Physics 514, Electrodynamics II
Department of Physics, University of Washington
Winter quarter 2020
March 13, 2020, 11am
On-line lecture

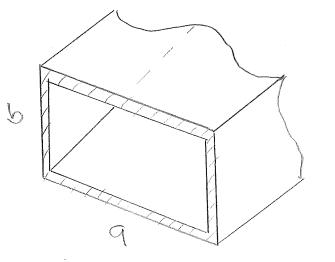
Administrative

Last lecture today.

Homework 9 was due Friday, March 11, 11am. Slide HW under my office door C503 or scan and send it via email. No final exam.

MRE postponed to early Spring quarter.

Lecture


Jackson Chapter 8: Waveguides & resonant cavities.

- J.C.8.4 Recap: Modes in a rectangular and circular waveguide.
- J.C.8.7 Resonant cavities formed from a section of waveguide with conducting end-walls.
- J.C.8.1 Fields at the surface and within a conductor.

 This matters when the waveguide walls are lossy.
- J.C.8.8 Power losses in a cavity; Q of a cavity.

RECAP!

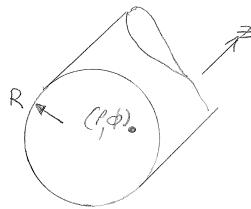
WAVEBUIDE: TE MODES 1 RECTANGULAR

$$\left[\sqrt{\frac{2}{4}} + \left(-\frac{1}{2} + \frac{2}{3} \right) \right] \left\{ \frac{E_2}{3_2} \right\} = 0$$

TE -> E7 = O EVERYWHERE,

SEPARATE VARIAGES!

$$\mathcal{B}_{2}(x,y) = \mathbb{X}(x) \mathbb{Y}(y)$$


APPLY BOUNDARY CONDITION

$$\frac{\partial B_2}{\partial x} \Big|_{X=0} = 0$$

$$\frac{\partial B_2}{\partial y} \Big|_{Y=0} = 6.$$

MODE 15 $B_{2im,n} \sim \cos \frac{m\pi}{a} \times \cos \frac{n\pi}{b} Y$ $Kx \qquad Ky$ $WITH - k^2 + \omega_{c2}^2 = -k_x^2 - k_y^2$. WE FOUND A CUTOFF FREQUENCY $W_{c;mn} = CV (\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2$ $W_{c;mn} \in V(M, M, K)$ $W_{c;mn} \in V(M, M, K)$

2. ROUND WAVEBUIDE: TE MODES

SAME TRANSVERSE WAVE E PUATION,

TE -> E2 = 0 EVERYWHERE

SEPARATE VARIABLES

B2 (P,4) = (R) \$\P(\phi)\$.

\$(6) ~ C + i K, 6

SINGCE-VALUED FOR \$ -7\$+ n\$
IMPCIB K& 15 AN INTEGER N.

IR(P) ~ Jn (KcP), Nn (kcP)

WITH Kc2 = -K2 + cu2/c2

REGULAR B2 (POD) -> Non ABSENT

APPLY BOUNDARY CONDITION

JB2/Jn/5 =0 - JB2/ =0

REQUIRES Jn (kcR) = 0

50 Kc = Xnm/R m=1,2, ...

Roots of $J'_m(x) = 0$

m = 0: $x'_{0n} = 3.832, 7.016, 10.173, ...$

m = 1: $x'_{1n} = 1.841, 5.331, 8.536, ...$

m = 2: $x'_{2n} = 3.054, 6.706, 9.970, ...$

m = 3: $x'_{3n} = 4.201, 8.015, 11.336, ...$

JACKSON P. 370

IF $w^2/c^2 - kc^2 < 0$, THEN K IS IMAGINARY AND THE WAVE DOESN'T PROPAGATE; THIS IS THE CUTOFF FREQUENCY

Weinm = CKeinm

Table 8.7
Summary of wave types for rectangular guides^a

TE ₁₀	TE_{11}	TE ₂₁
3 1E ₃₀	7M ₁₁	TM ₂₁

[&]quot; Electric field lines are shown solid and magnetic field lines are dashed.

