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APPENDIX 1
UNITS AND DIMENSIONS IN ELECTROMAGNETIC THEORY

Classical mechanics 1s characterized by the fact that its mathematical
formulation does not contain any fundamental constants inherent in the
theory. Hence all physical laws in classical mechanics “scale” perfectly
for any change in parameters over any arbitrary range of magnitudes. It
is customary, although not at all mandatory, to formulate classical me-
chanics in terms of three-dimensional entities: mass (37), length (L), and
time (7). The number could be inereased, for instance, by choosing the
constant K in the equation Volume = K (Length)? to be different from
unity and to have dimensions. The dimension L? is customarily identified
with volume by choice, not by necessity. Similarly, the number of funda-
mental units can be decreased by arbitrarily defining certain constants to
be unity and dimensionless. The convention ¢ = h = 1 frequently used
in quantum-mechanical calculations is such an example. In these units
L = T = M~ arbitrarily.

We mention these examples only to indicate that the number of inde-
pendent dimensions is arbitrary even in classical mechanics, although con-
venience suggests a specific choice. In general, the greater the number of
dimensional entities chosen, the more independent units can be chosen to
suit the orders of magnitude convenient for a particular purpose. It
should be remembered, however, that changing units or even numbers of
dimensions does not affect the physical content of any equation if it is
correctly interpreted.

In classical mechanics the MLT system is used conventionally, and
hence the issues discussed above are usually not of interest. For electro-
magnetic theory, the conventions are of more recent origin and appear
more controversial.

Electromagnetic theory differs from classical mechanics by the fact that
one constant, ¢, the velocity of light in vacuo, appears as a fundamental
constant of the theory. Physical laws thus “scale” correctly over arbi-
trary magnitudes only if ratios of length and time are held constant. In
this property electromagnetic theory exhibits a feature which special rela-
tivity extends to all laws of physies,

If the M LT system is used in the mechanical quantities in electromag-
netic theory, the constant ¢ having dimensions LT ~! will appear explicitly.
Whether any additional dimensional units are introduced is entirely a
matter of convention. As an example, if in Coulomb’s law in the form
F = Kq,q2/r® the constant K is chosen arbitrarily to be dimensionless,
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then the charge g automatically acquires the dimensions L3 23 V27! and
no basic units beyond those of 3/, L, and T need be specified. The justifi-
cation for this procedure is analogous to that for setting K in the equation
V = KL? equal to a dimensionless constant and thus giving a volume the
dimension L3,

If we do not choose a dimensionless constant in one of the equations re-
lating mechanical and electromagnetic quantities, then we retain the free-
dom of choosing one of the electrical units arbitrarily and assigning to it a
dimension. This has been done in what is called the mks system.

The particular set of units employed in this text is the mks system now
in fairly general use. The principal convenience of this system is that it
incorporates the common technical units—volt, ampere, coulomb, etc.—
and is thus particularly suitable for treating applications that involve both
“lumped” circuit parameters and fields. Since these technical units imply
that the unit of time is the second and also define the power simply in
watts, the natural choice of mechanical units are the meter, kilogram, and
second. With this choice of electrical and mechanical units the constants
€, and pg in the equations

F — 4192 Ti2 )

3
4Teg r3,

_ //]1 X (12 X Tyg) dv, dos @)

can be determined once we have selected a basic electrical unit. We shall
postpone their numerical determination until we have seen how the elec-
trical unit was chosen, but we note that two constants, €, and g, are car-
ried in the equations when they are written in mks units, although only
one constant, ¢, is fundamental to the theory.

Historically, a set of units (esu) was defined by using unity in place of
471ey in Coulomb’s law, Eq. (1), and cgs units for mechanical quantities.
This defines the electrostatic unit of charge with mechanical dimensions
indicated above, and from this the units of potential, electrie field, ete.,
are defined. On the other hand, if we set uo = 47 in Eq. (2), and if cgs
mechanical units are used, the equation defines a unit of current (with
dimensions MY2LY2T~1) called the electromagnetic unit (emu) or ab-
ampere. Units for other electrical quantities can be derived from the
abampere and the cgs relations. The charge densities and current densities
thus defined obey the relation

o s

, (3)

Jemu = Pesu

where ¢ appears here as the measured ratio of the units. This ratio was
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first determined by Weber and Kohlrausch by measuring the discharge of
a capacitor whose electrostatic capacity was known. A consistent set of
units (Gaussian units) is obtained by using the electrical quantities de-
rived from pegs, and the magnetic quantities derived from jem, and carrying
¢ in the equations as the only constant.

As indicated in Egs. (1) and (2), the mks system is commonly used in
its rationalized form; the cgs units have been quoted in their unrationalized
form. A rational system of units contains the factor 47 in Coulomb’s and
Ampere’s laws of force so as to eliminate it in the Maxwell field equations
which involve sources. General vector relations do not contain such
factors.. The appearance of the geometrical factor is indicated mathe-
matically by the form of the Green’s function. If-a source (such as a
point source) defines a problem in spherical symmetry, then in rational
units one obtains 47 explicitly in the resulting solution; if the source (such
as a line source) defines a field structure of circular symmetry, then 27
appears. A system of units analogous to the Gaussian system but in
rationalized form is known as the Heaviside-Lorentz system.

