Electrodynamics III: Assignment 3 Due April 24 at 11:00 am.
 1. Scan your solutions as a single PDF file 2. Name your file HW3-lastname.pdf 3. Attach your file to an email... 4. ... with subject line HW3-lastname ... 5. ... and send the email to ljrosenberg@phys.washington.edu

1. Jackson problem 10.3. Scattering off a finite-conductivity sphere. Note that part a asks about the infinite-conductivity limit, which feeds into the class discussion of the normal component of the magnetic field.
2. Derive the leading factor of $i k / 2 \pi$ (or $-i k / 2 \pi$) in the Kirchhoff integral.
3. Find the on-axis intensity in the Fraunhoffer (far) region due to plane waves normally incident on an opaque circular disk. This is a hard problem ab initio, but relatively easy using Babinet's principle. This demonstrates "Poisson's spot".
4. Figure a, below, shows a point source focused onto the focus point. In a, the field amplitude at the shown field point (the field poing is not the focus point) is therefore zero. Figures b and c show complementary screens placed into the optical path. In both cases b and c, some diffracted waves arrive at the field point. Find the ratio of the intensity of the waves at the field point in figures b and c, and find the corresponding phase-shift of the waves between field points in figures b and c.

[ver 17Apr20 13:15]
