mea-
sure of representativeness for early outbreak surveillance 
(23). For example, if detecting emerging diseases in pets 
is the goal of the system, then it follows that the data need 
to include information for companion animals.

The availability of data reflects the potential gain in 
terms of timeliness (24), the time from the disease event 
to the time the event is discovered (25). Timeliness has 
become a major objective of surveillance systems that 
are used to detect outbreaks of infectious disease (26). 
This potential gain establishes the value of data for ear-
lier detection of disease outbreaks compared to traditional 
disease reporting and detection systems.

2. � Baselines for microbiology orders and isolated micro-
organisms could be determined from historic records. 
The Centers for Disease Control and Prevention have 
identified the ability to provide baseline information on 
incidence trends and geographic distribution as a prereq-
uisite to detecting new or reemerging infectious-disease 
threats (27). The baseline becomes especially important 
to determining whether counts are abnormally elevated. 
Making accurate interpretations from the results of detec-
tion analyses is difficult without first establishing what is 
normal (28,29). Baselines help to determine the noise in 
the data and to provide for establishing expected values 
required for the analyses. Such indices are important to 
validate the statistical models used by detection systems 
in order to to determine abnormal patterns of distribution 
or counts (30,31).

3. � Examination of microbiology order counts using detec-
tion algorithms could identify pattern changes in the order 
time series resulting from increased counts of micro-
organisms, animal species, and/or specimen-collection 
sites that might indicate a possible outbreak.

Materials and Methods

We conducted a retrospective study of a dataset obtained 
from IDEXX Laboratories, Inc. (Westbrook, Maine) that 
contained microbiology orders that had been submitted by 
veterinary providers in a 7-county area of central Ohio from 
January 2001 through December 2003. IDEXX Laboratories 
receive, on average, about 11,500 specimens daily from cli-
ents throughout the United States, either by courier or by 
express parcel service (eg, FedEx) (Bill Davis, IDEXX 
Laboratories, Inc., personal communication, 2006). Upon 
receipt of specimens, IDEXX personnel enter the date and 
time of arrival into a laboratory information system. These 
and other data populate data repositories at the IDEXX cor-
porate office at the time of record creation.  Other informa-
tion included in the dataset provided were a specimen-unique 
accession number, animal species, the anatomical collection 
site of the specimen, date of test result, and species of micro-
organism isolated.

To evaluate the quality of the data, we studied the data-
set with descriptive statistics using EpiInfo v3.3.2 (Centers 
for Disease Control and Prevention, http://www.cdc.gov/epi-
info/). We determined the frequency of animal species in 
the dataset to evaluate representativeness. Turnaround time 
(the time between the laboratory’s receiving a specimen and 
recording the test results) was used to measure the potential 
gain in timeliness by averaging the difference between the 
dates for each record. 

We used a tool developed by Burkom (32) in Excel 2003 
(Microsoft Corporation), to study the weekly time series 
of microbiology orders with a modified CUSUM method, 
commonly identified as C3 and used in the Early Aberration 
Reporting System, that combines the current period CUSUM 
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value with previous ones to obtain a statistical value (33).  
We used a baseline equal to 5 weeks, with a buffer of 1 
week, and an alert threshold equal to a statistical value of 
1. Weeks consisted of 7 days beginning on Sunday. Week 1 
was the 7-day period that included January 1. The statistical 
value was calculated as

St = max{0, St–1 + (Xt–(μn + σn))/σn},� [1]

where Xt is the actual count for week t; μn the mean of the 
baseline counts ((t–2 + t–3 + … t–6)/5); and σn the standard 
deviation of the baseline counts. 

We developed weekly time series of isolate counts of spe-
cific microorganisms by grouping the records according to 
genus and studied the baseline occurrence with Serfling’s 
regression method using Excel 2003. Weeks consisted of 
7 days beginning on Sunday. Weeks 1, 53, and 105 were the 
7-day periods that included January 1. Data from 2001 and 
2002 (weeks 1–104) were used to determine expected weekly 
counts for 2003 (weeks 105–156). We chose the Serfling 
method because of the seasonal variance in counts that we 
expected for many enteric organisms such as Escherichia 
coli and Staphylococcus. As the frequency of observed 
counts in the time series approach zero, the accuracy of the 
Serfling model becomes more unreliable (Garrick Wallstrom, 
University of Pittsburgh, personal communication, 2006) so 
we examined only the more frequently occurring microor-
ganisms. The Serfling method combines a linear term with 
sine and cosine terms to describe any seasonal change (34),

Ŷt = α + βtt + βs sin(2πt/52) + βc cos(2π t/52),� [2]

where a is the intercept value, βt is the linear coefficient, and 
βs and βc are the model coefficients for the sine and cosine 
terms, respectively, that describe any seasonal effect at week 
t. The Serfling method requires data from nonepidemic peri-
ods to develop a base model. Information was not available 
to distinguish epidemic from nonepidemic weeks so we used 
a procedure similar to the one described by Tsui et al (35) 
to remove counts that possibly represented epidemic weeks. 
The first 104 weeks of data (January 2001–December 2002) 
were used to build the regression model that was applied to 
weeks 105–156 (January–December 2003). The procedure 
involved three steps.

1. � Calculate an initial regression model for the first 
104–week series using equation [2].

2. � Remove those counts with standardized residual val-
ues  greater than 1.645, representing a one-tailed upper 
95% CI.

3. � Calculate a second regression model using equation [2] 
for the remaining data to obtain a predicted value curve 
for the third year’s data series.

