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Abstract In the analysis of complex, hierarchical struc-

tural meta-materials, it is critical to understand the

mechanical behavior at each level of hierarchy in order to

understand the bulk material response. We report the fab-

rication and mechanical deformation of hierarchical hollow

tube lattice structures with features ranging from 10 nm to

100 lm, hereby referred to as nanolattices. Titanium

nitride (TiN) nanolattices were fabricated using a combi-

nation of two-photon lithography, direct laser writing, and

atomic layer deposition. The structure was composed of a

series of tessellated regular octahedra attached at their

vertices. In situ uniaxial compression experiments per-

formed in combination with finite element analysis on

individual unit cells revealed that the TiN was able to

withstand tensile stresses of 1.75 GPa under monotonic

loading and of up to 1.7 GPa under cyclic loading without

failure. During the compression of the unit cell, the beams

bifurcated via lateral-torsional buckling, which gave rise to

a hyperelastic behavior in the load–displacement data.

During the compression of the full nanolattice, the structure

collapsed catastrophically at a high strength and modulus

that agreed well with classical cellular solid scaling laws

given the low relative density of 1.36 %. We discuss the

compressive behavior and mechanical analysis of the unit

cell of these hollow TiN nanolattices in the context of finite

element analysis in combination with classical buckling

laws, and the behavior of the full structure in the context of

classical scaling laws of cellular solids coupled with

enhanced nanoscale material properties.

Introduction

To predict the mechanical behavior of architected materi-

als, it is first necessary to understand the interplay between

structural performance and the intrinsic mechanical prop-

erties of the constituent material. Periodic three-dimen-

sional (3D) structures with nanoscale constituents, often

referred to as ‘‘meta-materials,’’ are being extensively

investigated, with new materials like carbon nanotube

foams [1–3], metallic microlattices [4, 5], and biomimetic

composites [6] being actively pursued thanks to advances

in nanoscale fabrication and metrology techniques. While

such nano-architected meta-materials exhibit novel

mechanical properties, of particular interest is the ability to

extract the intrinsic properties of constituent materials

using simple mechanical tests like tension and compression

experiments. Bulk mechanical properties of cellular solids

are typically described using the material properties, the

geometry, and the relative density (�q ¼ q=qs) of the

structure [7–12]. Material properties are generally assumed

to be scale-invariant, which implies that cellular solids with

the same geometry and material composition will have the

same moduli and strengths regardless of their absolute size.

This assumption appears to break down when the dimen-

sions of the structure approach the characteristic length

scale of the material microstructure, as is the case in hard

biomaterials like nacre and bird beaks, whose properties

extend beyond the rule of mixtures [13–15]. A natural
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question that emerges is whether the breakdown of the

classically derived mechanical behavior is caused by a

change in the failure mechanism when nano-sized com-

ponents are introduced or if it stems from a size effect in

the mechanical properties of the constituent material? To

describe and predict the overall deformation behavior of

nanostructured meta-materials, it is critical to understand

both structural and material-induced behavior at each

fundamental level of hierarchy.

We report the fabrication and mechanical deformation

of hollow ceramic nanolattices comprised of elliptical

beams. The characteristic dimensions of these 3D struc-

tures range from tens of nanometers (wall thickness) to

several microns (tube diameter) to tens of microns (unit

cell) to over 100 lm for the entire structure. The relative

density of the structure, defined as the volume fraction of

material in a single unit cell, was calculated to be

�q ¼ 0:0136. The constituent solid material is titanium

nitride (TiN), which was deposited via atomic layer

deposition (ALD). The smallest characteristic length scale

is represented by the wall thickness of 75 nm, which is of

the same order of magnitude as the grain size in TiN,

measured to be 10–20 nm using transmission electron

microscopy (TEM) (Fig. 2c). In situ nanomechanical

experiments and finite element simulations on the defor-

mation of a single unit cell of the structure revealed a

remarkably high von Mises stress of 2.50 GPa and a tensile

yield strength, also referred to as the modulus of rupture, of

1.75 GPa within the TiN walls, which corresponds to an

elastic limit of 1.8 % using a Young’s modulus of 98 GPa.

We show that this high tensile strength, coupled with a

lateral-torsional buckling instability observed during the

uniaxial compression of the unit cell, gave rise to a hy-

perelastic deformation response. Compression experiments

performed on the full nanolattice gave a structural modulus

of E = 61.8 MPa and yield strength of ry = 0.873 MPa.

We postulate that the observed structural response of the

nanolattice can be well explained using classical mechanics

theories, and that nanoscale size effects in the material

properties can explain the enhanced constituent material

mechanical properties.

