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In this study, we compare two methods of generating grid points to enable efficient geographic cluster detection
when the original geographical data are prohibitively numerous. Onemethod generates uniform grid points, and the
other employs quad trees to generate nonuniform grid points. We observe differences in the results of the spatial
scan approach to cluster detection for these two grid generation schemes. In both our simulated experiments and
our analysis of real data, the grid generation schemes produced different results. Generally speaking, the quad tree
scheme is more sensitive to high-resolution spatial clusters than the uniform scheme. The quad tree grid point
scheme may be a useful and flexible alternative to the uniform (and other) grid point generation schemes when
it is important to set up a timely surveillance system sensitive to finding clusters at unspecified spatial resolutions.
The quad tree grid scheme may also be useful in a number of other geographic surveillance applications.
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INTRODUCTION

For some applied problems in geographic disease surveil-
lance, high-resolution data can be a mixed blessing. On the
one hand, high-resolution data can reveal spatial detail
that is undetectable at lower resolutions; on the other
hand, these data can create computational and analytical
burdens that make timely analysis difficult. When these bur-
dens are a concern, such data must be simplified, which
usually involves reducing the number of spatial objects,
and averaging, summing or otherwise aggregating attributes

associated with these objects. This process almost always
results in a loss of precision in location and other attributes
of the raw data.
Little research has formally evaluated the effect of

aggregation or other methods of data simplification on
methods used to detect geographic clusters of disease,
though there are some exceptions. For example, Waller
and Turnbull analyzed the effects of resolution (or scale)
on different focused cluster detection methods (1). Sheehan
et al. found similar clusters of late-stage cancer diagnoses for
three different geographical aggregation units (2). Gregorio
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et al. observed that there are few benefits to the analysis
of data at resolutions finer than the U.S. census tract (3).
However, more recently, Olson et al. used simulated data
to illustrate the benefits (in terms of sensitivity, precision,
and likelihood of detection) of high-resolution data when try-
ing to detect geographic clusters (4). The general dearth of
research in this area may be limited by data availability—
few researchers have had access to data that are so computa-
tionally unmanageable as to require simplification for most
cluster detection tasks. In this sense, the simplification pro-
cess has already taken place, and researchers are resigned to
working with the spatial representations from which they
acquire data.
With the growing availability of high-resolution popula-

tion and disease data, organizations and researchers with a
mandate to perform routine surveillance are increasingly
forced to balance complexity with detail. Ideally, data are
simplified in a manner that loses as few important details
as possible. In this study, we compare two methods of gen-
erating grid points to facilitate efficient geographic cluster
detection when the original geographic data are prohibitively
numerous. One method generates uniform grid points, and
the other employs quad trees to generate nonuniform grid
points. We use the spatial scan method for detecting geo-
graphic clusters as the analytical tool for testing these two
schemes, though our observations apply to several different
methods of cluster detection and spatial analysis. We use
simulated data to test the general performance of these two
grid generation options, and then conclude our study with a
search for clusters of Parkinson’s disease using these two
schemes.

METHODS

Spatial scan

The spatial scan approach to cluster detection (5) has
gained considerable applied and methodological research
attention over the past decade. In its typical form, the spatial
scan uses circular windows to scan a region for clusters of
high (or low) disease. This involves progressively increasing
the radius of these circles and accumulating data points into
the windows until a threshold of cluster size is met. The win-
dow with the largest likelihood ratio test statistic is treated as
a most-likely cluster, and Monte Carlo methods are used to
test its significance. By searching a large number of these
windows but testing the significance of only the most-likely
cluster (and perhaps a few secondary clusters), the method
has high sensitivity to detect clusters without the burden of
multiple testing or preselection bias common to some other

methods of cluster detection (6). Furthermore, if a null
hypothesis of constant risk is rejected, the method reports
the window that caused the rejection—thus serving as a
test for the presence of localized clustering as well as a
tool to locate where noteworthy clusters occur.
The circular windows used in the spatial scan are centered