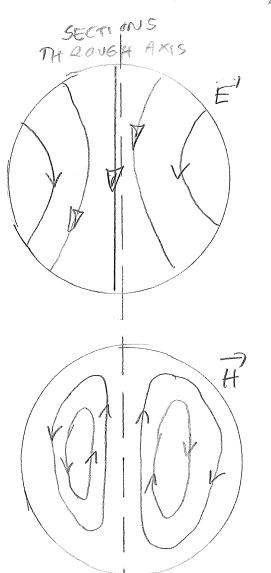
Table 8.9 Summary of wave types for circular guides^a

Wave Type	TM ₀₁	TM ₀₂	TM_{11}	TE_{01}	TE_{11}
Field distributions in cross-sectional plane, at plane of maximum transverse fields			Distributions Below Along This Place		Distributions Below Along This Plans
Field distributions along guide					
Field components present	E, E, H,	E, E, H,	En En En Ho. Ho	$H_{s_1}H_{s_2}E_{\phi}$	$H_{\bullet}, H_{\tau}, H_{\bullet}, E_{\tau}, E_{\phi}$
pal or pal	2,405	5.52	3.83	3.83	1.84
(k _e) _{n1}	2.405 a	5.52 a	3.83 a	3.83 a	1.84 a
(Xe)nl	2.61a	1,14a	1.64a	1.64a	3.41a
(Vs)*1	0.383 a√ μ ξ	$\frac{0.877}{a\sqrt{\mu \ \varepsilon}}$	0.609 a√ _{µ.c}	0.609 aõ c	0.293 4√µ €
Attenuation due to	$\frac{R_s}{a\eta} \frac{1}{\sqrt{1 - (f_c/f)^2}}$	$\frac{R_*}{a_N} \frac{1}{\sqrt{1 - (f_e/f)^2}}$	$\frac{R_s}{a\eta} \frac{1}{\sqrt{1 - (f_s/f)^2}}$	$\frac{R_t}{d\eta} \frac{(f_c/f)^2}{\sqrt{1 - (f_c/f)^2}}$	$\frac{R_s}{a\eta} \frac{1}{\sqrt{1 - (f_c/f)^2}} \left[\left(\frac{f_c}{f} \right)^2 + 0.420 \right]$

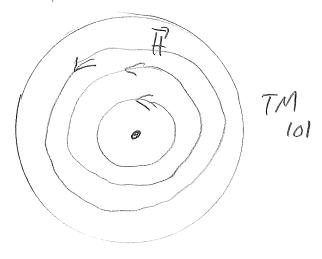
[&]quot; Electric field lines are shown solid and magnetic field lines are dashed.

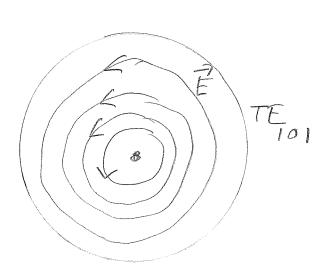
CAVITIES J.C. 8,7

THE KIND OF CAVITIES DESCRIBED IN

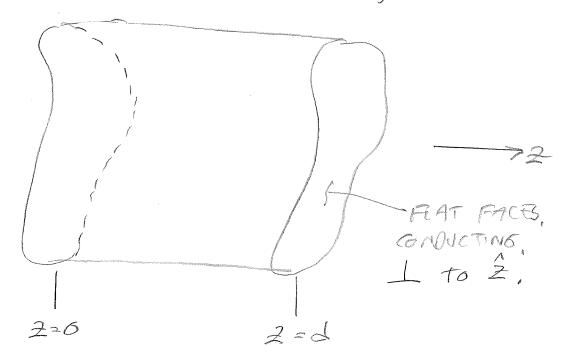

JACKSON ARE FORMED BY ADDING

CONDUCTING FACES TO THE ENDS OF A


LENGTH OF WAVESURDE; THIS


DESCRIBES A BROAD CLASS OF CAVITIE,

BUT, NOT, C.S., A SPHERICAC CAVITY



SECTIONS THROUGH EQUATOR

BACK TO WAVEGUIDE- CANITIES

THE MAIN EPFECT OF ADDING END-FACES
15 TO INTRODUCE STANDING WAVES
ALONG 2.