Materials and methods

Fabrication

The nanolattices were constructed using a multi-step nega-

tive pattern fabrication process involving direct laser writing

(DLW), two-photon lithography (TPL), atomic layer depo-

sition (ALD), and O2 plasma etching (Fig. 1). A polymer

scaffold was first written using the Photonic Professional

DLW instrument (Nanoscribe GmbH, Germany), which

makes use of a TPL DLW process in a photopolymer to

create 3D structures with features as small as 150 nm [16].

This scaffold was conformally coated with 75 nm of TiN

using a plasma enhanced ALD process in the Oxford OpAL

ALD system (Oxfordshire, UK). The internal polymer was

then exposed using focused ion beam (FIB) milling in the

FEI Nova 200 NanoLab and dissolved using O2 gas in a

barrel plasma etcher, leaving behind a hollow truss structure.

More precise fabrication details can be found in [17].

Structure

The geometry used in these experiments was derived from

a series of tessellated regular octahedron unit cells con-

nected at their vertices (as shown in Fig. 2a, b). Each

octahedron was composed of 7 lm-long hollow struts with

vertically oriented elliptical cross-sections. The resulting

structure was a 100-lm cube comprised of a 10 9 10 9 10

array of octahedron unit cells. An octahedron is an inher-

ently rigid geometry, which has no collapse mechanisms

[8, 9]. The octahedra in the nanolattices were arranged into

a structure with a relatively low connectivity (Z = 8) and

formed a bending-dominated structure with periodic col-

lapse mechanisms [8].

Experimental setup

The individual unit cells and the full nanolattice structures

were quasi-statically compressed to failure in an in situ

nanoindentation instrument InSEM (Nanomechanics, Inc.,

Tenessee) previously referred to as SEMentor (see [18] for a

specification of the instrument). Individual unit cells were

compressed along their vertical axis (Fig. 3b) at a constant

prescribed displacement rate of 10 nm s-1, and the full

structure was compressed at 250 nm s-1. Additional cyclic

loading experiments were performed on single unit cells in

which 11 load–unload cycles were done at the same loading

rate as for the individual unit cell to a displacement of

350 nm with a subsequent unloading to 10 % of the maxi-

mum load in the cycle. Prior to the tests, the instrument was

fully stabilized for at least 12 h to minimize the thermal drift

effect. Typical thermal drift rates after such stabilization in

this instrument are below 0.05 nm s-1, which implies that

displacement due to thermal drift was likely a negligible

contribution to the measured displacement.

Careful imaging of the fabricated structures revealed that

the truss beams had elliptical cross-sections with a major axis

of a = 600 nm, a minor axis of b = 134 nm, and a thickness

t = 75 nm. The effective length of the beams was taken to be

L = 6.5 lm based on the geometry of the unit cell. The

modulus of elasticity used was E = 98 GPa, which was

approximated by matching the stiffness calculated through
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the FEM simulations with that of the experiments. When this

modulus was taken with a Poison’s ratio of m = 0.295 for

titanium nitride, the shear modulus of the beam was calcu-

lated as G = 37.8 GPa.

Finite element methods

FEM simulations of the uniaxial compression of the top

four beams of a single unit cell were performed in the finite

Fig. 1 Nanolattice fabrication process. a, b Schematic representation

of the writing process of the lattice unit cells using two-photon

lithography direct laser writing. c Structure is coated using an atomic

layer deposition (ALD) process. d One edge of the sample is milled

using a focused ion beam (FIB) to expose the polymer. e The internal

polymer is etched away using an O2 plasma. f Final product: a hollow

tube nanolattice (Color figure online)

Fig. 2 Nanolattice design and

hierarchy. a Computer-aided

design of an elliptical tube

octahedron unit cell.

b Computer-aided design of the

full nanolattice. c SEM image of

the FIB milled edge of a

nanolattice. Top left inset shows

a dark-field TEM image of the

TiN microstructure, which

reveals nano-sized grains.

Bottom left inset a zoomed

image of the hollow tubes.

d SEM image of the full

octahedron structure (Color

figure online)
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element software ABAQUS. A nonlinear elastic geometry

solver was implemented in the simulations to account for

the significant deflection of the beams. A linear elastic

solver would have been sufficient to model the stress and

deformation of the beams up to the point of buckling but

would have been unable to capture the elastic instability

and the large post-buckling deformation. The structure was

modeled using the CAD program SolidWorks to obtain a

geometry that precisely reflected that of the real structure.

A simplified model of the unit cell consisting of only the

upper four beams was used in order to better isolate the

beam buckling response (Fig. 3a) and to create a better

analog to the analytical buckling model. All four beams

were modeled to ensure that the resulting behavior was due

to structural interactions and not to any imposed symmetry

boundary conditions. These four beams met with a small

counter-clockwise lateral offset in the central node of the

structure, mimicking the geometry of the actual unit cell

(Fig. 3e). The degree of the offset plays an important role

in the resulting deformation of the structure, a point that is

discussed in the following sections.

