University of Washington
 Spring Quarter 2019
 Physics 515
 May 10, 2019
 Graduate Electrodynamics III
 Mid-Term Exam

Printed Name

- If you need more space than is available to answer any part of a problem, use the back side of the same page to complete your answer. Scratch paper will not be graded.
- Show your work in enough detail so that the grader can follow your reasoning and your method of solution.
- This is an open-book exam; you may refer to Jackson in paper or electronic form.

BLANK PAGE

I. (35 points) Relativity I.

In the frame shown, two equal charges e, separated by a distance d, move in parallel paths with constant speed v in the x -direction.
a. Use Lorentz transformations from the charges rest frame to find the forces on the particles in the frame shown.
b. Verify you recover Coulomb's law in the non-relativistic limit.
c. Thereby argue whether or not a force that is attractive (repulsive) must always be attractive (repulsive) in another inertial frame.

BLANK PAGE

II. (30 points) Relativity II.

a. From direct transformations of \mathbf{E} and \mathbf{B} fields, show that $\mathbf{E}^{2}-\mathbf{B}^{2}$ is an invariant;
b. From direct transformations of \mathbf{E} and \mathbf{B} fields, show that $\mathbf{E} \cdot \mathbf{B}$ is an invariant;
c. What must be added to the square of the Poynting vector \mathbf{S}^{2} to make an invariant?
d. Thereby argue whether or not a plane wave is always a plane wave in another inertial frame.

BLANK PAGE

III. (35 points) Scattering.

A plane wave propagating in the z-direction encounters a scatterer (absorbing, reflecting, or both) at the origin. Electromagnetic energy in the near-forward direction $(\theta \ll 1)$ then encounters an absorbing disk of radius R whose center is along the z-axis at a distance along $+z$ much greater than R, and $R^{2} \gg z / k$. Recall the spatial part of the electric fields in the Fraunhofer (far) zone have the form $E(\vec{r})=E_{0}\left(e^{i k z}+\frac{e^{i k r}}{r} f(\theta, \phi)\right)$ wher e the amplitude $f(\theta, \phi)$ has dimensions of length.
a. Via direct integration over the disk, show that the (normalized) energy absorbed over the sur face of the disk
$\frac{1}{E_{0}^{2}} \iint|E|^{2} d a \quad$ is given by $\quad \frac{1}{E_{0}^{2}} \iint|E|^{2} d a \approx \pi R^{2}-\frac{4 \pi}{k} \operatorname{Im} f(0)$
where $f(0)$ is the scattering amplitude in the for ward direction.
Hint: The radial integral over the disk for $R^{2} \gg z / k$ is
$\int_{0}^{R} e^{i \frac{k \rho^{2}}{2 z}} \rho d \rho=-\frac{z}{i k}$
b. Argue this is what would be expected from the optical theorem.

BLANK PAGE

BLANK PAGE

POINTS TOTALS
1.
/35
2. $\quad / 30$
3.
/35

Total /100

