PHYS 315
SPRING QUARTER 2019
MAY 10, 2019

MID-TERM EXAM
GRADER NOTES
Q1. V.110

a. Recall the (Newtonian) force transformations for a boost along x, x':

$$ F'_x = F_x, \quad F'_y = \frac{1}{\gamma} F_y, \quad F'_z = \frac{1}{\gamma} F_z. $$

The force in the particle rest frame is

$$ F_x = 0, \quad F'_y = \frac{e^2}{\gamma}, \quad F'_z = 0 $$

(with $\gamma = \sqrt{1 - \frac{v^2}{c^2}}$ not having length contraction).

In the frame where the particles are moving

$$ F'_x = F_x = 0; $$

$$ F'_y = F_y / \gamma = \frac{e^2}{\gamma}; $$

$$ F'_z = F_z / \gamma = 0. $$

So $F'_1 = \gamma \frac{1}{\beta} \frac{e^2}{\gamma}$

b. For $\beta \to 0$, $\gamma \to 1$ and F'_1 is that of F.

c. Notice for the entire domain of V: $V \subseteq [c, c]$, the sign of the force is unchanged.
THIS SUGGESTS THE SIGN OF THE FORCE IS UNCHANGED ON A BOOST.
Q2. \(\gamma \), 0

a. Suppose you have fields \(\mathbf{E} \) and \(\mathbf{B} \) in some frame. In another frame boosted along \(\hat{x} \):

\[
E'^2 - B'^2 =
(E_{x}'^2 + E_{y}'^2 + E_{z}'^2) - (B_{x}'^2 - B_{y}'^2 - B_{z}'^2)
\]

\[
- E_{x}^2 + \gamma^2 (E_{y} - \beta B_{z})^2
- \gamma^2 (E_{z} + \beta B_{y})^2
- B_{x}^2 - \gamma^2 (B_{y} + \beta E_{z})^2
- \gamma^2 (B_{z} - \beta E_{y})^2
\]

\[
= E_{x}^2 + \gamma^2 \left[E_{y}^2 - 2\beta E_{y} B_{z} + \beta^2 B_{z}^2 \right]
+ \gamma^2 \left[E_{z}^2 + 2\beta E_{z} B_{y} + \beta^2 B_{y}^2 \right]
- B_{x}^2 - \gamma^2 \left[B_{y}^2 + 2\beta B_{y} E_{z} + \beta^2 E_{z}^2 \right]
- \gamma^2 \left[B_{z}^2 - 2\beta B_{z} E_{y} + \beta^2 E_{y}^2 \right]
\]

\[
= E_{x}^2 + \gamma^2 E_{y}^2 - \gamma^2 B_{z}^2 E_{y}^2 + \gamma^2 E_{z}^2 - \gamma^2 B_{y}^2 E_{z}^2
- B_{x}^2 - \gamma^2 B_{y}^2 + \gamma^2 B_{z}^2 B_{y}^2 - \gamma^2 B_{z}^2 - \gamma^2 B_{z}^2 B_{z}^2
\]

\[
= E_{x}^2 + \gamma^2 \left[(1-\beta^2) E_{y}^2 + \gamma^2 (1-\beta^2) E_{z}^2 \right]
- B_{x}^2 - \gamma^2 \left[(1-\beta^2) B_{y}^2 - \gamma^2 (1-\beta^2) B_{z}^2 \right]
\]

\[
= E_{x}^2 + E_{y}^2 + E_{z}^2 - B_{x}^2 - B_{y}^2 - B_{z}^2
= E^2 - B^2, \quad \text{invariant.}
6. Similarly
\[E' \cdot B' = E'_x B'_x + E'_y B'_y = E'_z B'_z \]
\[= E_x B_x + \kappa (E'_y - \beta B_x) \cdot (B_y + \beta B_x) \]
\[+ \kappa (E'_z + \beta B_y) \cdot (B_z - \beta B_y) \]
\[= E_x E_y + \kappa^2 (1 - \beta^2) E_y B_y + \kappa^2 (1 - \beta^2) E_z B_z \]
\[= E_x B_x + E_y B_y + E_z B_z \]
\[= E \cdot B, \text{ IN Variant.} \]

C. One way to proceed is to recall the relation of \(S \) to momentum density of the fields. This relation suggests the electromagnetic field energy density \(U \) is paired with \(S' \), so there's the invariant \(S^2/c - U^2 \). You'd need to argue why the \(d^3x \) contraction doesn't affect the invariant (it wouldn't if the invariant vanishes, e.g.).

Another way to proceed is to write \(S' \) as
\[S' = \left(\frac{c}{4 \pi} \right)^2 \left\{ E \cdot B - (E^2, B^2) \right\} \]
Notice $E' \cdot B'$ is an invariant, so we need only consider how $E'^{2} B'^{2}$ transforms.

The thing to notice is $E'^{2} B'^{2}$ is a cross-term in the square of the energy density. So, combine the "extra" term $E'^{2} B'^{2}$ from S^{2} with the square of the energy density:

$$E'^{2} B'^{2} = \left\{ \frac{1}{2} E'^{2} + \frac{1}{2} B'^{2} \right\}$$

$$= \left\{ \frac{1}{2} E'^{2} - \frac{1}{2} B'^{2} \right\}.$$

So, $\left(\frac{S}{c}\right)^{2} - V^{2}$ is an invariant because it contains a term $E'^{2} B'^{2}$ and a term $E^{2} - B^{2},$ both invariant.
d. Recall some properties of a plane wave: E and B are orthogonal and $E = B$.