A rigid boundary condition was applied to the lower end

of each of the four beams of the unit cell to simplify the

FEM model (Fig. 3b). A stiff elastic boundary condition

would most accurately represent the unit cell, but it is

difficult to determine the exact stiffness of the lower

boundary due to the complex geometry and nodal con-

nectivity. Instead, an FEM model of a full unit cell was

made and tested for the sake of validating the simplified

model, and the buckling response and stress concentrations

were found to be nearly identical, giving validation to both

the simplified unit cell and the fixed lower boundary. Only

the results of the simplified unit cell are shown here for the

sake of isolating the behavior of the beams in buckling.

A displacement boundary condition was applied to the

top face of the structure to match the experimental condi-

tions. No lateral constraint was placed on the top face, so

the structure was free to translate and rotate about the

central node. A tetrahedral mesh was used to accommodate

the complex geometry of the unit cell. The mesh was

manually refined until the maximum stresses observed in

the structure had fully converged at a final average mesh

density of 400,000 elements lm-3, with a higher concen-

tration of elements toward the central node of the structure.

Analysis

Loading conditions

To capture the physical foundation for the observed

deformation response, it is helpful to define and to quantify

the resultant forces and moments acting on individual

beams. We consider the same four beam structure with

identical boundary conditions to those used in the FEM

simulations. The only external load acting on the structure

Fig. 3 Unit cell design and simulations. a Computer-aided design of

the simplified 4-bar structure used in FEM simulations. b Diagram

showing the force and moment balance on the simplified 4-bar unit

cell. c, d Computer-aided design of 20- and 40-nm offset structures

tested in FEM simulations. e SEM top view of actual unit cell

showing the offset (Color figure online)
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is the vertical force applied to the top face (F). In a pin

jointed structure, this force is evenly distributed among the

four beams and can be expressed by:

P ¼ F

4 sin hð Þ : ð1Þ

Here F is the vertical load on the unit cell, P is the

resolved axial load in the beams, and h = 45� is the angle

between the beams and the plane normal to the loading

direction (Fig. 3b). In the idealized pin jointed structure

with no offset at the central node, the only resulting load on

a beam is this axial load. In the actual structure, the fixed

boundary condition on the lower face of the beam causes it

to undergo a vertical bending following a displacement

condition on the top face that is proportional to its axial

deflection. A displacement equation that accurately

predicts the actual beam deflection can be found using

classical beam bending models [19], as can the moment

(M2) and shear force (Q). This shear force and moment

play a minimal role in the final deformation, so we omit

their derivation here.

In an ideal structure, the axial load and the bending

moment are the only resultant forces that act on the beams.

Any imperfection in the beams or misalignment between

the beams will lead to an additional torsional moment that

acts at the central node of the structure. It is reasonable to

assume that this moment M is generated solely by a mis-

alignment in the central node of the structure and can

therefore be approximated by multiplying the horizontal

component of the axial load in the beams by the sum of the

offset of each of the beams:

M ¼ P

tan hð Þ
X4

i¼1

di: ð2Þ

This moment can then be taken and resolved into each

of the beams as a bending moment and a torsional moment

as

M1 ¼ M cos hð Þ ¼ P cos2 hð Þ
sin hð Þ

X4

i¼1

di; ð3Þ

T ¼ M sin hð Þ ¼ P cos hð Þ
X4

i¼1

di: ð4Þ

It is important to impose proper boundary conditions for

the deformation in this direction of the beam. The lower

end of the beam was assumed to be rigid. If the unit cell

were perfect, the symmetry of the unit cell would force the

upper node to remain in the center of the structure. The

deformed structure shown in Figs. 4c and 5c demonstrates

that the beams were able to pivot about the central node.

While all of the beams in the structure provide some

torsional resistance to buckling, due to the symmetry of the

beam buckling, the effect is minimal. Therefore, the top

node is assumed to have a pinned boundary condition,

making the beam deflection governed by a fixed–pinned

boundary condition. This is a critical consideration in

calculating the overall strength of the structure.

Buckling response

Experimental and computational observations suggest that

a buckling instability is the cause of the observed deflection

of the beams. The complex loading and boundary condi-

tions render a simple uniaxial buckling model incapable of

characterizing the deformation of nanolattices observed

here. We use a fundamental set of coupled differential

equations, defined by [20], to characterize the deflection.