THE \vec{E} - FIELD ON THE END-FACES

SATISFY BOUNDARY CONDITIONS

TM: $\vec{E}_{e}|_{z=0} = \vec{E}_{e}|_{z=1} = 0$,

RECALL INSIDE $\vec{\sigma}$, \vec{E} = 0, Just

INSIDE THE END-FACES \vec{E}_{e} \vec{E}_{e}

$$\frac{d}{dz} E_{2} \Big|_{z=0} = \frac{d}{dz} E_{2} \Big|_{z=d} = 0.$$

THE SINKZ TERM IS THEREFORE

 $E_{\pm}(x,y,2)$ is cos $\int_{-1}^{1} 2 i l = 0,1,...$ WE HAVE A THIRD MODE

INDEX.

· WHAT ABOUT TE MODES!

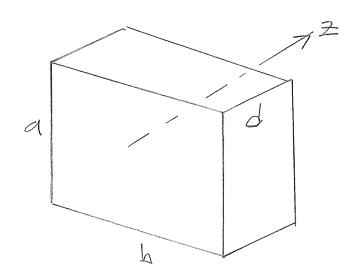
EVERYWHERE INSIDE B2=0, AND

IN PARTICULAR B2/2=0=B2/2=d

THE COSKX TERM IS THEREFORE

MISSING, AND

B2 (x, Y, 2) ~ SIN 2 12; R=0,1,2.


RESONANT-FREQUENCIES ARE PRESENT.

. THE TRANSUERSE WAVE EQUATION IS

$$\left[\nabla_{t}^{2} + \left(-\left(\frac{\ell\pi}{d}\right)^{2} + \omega_{c2}^{2}\right)\right]\left\{\vec{E}\right\} = 0$$

$$K^{2}$$

EXAMPLE: RECTANGULAR RESONATOR,

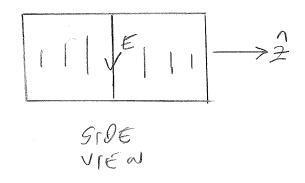
THIS IS STYLLAR TO THE PROBLEM OF THE RECTANGULAR WAVEBUIDE, WITH THE SUBSTITUTION

$$K^2 \longrightarrow \left(\frac{l\pi}{d}\right)^2$$

RECALL THE SOCUTIONS TO THE RECTANGULAR WAVEBULDE

BECOM/NG

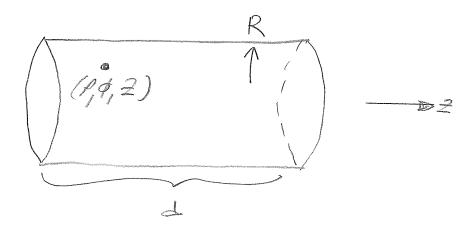
$$\left(\frac{M\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{l\pi}{a}\right)^2 = \left(\frac{W_{mn}}{c}\right)^2$$


WE'VE FOUND THE RESONANT PREQUENCIES. SUPPOSE WE WISH TO FIND ALL
THE FREED COMPONENTS.

STEP I: FIND BZ(X,Y) FROM THE RELATED WAUEGUIDE PROBLEM.

> 2. CONSTRUCT B2 (x, 1, 2) VIA B(x, 1, 2) = B(x, y) SIN SIN SIN SIZ.

