University of Washington Physics 515 Graduate Electrodynamics III Spring Quarter 2019 May 10, 2019

Mid-Term Exam

- If you need more space than is available to answer any part of a problem, use the back side of the same page to complete your answer. Scratch paper will not be graded.
- Show your work in enough detail so that the grader can follow your reasoning and your method of solution.
- This is an open-book exam; you may refer to Jackson in paper or electronic form.

POINTS ARE TOTALED ON THE BACK OF THE EXAM

I. (35 points) Relativity I.

In the frame shown, two equal charges e, separated by a distance d, move in parallel paths with constant speed v in the x-direction.

a. Use Lorentz transformations from the charges rest frame to find the forces on the particles in the frame shown.

b. Verify you recover Coulomb's law in the non-relativistic limit.

c. Thereby argue whether or not a force that is attractive (repulsive) must always be attractive (repulsive) in another inertial frame.

II. (30 points) Relativity II.

a. From direct transformations of **E** and **B** fields, show that \mathbf{E}^2 - \mathbf{B}^2 is an invariant;

b. From direct transformations of **E** and **B** fields, show that $\mathbf{E} \cdot \mathbf{B}$ is an invariant;

c. What must be added to the square of the Poynting vector S^2 to make an invariant?

d. Thereby argue whether or not a plane wave is always a plane wave in another inertial frame.

III. (35 points) Scattering.

A plane wave propagating in the z-direction encounters a scatterer (absorbing, reflecting, or both) at the origin. Electromagnetic energy in the near-forward direction ($\theta \ll 1$) then encounters an absorbing disk of radius R whose center is along the z-axis at a distance along +z much greater than R, and $R^2 \gg z/k$. Recall the spatial part of the electric fields in the Fraunhofer (far) zone have the form

$$E(\vec{r}) = E_0\left(e^{ikz} + \frac{e^{ikr}}{r}f(\theta,\phi)\right)$$
 where the amplitude $f(\theta,\phi)$ has dimensions of length.

a. Via direct integration over the disk, show that the (normalized) energy absorbed over the surface of the disk

 $\frac{1}{E_0^2} \iint |E|^2 da \quad \text{is given by} \quad \frac{1}{E_0^2} \iint |E|^2 da \approx \pi R^2 - \frac{4\pi}{k} \text{Im } f(0)$ where f(0) is the scattering amplitude in the forward direction. Hint: The radial integral over the disk for $R^2 >> z/k$ is $\int_0^R e^{i\frac{k\rho^2}{2z}} \rho d\rho = -\frac{z}{ik}$

POINTS TOTALS