EIy

d4u

dx4
þ P

d2u

dx2
�M1

d2/
dz2
¼ 0 ð5Þ

EIz

d4v

dx4
þ P

d2v

dx2
þM2

d2/
dz2
¼ 0 ð6Þ

C1

d4/
dx4
� C � P

Io

A

� �
d2/
dx2
�M1

d2u

dz2
þM2

d2v

dz2
¼ 0 ð7Þ

Here u is the deflection of the beam in the z-direction, v

is the deflection of the beam in the y-direction, and / is the

twist of the beam. P is the axial load in the beam, M1 is the

lateral bending moment and linearly dependent on P, M2 is

the vertical bending moment, and A is the area of the

ellipse (Fig. 3c). Iy, Iz, and Io are the second moments of

area about the major and minor axis and the polar moment

of inertia of the ellipse, respectively. C1 is the warping

constant of the beam, which can be taken to be zero for an

elliptical beam, and C is the torsional constant. The

equations for these variables in the context of a thick-

walled hollow elliptical cylinder are as follows.

A ¼ p ab� a� tð Þ b� tð Þð Þ ð8Þ

Iy ¼
p
4

ab3 � a� tð Þ b� tð Þ3
� �

ð9Þ

Iz ¼
p
4

a3b� a� tð Þ3 b� tð Þ
� �

ð10Þ

Io ¼
p
4

ab a2 þ b2
� �

� a� tð Þ b� tð Þ a� tð Þ2þ b� tð Þ2
� �h i

ð11Þ

C ¼ pG
a3b3

a2 þ b2
� a� tð Þ3 b� tð Þ3

a� tð Þ2þ b� tð Þ2

" #
ð12Þ

In these equations, a and b are the principal axes of the

ellipse, as defined in previous sections. Based on these

equations, the area of the beam is A = 1.78 9 10-13 m2,

the moment of inertia about the vertical axis is

Iy = 1.19 9 10-27 m4, the moment of inertia about the
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horizontal axis is Iz = 2.47 9 10-26 m4, and the polar

moment of inertia is Io = 3.57 9 10-26 m4. The torsion

constant was calculated to be C = 1.73 9 10-16 N m2.

The horizontal moment of inertia of the beam (Iz) is

roughly one order of magnitude greater than the vertical

moment of inertia (Iy), which suggests that buckling will

Fig. 4 Monotonic compression of unit cell. a–c SEM images

captured during the monotonic compression experiment, showing

the progressive buckling of the unit cell. These snapshots are

correlated to positions I, II, and III in the load–displacement curve in

f. d The arrows shown here point to local fracture points. It should be

noted that the fracture positions closely match the stress

concentrations seen in the FEM simulations (Fig. 6c). e Load–

displacement data is corrected to only account for the deflection of the

upper 4 bars of the unit cell. The red x indicates the point of failure.

f Zoom in of the load–displacement plot showing the initial linear

behavior and subsequent deviation from linearity (Color figure online)

Fig. 5 Cyclic compression of unit cell. a–c Images showing progres-

sive bowing of beams during cyclic compressive loading. The bowing

gives rise to a weakened load displacement response, as shown in the

graph in g. Each image corresponds to an additional ten cycles of

unloading–reloading. d–f Three rounds of cyclic loading experiments

that were performed on a single unit cell of the structure. g The

weakened load displacement response of the first compression in each

of the cyclic loading experiments. This graph is shown to demonstrate

the progressively earlier onset of nonlinearity, a response which closely

matches that of a pre-bent beam buckling (Color figure online)
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likely only occur in the horizontal direction. This simplifies

the deflection equations from three sets of coupled ODEs to

two equations of the form

EIy

d4u

dx4
þ P

d2u

dx2
�M1

d2/
dz2
¼ 0 ð13Þ

C � P
Io

A

� �
d2/
dx2
�M1

d2u

dz2
¼ 0: ð14Þ

The fixed–pinned boundary condition of the beam for

deflection in the z-direction leads to the following forms for

the deflection and twisting equations of the beam:

u xð Þ ¼ A1 sin jxð Þ � jx cos jð Þð Þ ð15Þ
/ xð Þ ¼ A2 sin jxð Þ � jx cos jð Þð Þ: ð16Þ

Here jL = 4.493, which is the first solution to the

inequality jL = tan (jL) [18]. Inserting these equations

into Eqs. 13 and 14 results in a matrix with the coefficients

A1 and A2:

EIyj2 � P M1

M1 C � Io

A
P

� 	
A1

A2

� 	
¼ BA ¼ 0 ð17Þ

To obtain a non-trivial solution, the determinant of the B

matrix must be zero.

Det Bð Þ ¼ EIyj
2 � P

� �
C � Io

A
P

� �
�M2

1 ¼ 0 ð18Þ

The only unknown variable in this equation is the load

P, which means that it is a quadratic that is solvable both

analytically and numerically. In the case of M1 = 0, we

obtain the classical Euler buckling and torsional buckling

solutions for a beam as described in [20]. In the presence of

an additional bending moment, buckling will occur at a

lower load.