3. E2=0, FIND EX AND BY
FROM JACKSON EGNS 8,31,8,33,
AS USUAL.


A TYPICAC FIECD: E.J., TEIOI

TOP VIEW

EXAMPLE CIRCULAR RESONATOR,
TM: MODES.

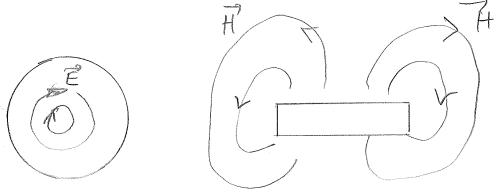
RECALL THE RELATED WAVESUIDE PROBLEM

Ez (P, P) ~ Jn (Kcinm P) C + imp

WITH Kc; nm = Xnm/R

ALSO K 2 = (W/) 2 - (21) 2

WE CAN SOLVE FOR THE RESONANT FREQUENCIES

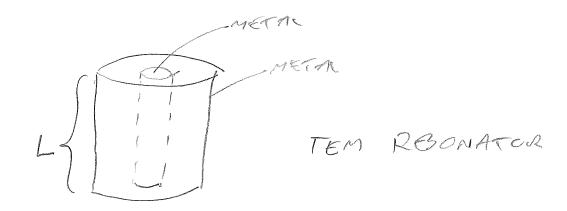

$$\left(\frac{G_{nml}}{C}\right)^2 = \left(\frac{X_{nm}}{R}\right)^2 + \left(\frac{L\pi}{d}\right)^2$$

Q: WHAT ABOUT THE RESONANT
FREQUENCIES FOR THE TE MODES?
A: Xnm -> Xnm

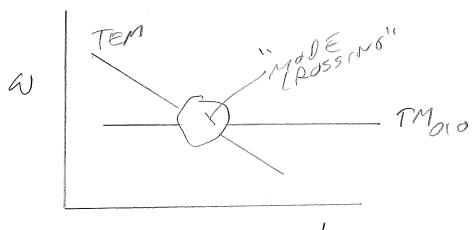
THERE ARE A HUGE NUMBER OF RESONATOR TYPE,

> e.a., THE SPHERICAL RESONATOR WE SAW EARLIER. IT HAPPENS TO HAVE THE HIGHEST STORED ENERGY PER SURFACE AREA, IT'S SOMEWHAT OF AN ODDITY.

C.g., DRECECTRIC RESONATOR



NO CONDUCTOR.


COMMENT ON TUNING RESONATORS

JUST ABOUT ANYTHING YOU DO TO THE RESONATOR EFFECTS /TS RESONANT FREQUENCIES.

C. O. CHANGE CENGTH,

THE TEM FREQUENCY DEPONDS ON THE CAULTY LENGTH L. THE LOWEST TM MODE DOES NOT.

 L_{-}

SOME EXAMPLES OF EXCITING WAVEGUIDES AND RESONATORS

Bungt of ()

SOME FIELDS FROM THE C ARE "STRIPPED OFF" (WEIZACHOR-WILLIAMS PICTURE; DISCUSSED IN SI5.).

OTAX CABGE

TEM
OR OTHER

OR OTHER

VOCTAGE

VOCTAGE

APERTURE, ANTENNA

ANTENNA INSIDE GUIDE BACK TO J. C. 8.1: FINITE CONDUCTIVITY THIS IS A VERY TRICKY TOPIC! ONCY OUTLINED HERE. RECACC THE BOUNDARY CONDITION ON H; H211-H, = nxR; R SURFACE OURRENTS. IF THE CONDUCTIVITY ON 15NT ON, FIECOS AND CURRENTS EXTEND INTO THE NATERIAL. RECALL FOR A 6000 CONDUCTOR, Re2K = ImK = Z HENCE, AT A DISTANCE Z INTO THE CONDUCTOR, THE

FIECD 15

FIECD 15

Hell = Holl e - 2/8 (2/8)

YOU STILL HAVE AN É PIELD nxH, SO INTERESTINACY E HOS A 11 COMPONENT

(RECACC FOR A 800 D CONDUCTOR ESA PORE OUT- OF- PHOSE BY 450).