Alerts produced by the CUSUM analysis were stud-
ied using the results of the Serfling analysis to determine 
greater-than-expected isolate-specific counts and counts of 

specimens that were stratified by animal species and speci-
men collection site. Mean weekly counts of orders for these 
groups were determined using microbiology order data from 
2001 and 2002. The number of standard deviations from the 
mean, determined by dividing the difference between the 
2003 week-specific count and the mean for that week by the 
standard deviation of the mean, was used to quantify the 
significance of change.

Results

From January through December 2003, the total number 
of accessions was 3,290. The median turnaround time (time 
between specimen receipt and test result) was 3 days (range, 
0–42 days). The data were representative mainly of speci-
mens from companion animal species (58.8% canine, 22.5% 
feline, 2.0% reptile, and 0.6% birds) and equine (7.9%) 
(Figure 1). Agricultural species comprised only 0.6% of the 
total accessions. 

Specimens represented in the 2003 IDEXX dataset were 
most frequently collected from urine (32.8%); ear (16.4%); 
feces (6.8%); nose (5.4%); uterus/cervix (3.6%); trachea 
(2.2%); abscess (1.8%); skin (1.5%); vagina (1.1%); and blad-
der (0.7%). Microorganisms most frequently isolated by 
IDEXX in 2003 included E. coli (28.2%); Staphylococcus 
(21.4%); Enterococcus (9.2%); Pseudomonas (8.7%); Proteus 
(8.6%); Streptococcus (6.8%); Bacillus (3.7%); Enterobacter 
(2.3%); Klebsiella (1.5%); and Corynebacterium (0.9%). 

Analysis of the microbiology order time series with the 
C3 method identified 5 weeks (weeks 10, 20, 32, 33, and 
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Figure 1  Representation of animal species by 
microbiology orders submitted to IDEXX during 2003, 
originating from animals in central Ohio.
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compared to analysis using the date of test result. Based 
on previous models estimating the impact from outbreaks 
of select disease, a gain of 3 days could be substantial for 
reducing mortality and cost (8). This potential includes an 
assumption that outbreak discovery occurs at the same time 
results are known. This may not always be the case. Indeed, 
outbreak discovery is often delayed for some time until indi-
vidual results from the various sample-submitting clinics 
are aggregated for analysis. Therefore, the actual gain in 
timeliness may be greater than that indicated by turnaround 
time. Timeliness of detection as it relates to onset of out-
break might also be affected by delays created in the process 
of delivery of the specimen to the laboratory. The percent-
age of total records received within established periods (eg, 
every 24 hours) might help better evaluate the impact from 
this potential bias.

Analysis indicated several periods of increased counts of 
orders (clusters) that may have resulted from disease out-
breaks. The pathogens that were found to be associated with 
these clusters were not reportable in animals. Therefore, no 
registry existed to validate these instances resulting from 
true outbreaks of disease. While we would expect an increase 
in the number of specific isolates to be associated with an 
outbreak, periods of increased counts could have been the 
result of more rigorous surveillance efforts, increased veter-
inary visits in reaction to a public service campaign, or other 
causes not related to an outbreak of disease. The increase 
of orders by collection site and species lends support to the 
possibility that the clusters did result from an increase of 
disease in animals.

Detection systems of this type can only be expected to 
identify outbreaks within certain size parameters earlier 

46) where observed counts exceeded expected (ie, alerts) 
(Figure 2). Comparison with microorganism-, animal spe-
cies–, and collection site–specific time series indicated that 
each of these alerts could be associated with increased counts 
of specific microorganisms, animal species, and specimen 
collection sites (Table 1). 

Discussion

Companion animals (eg, canine, feline, and pet birds) 
were the group more frequently (81.9%) represented by the 
IDEXX dataset. Equine species were also a frequent pro-
vider of samples (7.9%). Although sometimes labeled as 
agricultural (19), horses differ from most other species of 
agricultural animal since they generally are kept individu-
ally or in small groups for pleasure and/or show, rather than 
in herds for consumption (36). Veterinary care of dogs, cats, 
pet birds, and horses is routinely more individually based 
as opposed to herd animals (eg, cows, pigs, and sheep) (16), 
where diagnosis of disease in the unit (ie, herd) does not 
require testing every member (37). The number needed to 
detect disease is less than that needed for surveillance to 
estimate prevalence (38); therefore, the lower frequency of 
agricultural species in the datasets should not automatically 
preclude them as a valuable source of data for early outbreak 
detection in these populations. Further investigation may 
better evaluate the adequacy of agricultural animal repre-
sentation in these data as it pertains to outbreak detection 
efforts.

The average turnaround time for microbiology tests 
(3  days) indicated the potential gain in timeliness that 
might be possible using microbiology order-based analysis 
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Figure 2  Time series of weekly counts of IDEXX microbiology orders from veterinary practitioners in central Ohio, 
January through December, 2003, showing alerts that were determined using C3 analysis with a 5-week baseline, 
1-week buffer, and threshold statistic = 1.



Evaluation of Microbiology Orders from a Veterinary Diagnostic Laboratory  5

Advances in Disease Surveillance 2008;6:2

Little is known about the potential for using these and sim-
ilar veterinary data for early outbreak detection in animals.  
Less is known about the value of these data for providing 
warnings of outbreaks in humans. Certainly, consideration 
of results from more detailed investigations is warranted 
before investments are made in any large-scale surveillance 
system. However, further studies are justified by these ini-
tial findings and should continue to establish where these 
and similar data sources fit into the overall biosurveillance 
efforts to detect outbreaks of emerging infectious disease.
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