Full structure compression

The octahedral geometry of the nanolattice fabricated in

this study is a bending-dominated structure, and it can be

compared to the classical model for open-cell foams. It is

therefore possible to approximate the strength and modulus

of the nanolattice using classical Gibson–Ashby cellular

mechanics relations derived for open-cell foams [7]. For a

brittle, open-cell foam, the modulus and strength scale with

the relative density of the structure, defined as �q ¼ q=qs, as

E � Es �q2 ð19Þ

rcr � 0:2rfs �q3=2: ð20Þ

Here Es is the Young’s modulus of the constituent

material. rfs is the modulus of rupture of the constituent

material, which is defined as the maximum tensile stress

achievable before failure. The relative density scaling

relations for the strength and modulus arise because of the

bending-dominated nature of the structure, and the

coefficient of 0.2 for the strength relation is due to the

fact that the nanolattice is composed of a brittle material.

The relative density of the structure in this work was

computed to be �q ¼ 0:0136, which was found using a

computer-aided design (CAD) of the structure, and is

similar to the relative density of other ultra-light materials

like aerogels [21].

Due to the fact that the structure is comprised of verti-

cally oriented elliptical tubes, the resulting structure is

inherently anisotropic in both strength and stiffness. Spe-

cifically, the anisotropy will lead to a higher strength and

modulus in the vertical direction. Structural anisotropy has

been quantified by Gibson and Ashby [7] for structures

with elongated unit cells, but has not been quantified for

structures with anisotropic beam elements.

Results

Compression of individual unit cells

Uniaxial compression tests

Individual unit cells were compressed by applying a ver-

tical load to the top node of the structure at a constant

displacement rate of 10 nm s-1 until failure at a load of

0.152 mN. Figure 4e shows that the final axial displace-

ment of the structure was roughly 420 nm, which includes

both the compression of the upper four beams and the

deflection of the surrounding structure. This load–dis-

placement data was subsequently corrected to only account

for the vertical compression of the upper four beams

(Fig. 4e), measured to be approximately 200 nm based on

in situ SEM video frames. In the correction, it was assumed

that the displacement of the surrounding structure remained

in the linear elastic regime.

There was a notable deviation from linear behavior in

the load–displacement data, as is indicated in (Fig. 4f).

In situ video analysis confirmed that this deviation likely

coincides with the initiation of lateral-torsional buckling in

the struts (Fig. 4b, c). The final deformation of the structure

was accommodated by lateral bending and twisting of the

struts, until brittle failure at the midpoints of the beams and

at the nodes (Fig. 4d).

Cyclic loading tests

A single unit cell was compressed in a set of cyclic loading

experiments at a constant displacement rate of 10 nm s-1

to a total raw displacement of 350 nm and a subsequent

unloading to 10 % of the maximum load in the cycle. The

2502 J Mater Sci (2014) 49:2496–2508
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unit cell underwent three rounds of ten load–unload cycles

(Fig. 5d–g). This data shown in these figures was corrected

to account for the vertical deflection of the lower nodes of

the structure in the same manner as for the monotonic

compressions. The unit cell survived cyclic compression

loading of up to 95 % of the maximum load prescribed in

the uniaxial test without failure. A gradual decay in the

maximum load reached during the compression of the unit

cell was observed in each subsequent load–unload cycle

(Fig. 5g). The large strain recovery seen during cyclic

loading (Fig. 5d–f) implies that the deformation was pri-

marily elastic, and that the observed hyperelasticity was

likely a structural response and not a material response.

Additionally, the decreased loading response seen in the

initial loading for each of the three tests (Fig. 5g) closely

matches the buckling response of a pre-bent beam [22].

This point is discussed in greater detail in section

‘‘Deformation of a single unit cell.’’

Finite element modeling

To explore the effect that the geometry of the unit cell has

on the resulting deformation, a number of different beam

models with varying degrees of offset in the central node of

the structure were created and compressed using a non-

linear elastic FEM solver in ABAQUS. First, an ideal beam

model with no offset in the central node of the structure

was tested. The resulting deformation was linear and did

not reproduce the lateral deflection seen in the experiments.

Several beam models with systematically varying degrees

of central offset were then created in an attempt to better

match the actual geometry of the structure (Fig. 3c–e). In

the deformation response of these offset FEM models, the

beams first displayed a linear elastic behavior that contin-

ued up to a displacement of 30–40 nm and then rapidly

began to twist and bend (Fig. 6), which very closely mat-

ched the behavior observed experimentally. Exploring a

variety of beams with systematically varying degrees of

offset in the central node of the structure revealed that any

degree of offset qualitatively reproduced an identical

bending and twisting response. The final deformed state of

the structure and the final stresses in the beams were

similar for the entire array of central offsets used, which

ranged from one tube with a 20-nm offset to four tubes

each with a 40-nm offset (Fig. 3).