HENCE, THERES A [3] Z COMPONENT. (SEE JACKSON EAN 8.10).

THE CONCEPT OF "SURFACE RESISTANCE".

FROM CIRCUIT THEORY, THE

OHMIC POWER COSS PER CENETH IS $\left(\frac{dP}{dP} \right) = \frac{1}{2} I^2 R$

THIS RESISTANCE PER LENOTH,

FOR SHEET CURRENT, THE POWER LOSS PER UNIT AREA IS

THIS R IS A RESISTANCE

ALTHOUGH THIS R HAS UNITS OF OHMS, IT IS NOT THE SAME

AS A TWO-TEPMINAL RESISTOR

RESISTANCE", USUALY

CALLED RS.

FOR BULK CURRENTS J, THE

POWER LOSS PER VOLUME IS $\left(\frac{dP}{dV}\right) = \frac{1}{2} J^2 R$ $J = \frac{1}{2} J^2 R$ $J = \frac{1}{2} J^2 R$ THIS R HAS UNITS OF

REPRESTANCE. LENGTH $\left(=P'=1/6\right)$.

How to FIND RS?

RECACC FOR A 6000 CONDUCTOR

Im k = Rek = 2

unth S = 1/Im k,

HENCE, SINCE & IS NON-ZERO, FIELDS PENETRATE INTO THE CONDUCTOR.

THERE ARE PARACCEL COMPONENTS OF HIN THE CONDUCTOR (RECACC HZ, -H, = n × R).

IF THERE ARE PARACIEC

COMPONENTS OF FI IN THE

CONDUCTOR, THERE ARE ACSO

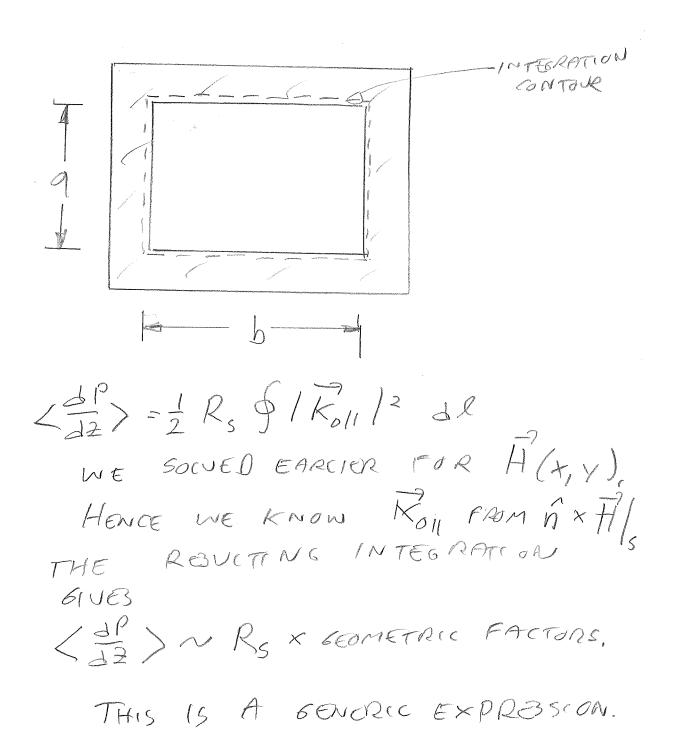
PARALCEL COMPONENTS OF E

IN THE CONDUCTOR FROM

NATH. (CAUEAT! E & H ARE

OUT OF PHASE BY 450,)

(18)


HENCE, THERES A POYNTING FOUX POINTING INTO THE CONDUCTOR,

AFTER SIME WORK

IN TERMS OF THE BOUNDARY
CONDITION ON FF;

SO YOU CAN READ OFF

EXAMPCE LOSSES IN RECTANOUCAR WANESUIDE, TE MODES.

