Physics 322, Winter Quarter 2016
 Electrodynamics: Homework Assignment 5 (a) Turn in all problems and clearly note all constants and assumptions you use. (1-point penalty each otherwise) (b) Use $81 / 2 \times 11$ paper \& staple (1-point penalty each otherwise)
 (c) Due February 11 either 9:00 am in class or 8:45 am in the instructor's mailbox; late homework gets 0 .

1. A certain capacitor consists of two concentric spherical conductors of radii R_{I} and R_{0}. The volume between the two conductors is a slightly conducting, non-magnetic dielectric of conductivity σ and permittivity ε_{0}.
a. Find the resistance R and capacitance C of this 2 -conductor device.
b. Suppose this device is slowly discharging through it's own dielectric. If the current at time zero is I_{0}, find the discharge current I at later times.
c. Find the magnetic field \mathbf{B} everywhere.
d. Find the inductance L of this device.
2. Recall a problem from last week: The rectangular loop shown rotates with angular frequency ω. Now, not only is the loop rotating, but the magnetic field is changing as $\mathrm{B}(\mathrm{t})=\mathrm{B}_{0} \sin \omega t$ where this field is perpendicular to the plane of the loop at $t=0$.
a. Find the magnitude of the emf around the loop.
b. Find the angular frequency of the emf.

3. a. Evaluate the line integral of $\mathbf{E}+\partial \mathbf{A} / \partial t$ around an arbitrary closed path. b. Find the expression for \mathbf{E} in terms of the scalar potential V and the vector potential \mathbf{A}, valid for non-static fields.
4. A long solenoid of n turns/length and radius R carries slowlyvarying current $\mathrm{I}(\mathrm{t})=\mathrm{I}_{0} \sin \omega \mathrm{t}$. Further suppose a non-magnetic rod of conductivity σ completely fills the solenoid bore.
a. Find the current distribution in the rod.
b. Find the magnetic field in the bore.
c. Find the heat given off per length of rod.
d. Discuss the behavior of your answers for limiting cases where the conductivity is very large and very small.
e. Discuss how your answers would change if the rod were coaxial with the solenoid but of smaller radius.
