Physics 514, Winter Quarter 2018 Electrodynamics: Homework Assignment 8 Due March 2, either 11:00am in class or 10:45am in the instructor's mailbox.

1. Magnetic-dipole radiation, done in several texts. In class we discussed radiation from a small electric-dipole antenna. Now consider a loop of radius R (with $R \ll$ the distance to the field point and the free-space wavelength) carrying harmonic current $I_{0} e^{\text {iot }}$. a. Find the vector potential \mathbf{A} at the field point and verify it reduces to the static-limit at zero frequency.
b. Now find the corresponding \mathbf{E} and \mathbf{H} fields.
c. Find the time-average radiated power.
d. Find the radiation resistance (notice the high power of the dimensionless length).
2. The reciprocity theorem states: Given two antennas a and b, $I_{a b} / V_{a}=I_{b a} / V_{b}$, where $I_{a b}$ is the current induced in antenna a due to antenna $b, I_{b a}$ is the current induced in antenna b due to antenna a, and V_{a} and V_{b} are the voltages applied to antennas a and b.
a. This is a general theorem: Show it's true for the equivalent circuit where the ammeter and voltage source are a and b.

b. (challenge problem, done in several texts) Derive this theorem.

You may want to start with the identity
$\nabla \cdot\left(E_{a} \times H_{b}-E_{b} \times H_{a}\right)$
$=H_{b} \cdot \nabla \times E_{a}-E_{a} \cdot \nabla \times H_{b}-H_{a} \cdot \nabla \times E_{b}+E_{b} \cdot \nabla \times H_{a}$
3. Consider the lowest TM mode of a cylindrical resonator of radius R and length L. A small conducting "dimple" of volume ΔV projects into the cavity from the cavity end-wall axially at the bottom-center of the cavity. Find the shift in resonant frequency due to this "dimple". For the math: Integrals containing $r J_{0}{ }^{2}$ often become $J_{1}{ }^{2}$.
4. Consider a thin infinite sheet carrying surface current $K_{0} e^{\text {ict. }}$.
a. Find the time-average power radiated per unit area from the sheet.
b. Find the radiation resistance per unit area for the current-sheet antenna.