Historically, the ampere was taken to be exactly &5 of the abampere, or
emu, of current. This fact enables us to determine the magnitude of g
in Eq. (2), since we have seen that the abampere is defined by setting
mo/dm = 1. It is customary to use the coulomb, not the ampere, as the
basic electrical quantity, and we need only transform the defining equa-
tion of the electromagnetic systemn with all quantities of unit size into
mks units. Explicitly, in the electromagnetic cgs system,

1 dyne = 1 (abampere)?

[since all lengths cancel on the right side of Xq. (2)], which in mks units
for which 1 abampere = 10 coulomb/second, becomes

- _s5 kilogram-meter po 102 (coulomb)?
5 _ s Killogram-meter __ po 10° (coulomb)™
107" newton = 10 second 2 4w (second)?
or
_+ kilogram-meter _v henry
_ 7 _ 7 .
po = 4m X 10 (coulomh)2 4 x 10 meter

The constant €y is now obtained from the relation oo = 1 /e,

) (107 1 >((coulomb)2(second)2 farad)
0 == ~ — .

4mwe2 ~ 36w X 109 kilogram (meter)3 =~ meter

What has been done here is to define ug in terms of the arbitrarily chosen
size and dimension of an electrical unit, whereupon €y is automatically
fixed if the system is to be consistent with the mechanical units and the ex-
perimental value of the fundamental constant c.
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Electrical units which are referred to mechanical standards via defining
relations containing fixed numerical constants are called absolute electrical
units. Actually, the accuracy with which the emu and esu could be rea-
lized in terms of their defining equations was until recently insufficient for
practical purposes: during the period when the accuracy of verification of
absolute units was inferior to the reproducibility of standards, the practical
units were based on such standards* as the international ampere and the
international ohm. Improvements in techniques have resulted in greatly
improved absolute electrical measurements, so that the former international
standards have been relegated to the role of secondary standards. Hence
the value ug = 47 X 1077 as an exact numerical constant refers to the
practical units as absolute rather than international units. Note that ¢
in the mks system depends on the experimental relation between the veloc-
ity of electromagnetic radiation to the length and time standards (although
uo does not); this corresponds to the explicit presence of ¢ in the Gaussian
and Heaviside-Lorentz systems. In the “natural” system the velocity of
light itself constitutes a standard. It is clear that an experimental meas-
urement of the velocity of light can only provide a measure of the ratio of
the velocity of propagation of electromagnetic radiation to the ratio of
length and time standards. Hence the resultant number can never have
any fundamental significance in an absolute sense, but is of great practical
utility in providing independent accurate means of relating the length and
time standards.

Clearly, the physical content of the fundamental relations is the same
in all systems of units. It is easy to translate the laws of electrodynamics
from one system to another: for vacuum conditions, the relations in this
book are written so that the transformation

¢Bmks — BGaussian,
€ — (477)_1)
Mo€o — 1/c

will effect a reduction to their Gaussian equivalents. Table I-2 contains
a brief summary of fundamental electromagnetic relations valid in vacuo
as they appear in the various systems of units. For convenience in the
numerical conversion of units, a list of the most important conversion
factors is given in Table I-1. Table I-4 contains other numerical con-
stants and functional relations useful in applications involving atomic
particles.

* For example, the international ampere was defined as “the value of thé
unvarying current which on passing through a solution of silver nitrate in water
in accordance with standard specifications deposits silver at the rate of
0.001118 gm per second.”

~
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The situation regarding the equations in material media is somewhat
more complex than that for vacuum conditions and is frequently mis-
understood. To gain some insight into the problem, let us consider the
fundamental process by which Maxwell’s equations in media are generated
from the vacuum relations.

The vacuum source equations have the general form

D(F) = 8, 4)

where D is a linear differential operator acting on the field F and S is the
source. In media S is broken up in terms of an “accessible” (macroscopic)
source S and an “inaccessible” source S,, i.e.,

8, is then derived from an auxiliary quantity F, by the same differential
operator D such that

Sp = D(F)) ()
and hence

D(F — F,) = S. (7
A partial field Fgy = F — F, can thus be defined such that

D(Fyn) = 8§, (8)

i.e., such that this field is derived from the “accessible” (often called “true”)
sources only. In Table I-3 this general statement is illustrated in terms of
the actual electrodynamic quantities.