at search points, which can be original data points (such as
case/control locations or the centroids of polygon areas),
or the points in an overlying grid (which we refer to as
“grid points”). Among the chief reasons for using grid points
rather than original points to search for clusters is to ensure
that search processes can be completed in a reasonable time
when working with large data sets. Table 1 provides esti-
mates of the time required to find spatial clusters using
SaTScan on the basis of the estimation formula offered in
the software’s documentation (7). Estimates are based on
the Poisson model without adjustment for covariates. The
traditional spatial scan approach can confront a noteworthy
computation burden when applied to large data sets; for
example, the analysis of 30,000 original data points can
take approximately 7 hours to complete when the original
data are used, but a mere 14 minutes if the search process
uses 1,000 grid points. For larger problems, or when the
scan is over space-time or adjusts for covariates, the solution
time might be unreasonably long on a desktop computer
without the use of an overlying grid system.
We now discuss two different methods of generating over-

lying sets of grid points—the uniform grid point method and
the quad tree grid point method.

Uniform grid points

Uniform grids are widely used in the spatial analysis of
disease. The idea is simple: overlay a uniformly sized tessel-
lation of polygons (usually rectangles, squares, or hexagons)
on a study area, and use the centroids or intersecting points
of these polygons as the grid points.
Although the exact placement, spacing, and alignment of

the uniform grid can vary, the method suggests analytical
neutrality; as the grid is uniform, an analyst cannot be
accused of analytical gerrymandering. This scheme has
some shortcomings, however, the most serious of which
relates to the density of points themselves. In study regions
where population density or data resolution varies consider-
ably, the choice of a uniform grid that is too blunt in some
places (i.e., where the spacing between grid points is too
far apart) may preclude the identification of clusters in
some small areas. Some scanning windows may find a clus-
ter area, but not without including a proportion of the area

TABLE 1. Estimates of time to solve large cluster detection problems

30,000 original data points 100,000 original data points 1,000,000 original data points

Search points 1,000 30,000 1,000 100,000 1,000 1,000,000

Total unit operations required 3.00 � 1010 8.99 � 1011 9.99 � 1010 9.99 � 1012 9.99 � 1011 9.99 � 1014

Time* 14 min 7 h 47 min 78 h 8 h 324 d

Relative time 1 30 1 100 1 1,000

* Single 3.0 GHz processor, 500 Mb RAM, estimate of 40 million operations per second.
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that is not part of the true cluster. This decreases both
the efficiency and precision with which the method can iden-
tify the approximate location of the cluster in the first place
(figure 1).

Quad tree grid points

Quad trees (8) have been used for indexing and storage in
spatial databases for some time, and recently have been used
in multiscale disease modeling (9). In data-indexing applica-
tions, the use of quad trees can save time in searching or mer-
ging spatial data. Our application uses quad trees to create a
tessellation of nonuniform rectangles. As in the uniform grid
generation method, this tessellation can then be simplified
into a system of grid points (using the center of each rectan-
gle) that can then serve as search seeds in the scan for clus-
ters. Although there are considerably fewer grid points than
original points in the system, quad tree-generated grid points
will generally reflect the spatial distribution of the original
data. We propose the quad tree system as a simple alterna-
tive to a uniform grid.
In our application, we create quad trees as follows. First,

we define a study space consisting of original point data.
Next, we choose a point threshold—for example, a value
of 50. This threshold is a matter of convenience that can
be determined before the analysis of disease data; lower val-
ues create higher-resolution tessellations (with more grid
points) and higher values create lower-resolution tessella-
tions (with fewer grid points). If the number of original
data points in the study space is larger than the size of the
threshold, we split the study space into four separate,
equal-area rectangles. We count the number of points within
each rectangle, and if the value exceeds the threshold, that
rectangle is further subdivided. This is repeated for all rec-
tangles, at all levels of subdivision, until no rectangle has
a number of original data points in excess of the threshold.

For both methods, the geometric centers of the rectangles
can be used as the grid points in the spatial scan. We provide
figures of a completed uniform and quad tree grid system for
illustration (figure 2).
We test these schemes in two ways: first with an experi-

ment based on simulated data, and then on high-resolution
data on Parkinson’s disease. We use the term “atomic
data” to refer to highest-resolution data available. In our
experiments and our application, this refers to centroids of
small geographic areas, but can easily apply to case/control
data in other settings. Despite the differences in what
“atomic data” may represent in different applications, the
general term is useful for referring to data that are irreducible
because of data availability, privacy, measurement con-
straints, or metaphysics.

