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OBJECTIVE 

We introduce a disease-outbreak detection algorithm 
that performs complete Bayesian Model Averaging 
(BMA) over all possible spatial distributions of dis-
ease, yet runs in polynomial time. 

BACKGROUND 
Many disease-outbreak detection algorithms, such as 
control chart methods, use frequentist statistical tech-
niques. We describe a Bayesian algorithm that uses 
data D consisting of current day counts of some event 
(e.g., emergency department (ED) chief complaints 
of respiratory disease) that are tallied according to 
demographic area (e.g., zip codes). 

METHODS 
Assume there are r zip codes in a region being moni-
tored. Let i, 1 ≤ i ≤ r, represent the index of a specific 
zip code. We use OBi and NOBi to represent the dis-
ease outbreak states for zip code i, namely, outbreak 
and non-outbreak. Therefore, we have a total of 2r 
possible outbreak states in the region. If we perform 
complete BMA over all of these states in a brute-
force way, the time complexity is exponential in r. 
By factoring the states, we can derive a polynomial 
time, spatial BMA detection algorithm, which we call 
SBMA. 

Let q be the probability that a zip code has an out-
break (i.e., P(OBi | q) = q). We use P(q) to represent 
our belief about q. Let OB denote the state that at 
least one zip code (among the total of r zip codes) has 
an outbreak present; let NOB represent the state that 
no zip code has an outbreak, where P(NOB) = α. 
When 0 < q ≤ 1, we model that P(q) = 1 - α. We de-
rive the joint probability of the data (D) and the out-
break state (OB) using Eq. (1). 
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where Di represents the “respiratory” state (true or 
false) of every person in zip code i who came to the 
ED in the last 24 hours, P(Di, OBi | q) = qP(Di | OBi) 
and P(Di, NOBi | q) = (1 – q)P(Di | NOBi). We model 
P(Di | OBi) and P(Di | NOBi) as Binomial-Beta hier-
archical models; details about those models are pro-
vided at [2]. In Eq. (1), the outer bracket calculates 
P(D, OB | q), which takes linear time in r. We use 
numerical integration to approximate the integral, 

which takes polynomial time. We compute P(D, 
NOB) using Eq. (2). The SBMA algorithm then de-
rives the posterior probability as    P(OB | D) =    
P(D, OB) / [P(D, OB) + P(D, NOB)]. 
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As a preliminary test, we used the 96 simulated an-
thrax outbreaks described in [1]. Each outbreak con-
sisted of a simulated time series of patient cases that 
each presented to an ED with a respiratory chief com-
plaint and a home zip code. The probability that a 
case was assigned to live in a zip code was propor-
tional to the population of that zip code. We call this 
a scattered outbreak. We then overlaid (injected) 
these simulated outbreak cases onto real ED cases to 
create a combined dataset. We ran PANDA [1] and 
the SBMA algorithm on the combined datasets.  

RESULTS AND CONCLUSIONS 
The figure below shows the AMOC curves for 
PANDA and SBMA on the scattered injections when 
α = 0.9. The SBMA algorithm shows a better detec-
tion performance than PANDA, as expected due to 
the injections being widely scattered spatially rather 
than having a plume-like pattern of an outdoor re-
lease of anthrax, which PANDA monitors for. Thus, 
the two algorithms appear to be complementary. 
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