The vertical reaction force, defined here as the sum of

the forces on the nodes at the top face of the structure, was

measured for different beam models. As the degree of

offset in the central nodes became greater, it was observed

that the onset of nonlinear behavior occurred at a lower

load (Fig. 6d). The resulting load–displacement data for

two structures, one with a 20-nm offset of a single beam

(small-offset) and one with a 40-nm offset of all of the

beams (large-offset), is presented alongside the experi-

mental data (Fig. 6e). The critical load at which the

bifurcation occurred was found to be F = 0.152 mN in the

Fig. 6 Finite element analysis of upper unit cell. a Uncompressed

FEM model of a 4-bar structure. b 4-bar structure under compression

before the initiation of buckling. This corresponds to the bifurcation

point in e. c Fully compressed 4-bar structure showing the full extent

of deflection. This corresponds to the end of the FEM load

displacement curve. d The load displacement response of the FEM

simulations on the small and large-offset beams. e Fully overlaid unit

cell compression results showing experimental, FEM, and analytic

data. The superposition is intended to demonstrate the close

agreement between the results of the three methods. The green x

indicates the point of failure (Color figure online)
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small-offset beam and F = 0.135 mN for the large-offset

beam. The peak load in the small-offset beam was

Fmax = 0.157 mN and Fmax = 0.154 m for the large-offset

beam.

Analytical model

A larger lateral offset of the beams from the central node of the

structure generates a higher bending moment, which effec-

tively lowers the force necessary to initiate buckling. In the

ideal case where M1 = 0, it was calculated that the minimum

load required to buckle an individual strut is Pcr = 55.5 lN.

When this calculation is performed using a moment

M1 = 1.13 9 10-7 Nm, which corresponds to the approxi-

mate moment induced during the compression of the large-

offset structure, the critical load drops down to

Pcr = 55.0 lN. Using Eq. 1, these loads are multiplied by

2
ffiffiffi
2
p

to calculate the effective resolved load in the 4-bar setup

of the compression of a unit cell. The resulting applied force

F that is needed to buckle the struts in the full unit cell structure

is 0.157 mN for a structure with no central moment, meaning

no offset, and 0.155 mN for the beam with a central moment

of M1. These values are plotted along with the experimental

results and the data from the FEM simulations (Fig. 6e).

Compression of the full structure

The full nanolattice was compressed inside an in situ

microscope at a displacement rate of 250 nm s-1 until

failure at a peak load of 7.50 mN and a displacement of

1.92 lm. The resulting load–displacement curve and ima-

ges of the initial and final states of the structure are shown

(Fig. 7). The initial linear loading of the structure was

followed by a brittle catastrophic collapse at the peak

stress. The post-deformed image of the structure (Fig. 6b)

shows the six topmost unit cells were fully compressed to

failure. A full collapse of the structure was prevented due

to a limitation in the travel distance of the indenter. The

stress and strain at failure were estimated to be

ry = 0.873 MPa and ey = 0.0218 using a measured top

surface area A = 8588 lm2 and a height h = 88.0 lm.

The elastic modulus, calculated to be E = 61.8 MPa, was

found using the loading slope of the stress–strain data.

Gibson–Ashby model

Using a classical open-cell brittle cellular material model

given by [7] with a constituent material modulus of

Es = 98 GPa and a modulus of rupture of rfs = 1.75 GPa

Fig. 7 Full structure monotonic

compression. a Full structure at

the beginning of a compression

test. b Structure after the

collapse point indicated in the

graph. c Stress–strain data from

the compression of the above

structure (Color figure online)
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as obtained from finite element experiments, the structural

stiffness and strength were calculated to be

E ¼ Es �q2 ¼ 98 GPað Þ 0:0137ð Þ2¼ 18:39 MPa

rcr ¼ 0:2rfs �q
3
2 ¼ 0:2 1:75 GPað Þ 0:0137ð Þ2¼ 0:559 MPa:

The regular Gibson–Ashby model for the Young’s

modulus and modulus of rupture of the structure does not

adequately predict the experimentally determined

properties. The modulus is under-predicted by a factor of

3.35 and the strength is under-predicted by a factor of 1.56.

This is primarily due to the anisotropy of the structure, a

point that will be discussed further in the following

sections. The order of magnitude of the modulus and

strength predictions is correct, implying that the structure

still approximately follows a Gibson and Ashby scaling,

but a more detailed constitutive model is needed to account

for the anisotropy effect of the tubes.