Experiment

We use independent standard normal distributions to gen-
erate x and y coordinates of 3,000 centrally clustered atomic
data points on a Cartesian plane. Each atomic data point is
treated as though it is the centroid of a high-resolution
small-area polygon (such as a postal code or census
block). For each simulation, we specify a baseline rate and
a cluster rate that correspond to a baseline region and a clus-
ter region, respectively. For each synthetic data set, the clus-
ter region is defined by a circle with a center and radius that
are systematically varied to observe the effectiveness of the
two grid generation schemes across different cluster sizes
and locations. The baseline region is always the complement
of a synthesized cluster region. Each atomic data point is
assigned a population of 1,000 people, and each person in
this population is assigned a probability of being a case or
noncase based on whether he/she is in a baseline or cluster
region. People in the baseline region have a probability of
being a case equal to the baseline rate, which is the same
for all simulations (0.0005). People in the cluster region
have a probability of being a case equal to the cluster rate,
which for the first set of simulations is 0.001 and the second
set of simulations, 0.00075. In total, 50 different types of
synthetic disease cluster scenarios are generated: 2 different
cluster rates · 5 different cluster region radii (0.2, 0.4, 0.6,
0.8, and 1.0) · 5 different locations of the cluster region cen-
ter (where x= 0, 0.5, 1.0, 1.5, and 2.0 and y= 0 for all values
of x). Each synthetic scenario is repeated 100 times.

Found
cluster

Study area Grid points

‘Blunt’points lead to imprecise detection of points in a cluster

True
cluster

Original data

FIGURE 1. Examples of the drawbacks of using a uniform grid.

 Uniform grid point Quad tree grid point

FIGURE 2. Uniform and quad tree grid generation schemes.
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We apply the quad tree and uniform schemes to generate
grid points and search for clusters in each synthetic disease
cluster scenario. The number of quad tree cells is determined
dynamically and is dependent on the population threshold
and the distribution of the atomic data. To make the grid
and quad tree methods comparable, the grid tessellation is
generated on the basis of the number of quad tree cells.
For example, if there are 100 quad tree cells, we determine
the number of grid cells by taking the square root of 100 and
create a 10 · 10 uniform grid. When the square root of the
number of quad tree cells is not an integer, the counts are
rounded in favor of the uniform grid. For example, if there
are 1,000 quad tree cells, the grid axis is based on a 32 ·
32 cell grid (for a total of 1,024 cells). The outer dimensions
of both tessellations are identical, and are based on a bound-
ing box that includes all atomic data. For each tessellation,
the grid centroids are defined as the center of the cells.
For each simulated data set, we solve two spatial scan

cluster detection problems—once with the quad tree cen-
troids and once with the grid centroids as the centers of
the search window. As we synthesize the clusters, we are
able to measure the agreement between the two methods
with the “true” cluster area. We do this by calculating the
proportion of the detected circular cluster that overlaps
(and does not overlap) the cluster region. This forms the
basis for comparison between the two methods (figure 3).
The proportion of true area detected (AB/A) describes the
proportion of the found cluster region that correctly inter-
sects the true cluster area. Values close to 1 indicate that
over the 100 repetitions of a given scenario, most clusters
completely intersect the cluster region; values close to 0
indicate that there is little intersection. The proportion of
false area detected ((B � AB)/B) describes the degree to
which the found clusters provide false information. Values
close to 1 indicate that over the 100 repetitions of a given
scenario, most found clusters were located entirely in the
baseline region; values near 0 indicate that most of the
detected area intersects with the cluster region. For the pro-
portion of true area detected, large values are desirable; for
the proportion of the false area detected, small values are
desirable.
We generated the grid and quad tree grid points in SAS

(10), and used an SAS program to perform the spatial scan
and calculate the overlap of the “true” cluster regions and
the most-likely clusters found by the two methods. The

maximum radius of the most-likely cluster found was set
by a 50% population threshold, and 999 Monte Carlo simu-
lations were used to obtain significance estimates associated
with the most-likely cluster. The SAS code for generating
quad trees code is freely available for download as additional
file 1.

