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OBJECTIVE 

This paper uses geometric random graph concepts to 
develop early detection algorithms for the real-time 
detection and localization of outbreaks. 

BACKGROUND 
Graph theory concepts are well established in epide-
miology, with particular success as a description of 
agent-based modeling. An agent-based viewpoint 
leads to conclusions about the spatial distribution of 
links: infection is more likely among individuals in 
close proximity. In this analysis, we seek evidence of 
these temporal-spatial links though the properties of 
random geometric graphs. 

Our investigation begins with the interpoint distance 
distribution (IDD) approaches in [1] and [2], which 
provide a promising approach to detect outbreaks that 
are localized in both space and time.  Using a Maha-
lanobis-based metric, this distribution is compared to 
an expected distribution derived from historical re-
cords.   

Unfortunately, when applied to a complex data set 
such as from Children’s Hospital Boston (CHB), the 
IDD provides inadequate power. Emergency De-
partment (ED) chief complaints from 1/1/2000-
12/31/2004 were used to identify patients with infec-
tious respiratory illness based on a triage process. 

As in most realistic catchments, the historic density 
of patients varies greatly over the catchment area.  

METHODS 
To address this issue of varying density in early de-
tection algorithms, we consider a random geometric 
graph viewpoint. In a geometric random graph, points 
are scattered across a region. All points within a 
specified radius are connected, and the number of 
graph edges at this radius is the cumulative IDD at 
this radius. Similarly, the degree of a node can be 
related to a k nearest neighbors statistic. To develop a 
non-homogenous graph model, we control the edge 
formation process based on local patient density in 
the historical record, in a similar fashion to k nearest 
neighbors. 

RESULTS 
The random geometric graph viewpoint lends itself to 
many detection approaches. The edges, node degrees, 
clustering coefficients, and other graph features pro-
vide useful tools for detecting localized outbreaks.   
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Fig. 1 – Early detection (<7 days) probabilities for a 
16 patient outbreak, false positive probability=0.01   

Detection and localization algorithms are derived for 
statistics based on edge count, node degree distribu-
tion, maximum node degree, clustering coefficient, 
and so on. Both the outbreak center and spatial extent 
are estimated and spatially homogenous and non-
homogenous algorithms are compared. The increased 
power of non-homogenous graph-based techniques is 
clearly demonstrated, especially for early detection.  
Figure 1 demonstrates some of theses results. 

The random graph approaches increase localized out-
break detection probabilities, during the first five-
seven days of the outbreak, by more than 50% over 
interpoint distance metrics and 70% over time do-
main only approaches. 

CONCLUSIONS 
Concepts from random geometric graphs provide a 
useful tool in spatial-temporal syndromic surveil-
lance. Using random geometric graphs, we unify pre-
vious viewpoints as well as develop new early detec-
tion and localization algorithms. In particular, we 
establish the increased detection power from algo-
rithms that explicitly account for the varying patient 
density in a hospital’s catchment. 
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