Discussion

Constituent material properties

Bulk titanium nitride is typically a brittle ceramic, whose

failure is governed by microstructural flaws [23]. The

tensile yield strength of 1.75 GPa obtained from FEM

modeling in this work appears to be 1–2 orders of mag-

nitude higher than values reported for typical bulk

ceramics, which generally range from tens to hundreds of

MPa [24]. We attribute the high tensile yield strength in

the ALD-deposited TiN to the competition between

internal (microstructural) heterogeneities like grain

boundaries and constituent material defects. Nanocrystal-

line TiN is inherently brittle, and will fail via fracture at

the location of the highest stress concentration within the

material, such as a pore or a crack. For bulk materials,

these flaws play a key role in the determination of the

yield stress. A reduction in sample size is accompanied by

a corresponding decrease in the maximum flaw size,

which leads to a lower probability of finding a weak flaw.

When the sample becomes sufficiently small, at some

critical size the stress concentration at the weakest flaw

may become comparable to the stress concentrations in

the microstructure of the material, i.e., grain boundary

triple junctions. Recent work by Gu, et al. reported that

failure in nanocrystalline platinum nanostructures was not

governed by the presence of external notches but was

driven by microstructural heterogeneities [17, 25]. This

transition coincides with a yield strength that is governed

by grain boundary failure and represents a significant

fraction of the theoretical material fracture strength,

approximated to be between E/2p and E/30 [26, 27]. The

high yield strength of the samples in this experiment is

discussed in greater detail in [17].

The Young’s modulus of 98 GPa found in the experi-

ments is on the lower end of the range of the reported

values for bulk TiN [24, 28]. The most likely causes of the

reduced Young’s modulus are the porosity of ALD-

deposited material and the grain size of 10–20 nm in the

TiN films, the most critical of which being the porosity of

the sample. The modulus of a material is highly dependent

on density, and lower relative density materials can have

considerably reduced Young’s moduli [29]. The modulus

has been shown to decrease linearly with relative density

for a number of materials. For example, in work by And-

rievski [28], it was shown that the modulus of TiN had a

strong linear scaling with relative density, with a porosity

of 20 % corresponding to an 80 % reduction in the mod-

ulus. It has been shown that atomic layer deposition (ALD)

onto polymers may result in lower film densities because

the gas-phase reactants can diffuse into the polymer [30].

While the porosity of our material was not thoroughly

investigated, it is likely a major contributor to the observed

reduction in modulus. The other important factor in the

modulus reduction is the nanocrystalline microstructure of

the TiN in this work, with the grains on the order of

10–20 nm (Fig. 2c). For materials with nanocrystalline

grains, a larger volume fraction of the material is com-

prised of grain boundaries, which have been shown to be

less dense than a regular crystal lattice, and therefore have

a lower Young’s modulus [29]. When the grain size of iron,

copper, and palladium samples was reduced to 10–20 nm

in [29], a decrease of up to 26 % in the Young’s modulus

was reported and explained through the increased volume

fraction of grain boundaries. This combination of high

porosity and nanometer-sized grains may explain the

reduction in the modulus from a maximum of *490 GPa

reported in literature for fully dense bulk TiN [28] to the

98-GPa found in this study.

Deformation of a single unit cell

There is a strong agreement between the experimental

results and the FEM simulations, both qualitatively in the

observed deflection (Figs. 4a–c, 6a–c) and quantitatively in

the load–displacement data (Fig. 6e). The non-trivial

amount of recovery in the cyclic experiments (Fig. 5d)

suggests that the deformation was primarily elastic. Addi-

tionally, the TiN in the experiment was nanocrystalline,

meaning that there are few mechanisms for plasticity [31].

Although there is some permanent deformation observed, it

is minimal and only observed after many compression

cycles at loads close to the failure limit. The close agree-

ment between the experimental results and the FEM results

indicate that the elastic model was able to sufficiently
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replicate the behavior seen experimentally. The additional

residual displacement seen in the cyclic loading of the

structure can likely be attributed to cracking at the lower

nodes and to the slight bowing of the beam (Fig. 5a–c).

We observe that the maximum load obtained in the FEM

simulations of the small-offset and the large-offset structures

closely matched the load obtained in the analytical buckling

analysis. The initiation of buckling in the FEM model

occurred at a lower load than the theoretical buckling load for

both structures (Fig. 6e). The large-offset structure displayed

a greater deviation from the theoretical buckling load than

the small-offset one, which implies that the effect of the

offset can be explained in the context of a structural imper-

fection. In a perfect beam, when the structure reaches the

critical buckling load, there is a sudden jump to the buckled

state that corresponds to a bifurcation in the load. Any

imperfection in the beam, such as a bend, surface roughness,

or waviness, facilitates a more gradual transition to the

buckled state because the beam has been locally pre-bent,

with larger imperfections leading to greater deviations from

perfect buckling. This behavior is described in detail in [22],

where the degree of deviation from the perfect beam buck-

ling response is directly related to a parameter k = a/r. Here,

a is the lateral offset of the bent beam from the perfect

structure and r is the radius of gyration, defined as r ¼ffiffiffiffiffiffiffiffi
I=A

p
;where I is the second moment of area in the buckling

direction and A is the cross-sectional area of the beam. This

behavior was directly observed during the cyclic load

response of the beams (Fig. 5g), and was replicated with the

small and large-offset FEM models. The analytic buckling

model does not account for any imperfections, which means

it is predicting the critical load necessary to initiate buckling

in a perfect beam and is not able to account for any

imperfections.