Application to Parkinson’s disease

We use fee-for-service administrative health data to iden-
tify people who had received a diagnosis of Parkinson’s
disease (ICD-9-CM 332.x) (11). We use a public health
insurance registration system to identify the number of peo-
ple in each postal code. Each postal code is assigned a num-
ber of cases and population. We use all postal code locations
in the province of Alberta with populations greater than 0 as
the atomic data set (N = 40,610).
We define cases of Parkinson’s disease in two ways. First,

we define people as incident Parkinson’s disease cases if
they have had two or more diagnoses of Parkinson’s disease
in 2004, and no previous diagnosis of Parkinson’s disease.
Second, we define people as prevalent Parkinson’s disease
cases if they had been an incident case (two or more diag-
noses for Parkinson’s disease) at any time up to and includ-
ing 2004. As the smallest resolution unit is the postal code—
rather than individual residences—we use the Poisson model
to identify most-likely clusters of Parkinson’s disease under
both of these definitions. We incorporate age and sex as cov-
ariates—thereby adjusting found clusters for geographic
variations in these variables across the province. We set up
the search system to find clusters using SaTScan version 7.0
(12) for the uniform and quad tree grid point generation

Synthesized
Cluster

Found
Cluster

A

BAB

FIGURE 3. Proportion of overlap between synthesized and found
clusters.

Radius=.2
Distance=0

Radius=1
Distance=2

FIGURE 4. Examples of synthesized clusters.
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schemes, as well as grid points based on the centroids of
Canadian census divisions and census subdivisions (13).
Census divisions and subdivisions are large administrative
census units that have been used in the provincial-scale ana-
lysis of geographic patterns of disease in Canada (e.g., 14–
17). For all these analyses, we use the same scan settings:
a 50% population threshold, 999 Monte Carlo simulations,
and a no-overlapping rule for the identification of secondary
clusters.

RESULTS

Experimental results

We present examples of the synthesized clusters for visua-
lization purposes (figure 4). We present summary indicators
of the performance of the grid and quad tree methods in
tables 2 and 3. Data are sorted by column one, the horizontal
distance between the origin (x = 0, y = 0) and the synthe-
sized cluster region center; larger values indicate that the

cluster region is located farther from the densest area of
atoms. The “Radius” column indicates the radius of the clus-
ter region. Generally speaking, the quad tree grid method
appears to perform as well as or better than the grid method
for the majority of scenarios. The most notable exception is
for scenarios where the cluster regions are far from the origin
(and center of population) and the synthesized cluster radius
is large. In these cases, the uniform grid appears superior.
On most occasions, the two methods are fairly similar in

their ability to locate a cluster region precisely and differ
more with respect to the remaining area discovered (columns
5 and 6). When the radius of the cluster region is small and
centrally located, the quad tree method is more efficient and
identifies clusters that intersect less of the baseline region
than clusters found with the uniform grid scheme. For cluster
regions farther from the origin, the pattern is reversed,
though less noticeable. This different ability of the two
schemes to correctly identify areas as inside and not inside
a cluster region is illustrated, albeit indirectly, in the final
two columns of tables 2 and 3. These columns indicate the

TABLE 2. Experimental results 1 (cluster rate 2 · the baseline rate; cluster rate = 0.001; baseline rate = 0.0005)

Horizontal distance
from origin

(x = 0, y = 0)
Radius

Average* proportion
of true area found

(AB/A) (higher is better)

Average* proportion
of found cluster in
baseline region

(B�AB)/B (lower is better)