From (b) E' and B' remain orthogonal in any inertial frame, from (a) $E'^2 - B'^2$ remains zero in any inertial frame, so $E' = B'$. Hence, it seems the plane wave is a plane wave in any inertial frame.
Q 3, VI. 0

a. WE FOLLOW THE PATH FROM THE SIMILAR HOMEWORK PROBLEM; IN THE FORWARD DIRECTION

\[r = \sqrt{x^2 + y^2 + z^2} \]

\[\approx 2 + \frac{1}{2} \frac{x^2 + y^2}{z^2} \quad \text{Hence} \]

\[\frac{E(r)}{E_0} \approx e^{ikr} \left(1 + \frac{1}{2} \frac{\rho^2}{z^2} \right) e^{ikr} f(\rho) \]

with \(\rho^2 = x^2 + z^2 \)

THE RADIAL-CYLINDRICAL COORDINATE,

\[= e^{ikr} \left(1 + \frac{1}{2} \frac{\rho^2}{z^2} \right) \]

\[= e^{ikr} + \frac{1}{2} e^{ikr} \]

\[+ \text{terms } \frac{1}{2^2}, \frac{1}{2^3}, \ldots \]

(Where we expanded \(\frac{1}{2^2} \) and kept \(\frac{1}{2} \)).
WE NEED TO SQUARE THIS:

\[
\left| \frac{E}{E_0} \right|^2 = \frac{E}{E_0} \left(\frac{E}{E_0} \right)^* = \left\{ e^{i \mathbf{k} \cdot \mathbf{r}} + \frac{1}{2} e^{i \mathbf{k} \cdot \mathbf{r}} e^{i \mathbf{k} \cdot \mathbf{r}} \right\} \cdot \left\{ e^{-i \mathbf{k} \cdot \mathbf{r}} + \frac{1}{2} e^{-i \mathbf{k} \cdot \mathbf{r}} e^{-i \mathbf{k} \cdot \mathbf{r}} \right\} = 1 + \frac{1}{2} e^{i \mathbf{k} \cdot \mathbf{r}} e^{i \mathbf{k} \cdot \mathbf{r}} f(0) + \frac{1}{2} e^{i \mathbf{k} \cdot \mathbf{r}} e^{-i \mathbf{k} \cdot \mathbf{r}} f^*(0)
\]

KEEPING TERMS LOWER THAN $\frac{1}{2} \mathbf{k} \cdot \mathbf{r}$,

\[
\left| \frac{E}{E_0} \right|^2 \approx 1 + \frac{1}{2} e^{i \mathbf{k} \cdot \mathbf{r}} f(0) + \frac{1}{2} e^{-i \mathbf{k} \cdot \mathbf{r}} f^*(0)
\]

RECALL FOR A COMPLEX M,

\[
M + M^* = \text{Re} M + i \text{Im} M + \text{Re} M - i \text{Im} M = 2 \text{Re} M
\]

\[
\left| \frac{E}{E_0} \right|^2 \approx 1 + \frac{1}{2} \text{Re} \left\{ e^{i \mathbf{k} \cdot \mathbf{r}} f(0) \right\}
\]

NOW, WE'RE IN A POSITION TO INTEGRATE THIS OVER THE DISK,
\[
\int_{\theta=0}^{2\pi} \int_{\rho=0}^{R} \frac{e^{i k \rho^2}}{2\pi} \rho \, d\rho \, d\theta = \pi R^2 + \frac{4\pi}{2} \Re \left\{ \frac{e^{i k \rho^2}}{2\pi} \rho \, d\rho \right\}
\]

We need to evaluate the integral. Let \(M = \rho^2 \), then \(R^2 \frac{e^{i k M}}{2\pi} \int_{\rho=0}^{R} \rho \, d\rho = \int_{0}^{\infty} e^{i k M} \, dM/2 \).

Because \(R^2 \gg \frac{2\pi}{k} \), the upper limit \(\to \infty \) and the integral is approximately

\[
\frac{1}{2} \int_{0}^{\infty} e^{\frac{ikM}{2}} \, dM.
\]

You can wick-rotate \(\int e^{-aq} \, dx = \frac{1}{a} \), or use Gaussian integration, etc. To find \(\int_{0}^{\infty} e^{iqx} \, dx = \frac{-1}{iq} \).

Hence,
\[\int |E/E_0|^2 \, d\alpha = 4\pi R^2 - \frac{4\pi}{K} \text{Im} \, f(0), \]

over disk

b. \(4\pi R^2 \) is the cross-section for scattering without the scatterer. The minus sign indicates some forward-going energy is removed from the beam; this can come from scattering or absorption. Hence, because we know the optical theorem

\[\sigma_{\text{tot}} = (\sigma_{\text{scatt}} + \sigma_{\text{abs}}) = \frac{4\pi}{K} \text{Im} \, f(0), \]

we expect the result in (a).