The close agreement between the deflection behavior

observed experimentally, the FEM modeling, and the

analytic beam buckling approach strongly suggests that the

observed deflection of the structure was due to a buckling

instability. Equations 13 and 14 show lateral and torsional

buckling are coupled due to the additional central moment

in the structure. Therefore, any lateral buckling of the beam

will couple with torsional buckling resulting in lateral-

torsional buckling [32, 33], as was observed in both the

experimental results and the FEM model.

The hysteresis observed in the cyclic load displacement

data may be explained by accounting for the friction

between the top surface of the structure and the indenter

tip. The steep inclination of the beams means that friction

will play a lesser effect on the onset of buckling because it

does not act as directly in the direction of the buckling. The

unbuckling response will still have a hysteresis, as dem-

onstrated experimentally in [34, 35].

Full structure

Using the classical cellular solids models given by Gibson

and Ashby [7], the modulus and yield stress of a 3D nano-

lattice was approximated. These laws had been derived

analytically for an isotropic, open-cell material with solid

walls, where a bending of the beams gives rise to high stress

concentrations near the nodes of the structure. The nano-

lattice material, which is a bending-dominated structure

with hollow thick-walled beams, has similar conditions to

those used in the analytic derivation, and it is therefore

reasonable that they would follow a similar, although not

identical, scaling law. The biggest difference comes from

the large anisotropy of the elliptical tubes, which have an

aspect ratio of 4.5:1. This high aspect ratio gives the tubes a

moment of inertia in the vertical direction that is roughly one

order of magnitude higher than that in the horizontal

direction. Because the analytic model for a bending-domi-

nated structure assumes isotropic beam bending, it is

insufficient to perfectly analyze the structure, although it

still can be used to obtain a reasonable approximation.

The strength and modulus of the nanolattice are under-

estimated by the classical Gibson and Ashby scaling laws

by a factor of 1.56 and 3.35 times, respectively. This dis-

crepancy was expected given the anisotropy of the beams.

The difference between the experimental and analytic

results for the strength and modulus can be explained using

anisotropy results that have been derived previously for

anisotropic structures with elongated unit cells. It is shown

in [7] that the degree of anisotropy in the modulus and

strength can be quantified using an anisotropy ratio R,

defined as the ratio between vertical and transverse

dimensions of a unit cell. In these equations, the anisotropy

in the modulus scales approximately with R2, and the

strength anisotropy scales approximately with R, meaning

that the modulus is much more sensitive to the anisotropy

than the strength. While the scaling equations used in [7]

do not directly apply to anisotropic beam members, they do

suggest that the discrepancy observed between the exper-

imental and analytic results follows the correct trend. A

more in depth derivation is needed to properly account for

the anisotropy of the beams in an analytical model.

The failure mode of the 4-bar unit cell structure was

elastic buckling followed by fracture near the midpoints of

the beams, but this failure mode cannot be generalized to

the entire structure, which experiences a more complex

stress state. Additional failure modes might be activated as

a result of bending and twisting actions of the beams. The

experiments performed on the individual unit cells allows

us to gain some insight into the possible failure mecha-

nisms, and additional studies on the entire structure are

necessary to fully understand the range of possible failure
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modes. The results of these investigations are being pre-

pared for a separate manuscript.

Conclusions

We have demonstrated the capability to fabricate, mechan-

ically test, and accurately analyze the mechanical response

of cellular architected materials with features ranging from

nanometer to micron to millimeter length scales. Results

indicate that the tensile yield strength of the constituent

titanium nitride was 1.75 GPa, a value 1–2 orders of mag-

nitude greater than that of the bulk material. Such improved

strength likely stems from material size effects, whereby a

reduction in the thickness of the walls to nanoscale dimen-

sions allows for a higher constituent material strength and

induces the emergence of damage resistance. Using a com-

bination of computational and analytical methods, we were

able to accurately predict the behavior and stresses observed

in a single unit cell of the structure. Classical cellular solids

scaling laws gave a reasonable first order approximation of

the strength and stiffness of the full nanolattice structure, but

more work is needed to properly account for the anisotropy

of the beams comprising the structure.
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