Proportion significant
at p � 0.001

Quad tree Uniform Quad tree Uniform Quad tree Uniform

0 0.2 0.668 0.578 0.455 0.739 0.46 0.27

0 0.4 0.869 0.837 0.178 0.366 1.00 1.00

0 0.6 0.930 0.891 0.111 0.259 1.00 1.00

0 0.8 0.941 0.913 0.088 0.197 1.00 1.00

0 1 0.951 0.933 0.067 0.161 1.00 1.00

0.5 0.2 0.641 0.558 0.554 0.764 0.31 0.14

0.5 0.4 0.866 0.841 0.190 0.371 1.00 0.99

0.5 0.6 0.914 0.884 0.125 0.256 1.00 1.00

0.5 0.8 0.942 0.915 0.089 0.205 1.00 1.00

0.5 1 0.947 0.925 0.067 0.182 1.00 1.00

1 0.2 0.582 0.519 0.613 0.826 0.21 0.15

1 0.4 0.838 0.858 0.226 0.433 0.98 0.94

1 0.6 0.902 0.870 0.114 0.288 1.00 1.00

1 0.8 0.930 0.888 0.101 0.217 1.00 1.00

1 1 0.953 0.933 0.086 0.186 1.00 1.00

1.5 0.2 0.277 0.248 0.849 0.926 0.04 0.03

1.5 0.4 0.776 0.815 0.288 0.400 0.68 0.57

1.5 0.6 0.851 0.844 0.197 0.309 0.99 0.99

1.5 0.8 0.884 0.913 0.126 0.268 1.00 1.00

1.5 1 0.927 0.907 0.125 0.189 1.00 1.00

2 0.2 0.130 0.204 0.977 0.971 0.00 0.00

2 0.4 0.430 0.519 0.705 0.659 0.14 0.18

2 0.6 0.767 0.842 0.388 0.425 0.63 0.75

2 0.8 0.830 0.860 0.287 0.280 0.99 1.00

2 1 0.865 0.907 0.200 0.263 1.00 1.00

* Average calculated over 100 synthetic data sets.
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proportion of times a method finds a cluster that meets a
threshold of significance ( p � 0.01). When a large propor-
tion of the baseline region is falsely identified as part of a
cluster region, this should decrease the likelihood of detec-
tion (as observations with lower disease rates will decrease
the likelihood ratio associated with the most-likely cluster).
For most sets of synthetic data, the methods are equivalent in
their ability to find statistically significant clusters; however,
the quad tree grid-generating scheme appears superior
when the radius of the cluster region is small and centrally
located.
A visual comparison of the results in tables 2 and 3 sug-

gests that the general patterns are comparable.

Parkinson’s disease clusters in Alberta

For the quad tree method, the density of grid points is
much higher in highly populated areas; more than 60% of
the quad tree grid points are in urban areas (figure 5). For
example, in the cities of Edmonton and Calgary, there are

more than 100 quad tree grid points, but only one or two uni-
form grid points. The census divisions (N = 19) and census
subdivisions (N= 467) are considerably outnumbered by the
uniform and quad tree grid points. To ensure a fair compari-
son between the uniform and quad tree schemes, the uniform
scheme was oversampled (through trial and error) to ensure
that there would be a comparable number of uniform grid
points after the removal of grid points that fell outside the
provincial boundary. After the removal of these points,
there were 1,244 uniform grid points and 1,236 quad tree-
generated grid points.
The clusters of Parkinson’s disease are presented in table 4.

A large number of prevalent Parkinson’s disease clusters
were significant, and we report all found clusters with a
Monte Carlo-estimated significance less than or equal to
0.01. No incident clusters met this threshold of significance,
but we report primary most-likely clusters for each of the
grid generation schemes for illustrative purposes. For preva-
lent Parkinson’s disease, searches based on uniformly dis-
tributed grid points and census division grid points found
clusters with considerably larger radii than searches based

TABLE 3. Experimental results 1 (cluster rate 1.5 · the baseline rate; cluster rate = 0.00075; baseline rate = 0.0005)

Horizontal distance
from origin

(x = 0, y = 0)
Radius

Average* proportion of
true area found (AB/A)

(higher is better)

Average* proportion
of found cluster in

baseline region (B�AB)/B
(lower is better)

Proportion significant
at p � 0.001

Quad tree Uniform Quad tree Uniform Quad tree Uniform

0 0.2 0.298 0.231 0.774 0.907 0.05 0.04

0 0.4 0.735 0.677 0.267 0.429 0.59 0.40

0 0.6 0.908 0.825 0.164 0.277 0.97 0.92

0 0.8 0.883 0.856 0.095 0.180 1.00 1.00

0 1 0.921 0.877 0.083 0.151 1.00 1.00

0.5 0.2 0.289 0.303 0.815 0.929 0.05 0.01

0.5 0.4 0.760 0.678 0.318 0.504 0.49 0.39

0.5 0.6 0.877 0.822 0.176 0.273 0.95 0.91

0.5 0.8 0.882 0.852 0.083 0.187 1.00 1.00

0.5 1 0.908 0.894 0.074 0.152 1.00 1.00

1 0.2 0.170 0.166 0.869 0.943 0.03 0.01

1 0.4 0.637 0.655 0.419 0.584 0.31 0.20

1 0.6 0.806 0.787 0.213 0.379 0.80 0.75

1 0.8 0.870 0.856 0.139 0.229 0.98 0.97

1 1 0.915 0.893 0.133 0.239 1.00 1.00

1.5 0.2 0.080 0.118 0.976 0.982 0.01 0.01

1.5 0.4 0.373 0.384 0.697 0.808 0.08 0.05

1.5 0.6 0.666 0.694 0.323 0.450 0.44 0.44

1.5 0.8 0.830 0.852 0.260 0.353 0.86 0.86

1.5 1 0.844 0.885 0.157 0.289 0.99 0.98

2 0.2 0.073 0.136 0.995 0.977 0.01 0.00

2 0.4 0.166 0.278 0.916 0.885 0.00 0.01

2 0.6 0.374 0.478 0.644 0.581 0.05 0.15

2 0.8 0.633 0.722 0.411 0.405 0.41 0.48

2 1 0.750 0.814 0.308 0.339 0.75 0.71

* Average calculated over 100 synthetic data sets.
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on quad tree grid points (figure 6). Clusters based on quad
tree and census subdivision grid points were small and
mostly located in and around urban areas, whereas the uni-
form and census division grid points were located in rural
areas and covered larger portions of the province. For inci-
dent Parkinson’s disease, all most-likely clusters were
small and located in either Edmonton or Calgary (figure 7).

DISCUSSION

For most scenarios examined, the quad tree grid performs
as well as or better than the uniform grid in identifying the
location of clusters of events, though the differences are
not large. Our experiment suggests that the uniform grids
might be insensitive to high-resolution clusters—bluntly
reporting clusters of a larger size than necessary. This not
only misclassifies regions with normal rates of disease as
part of cluster regions but also appears to affect the power
of detection under some circumstances. The findings are
relatively consistent across different scenarios, with some
notable exceptions. As the simulated cluster regions are
generated farther from the mass of the population, a search
for clusters using the uniform grid points reports a higher

success rate than a search for clusters using the quad tree
grid points. In areas where the atomic data are sparse, the
quad tree points are also sparse and less likely to find true
clusters in these locations. The uniform grid retains more
points in these areas and appears slightly more sensitive to
finding clusters. Were the clusters even farther from the
population centers (where x = 3 or more, for example), the
superiority of the uniform grid generation scheme would be
even greater.
The incident clusters of Parkinson’s disease were below

the threshold of statistical significance, although the cluster
found using the quad tree (p = 0.177) and census division
(p = 0.023) grid points may still warrant a field investiga-
tion. The prevalent clusters, though significant, may simply
reflect the mobility effect; people with serious chronic dis-
eases prefer to live in certain areas (18), and, in particular,
urban areas with more services. For both reasons, the clinical
implications of our cluster investigation are probably minor.
Nevertheless, it is worth noting that the locations and sizes of
Parkinson’s disease clusters differ considerably depending
on the type of overlying grid used. Although the incident
clusters overlap, they are of considerably different sizes.
Most of the prevalent clusters do not overlap, and they
occur at different locations and in different sizes throughout
the province. This suggests not only that a hierarchy of varia-
tions in Parkinson’s disease prevalence may exist (some
local and some regional) but also that the choice of overlay-
ing grid is not trivial.

Census
Division

Major
Municipality

Uniform

Major
Municipality

Quad
Tree

Major
Municipality

N

N N

Edmonton

Calgary

150 Km.

150 Km.

N

150 Km.

150 Km.

Major
Municipality

Census
Subdivision

FIGURE 5. Grid points for the four schemes.

TABLE 4. Clusters of Parkinson’s disease

Type Order Radius Obs/Exp p

Prevalent quad Primary 0.600 4.238 0.001

Prevalent quad Secondary 0.390 3.892 0.001

Prevalent quad Secondary 0.320 5.487 0.001

Prevalent quad Secondary 1.140 2.604 0.001

Prevalent quad Secondary 16.160 3.035 0.001

Prevalent quad Secondary 0.380 2.920 0.001

Prevalent quad Secondary 0.750 2.649 0.001

Prevalent quad Secondary 1.000 2.768 0.001

Prevalent quad Secondary 1.120 6.254 0.001

Prevalent quad Secondary 0.480 6.770 0.001

Prevalent uniform Primary 159.300 1.164 0.001

Prevalent uniform Secondary 73.160 1.371 0.001

Prevalent uniform Secondary 41.890 1.460 0.001

Prevalent CD Primary 181.400 1.142 0.001

Prevalent CSD Primary 3.500 1.472 0.001

Prevalent CSD Secondary 0.790 3.839 0.001

Prevalent CSD Secondary 2.790 1.829 0.001

Prevalent CSD Secondary 0.800 3.106 0.001

Prevalent CSD Secondary 0.700 2.504 0.003

Incident quad Primary 6.940 1.488 0.177

Incident uniform Primary 44.860 1.261 0.517

Incident CD Primary 24.990 1.268 0.024

Incident CSD Primary 8.850 1.347 0.186
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Other grid options were available—such as using the cen-
troids of various other administrative census units or a ran-
dom sample of atomic data points. These other schemes
may very well have produced other series of cluster locations
or clusters at different resolutions. Unfortunately, it is not
easy to determine, at least in the general case, which method
is superior. The quad tree method has the advantage of being
deterministic (unlike a random sampling approach) and in
the control of the user (since the user chooses the criteria
for creating the quad tree grid, rather than relying on
pre-constructed census-area centroids). In practice, whether
these advantages are worth the extra work of generating the
quad tree grid points will depend on the application, but the
method seems particularly well suited to settings in which
population density is highly variable.
Clayton and Gangnon observe that the spatial scan has a

tendency preferentially to detect clusters in areas where
the search seeds are denser (19, 20). They recommend a pen-
alty be applied to the likelihood ratio to take this tendency
into account. Our results provide some indirect evidence
that this effect may be of more concern when the search
points are nonuniform. Uniform grid points are more evenly
distributed, and the circular window searches originate at
uniform locations throughout the synthesized study area.

When the cluster regions are synthesized farther from the
center (where atomic data points are sparsely located) the
difference between the grid generation schemes is relatively
small, but on some occasions a search for clusters using the
uniform grid scheme appears better at finding the synthe-
sized cluster regions.
Fortunately, the quad tree approach provides a framework

for directly addressing these issues. The method for generat-
ing the quad tree tessellation is not specific about what cri-
teria necessitate the “split” of a cell; in our application, we
chose the population of the atomic data to decide whether
a cell is split any further. In particular, a cell is split into
four new cells if the sum of the atomic population exceeds
a certain threshold. Different criteria could be used to influ-
ence this splitting process. For example, concerns about edge
effects could be managed by imposing a larger weight on
atoms located in the margins of a study area, and a smaller
weight to atoms located in the middle of a study area. This
would create more grid points proportionally in edge
regions. Concerns about the tendency of a search to overlook
rural areas could be offset in a similar manner; simply
apply a larger weight to atoms in rural areas than in urban
areas. The manner in which quad trees are derived can be
based on any weighting system or even a departure from
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this paradigm—for example, by basing the decision to split a
cell on how homogeneous/heterogeneous the atoms within it
are with respect to some attribute(s). As this can be done
before running the cluster search algorithm, it does not
necessarily undermine the inferential merit of the cluster
search results.
In situations when a study region is elongated (e.g., Chile)

or irregular in shape (e.g., Mexico), it may be advisable to
subdivide the quad tree generation scheme into separate
independent components. For example, long study regions
could be first divided into a chain of several square (and
adjacent) quadrants, within which independent quad tree
point sets can be generated. This can take into account regio-
nal or local variations in geography—such as islands, penin-
sulas, or areas on opposite sides of a mountain—that may
require an independent grid generation scheme for a mean-
ingful representation. Similar to the use of weights men-
tioned above, such decisions do not necessarily undermine
the inferences of the cluster detection search so long as
they are performed a priori.
A number of methods have employed uniform grids in

geographic disease surveillance (21–23). Many methods of
spatial cluster detection can easily employ the quad tree
grid approach when such a grid system is required. We sug-
gest that the quad tree scheme is a simple and elegant alter-
native to the uniform scheme for generating grid points and
has the advantage of being in the analyst’s control (unlike
census or other administrative units) and deterministic
(unlike a random sampling strategy). It can also be used as
a simple scheme for aggregating atomic data that preserves
the spatial distribution of atomic data points.
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