Ambiguity arises because in this general formulation quantities of the
type Fp (ie., P and M) appear in a dual role. On the one hand, in the
relations

pP:—V'P, (9)
iMm = VXM, (10)

P and M represent purely source quantities—they describe certain charge
and current distributions. In both relations, on the other hand, P and M
can be viewed as fields, namely, those electric or magnetic fields whose
sources are pp Or jar respectively. In relations of the type

¢E =D — P, (11).
B/uo = H + M, (12)

as written in the now conventional mks system, P and E or B and M are
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given different units: P is measured in coulombs/meter?, while E is in
volts/meter; M is in amperes/meter, while B is in webers/meter?. This
convention emphasizes the roles of M and P as current and charge de-
scriptions. The “partial field” aspect is, however, equally valid, and is
somewhat obscured by the constants in Egs. (11) and (12). In cgs units,
Egs. (11) and (12) become

E =D — 47P, B = H + 47M (Gaussian),
E=D —P, B = H + M (Heaviside-Lorentz).

Here the units of all quantities are the same, and hence the “partial field”
aspect is emphasized.

To solve field problems, it is in general necessary to specify the “consti-
tutive equation” giving P(E) and M(B). If these are of linear form,
such as

P = ¢3(k — 1)E, (13)

it is often said that E represents an “intensive variable” and P an “exten-
sive variable,” i.e., E is cause and P effect. This point of view is empha-
sized by the fact that E - 6P represents the differential of work done in
this case. From this aspect the use of different units for E and P appears
justified. Actually the cause-effect situation is very much less clear when
permanent polarization (electrets) or permanent magnets are considered.
It should be noted that the basic relations (11) and (12) are additive; on
the other hand, relations of type (13) are not at all general.
We may summarize by saying that the question of whether E, P, and D
"(or B, M, and H) should have the same units is fairly irrelevant; in fact,
an understanding of the dual physical function of P and M is the prin-
cipal requirement for clarity in the classical theory of electric and mag-
netic media.
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TasLe I-1
CONVERSION FACTORS
Multiply the number of b to obtain the number of Gaussian
mks units below Y (cgs) units of
ampere 101 current in abamperes
ampere/meter? 103 current density in abampere/ecm?
coulomb 3 X 10%9*% | charge in esu
coulomb/meter3 3 X 103* | charge density in esu/ecm3
farad = coulomb/volt 9 X 10~11* | capacitance in em
henry = volt sec/ampere 10° inductance in emu
joule 107 energy in ergs
newton 105 force in dynes
ohm = volt/ampere &% resistance in esu of potential per
abampere
% X 10''* | resistance in esu
volt 750 potential in esu
volt/meter 1% 1074* | electric field intensity E in esu
coulomb/meter? 127 X 105* | electric displacement D in esu
weber = volt second 108 magnetic flux in maxwells
weber/meter? 104 flux density B in gauss
ampere-turns/meter 47/103 field intensity H in oersteds
mho/meter &* conductivity in abamperes/em?/esu
of field intensity
ampere turns 47/10 magnetomotive force in gilberts

* Tp all conversion factors marked by an asterisk 3 is used for ¢/1019, where
in this definition ¢ is measured in cgs units. If higher accuracy is desired, a more
precise value of ¢ must be substituted. DuMond and Cohen give ¢ 209792.5
km/sec. (J. W. M. DuMond and E. R. Cohen, 1961 adjustment of natural
constants, to be published in Annals of Physics and Nuovo Cimento.)




FUNDAMENTAL ELECTROMAGNETIC RELATIONS VALID “IN vacuo”
AS THEY APPEAR IN THE VARIOUS SYSTEMS OF UNITS

Tasre I-2

mks (rationalized)

Gaussian* (cgs)

Heaviside-Lorentz (cgs)

“Natural” units
c=h=1
(rationalized)

V-E = p/eo V-E = 4mp V-E =p V-E=p
_ 1 [or e l/pl' i for
Ine) B ¥ ) dv E-41r r3dv T 4ar) 3
O 1 9E 1 9E OE
VXB = ; b = 4qij L 19T — 5429 - oL
X ﬂo(]-%—eoat) VXB 47r]+cat VXB ]+Ct VXB J—f—at
3 1 9E . 19E . OE
I (’+‘°ae)><‘dv } (*m&)x s L (’*zTde 1 (’J“EaT)X'
4 r3 - r3 T 4r r3 v T 4r r3
vV-B=0 V.-B=0 V-B =0 V-B =0
oB 9B 0B 9B
VXE = — — — = = — = = 22
X 3 ¢cVXE 31 ¢V X E 3t VvV XE a3
F = ¢(E + u X B) F=e(E+%XB) F=e(E+‘z‘xB) F = ¢(E + u X B)

99%
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B=VXA B=vXxA B=VXA B=VXA
0A 1 0A 10A dA
E=_vy_A - _Loa = vy -1 = vy 4
¢ at E Ve ¢ at E Ve c ot E ¢ at
a_p _ 1dp ., 10p ap
=0 VIt T Vit =0 a =0
1 ¢ 1 9d¢ 1 3¢ ¢
v-A+L %% g . L% _ . - % _ . % _
Jrc26t v A+c ot 0 V-A c ot 0 v A+6t 0
0 —¢B, c¢B, -++E, 0 —B, B, +E, - )

P cB, 0 —cB, -+E, P B, 0 —B. +E, F* has same form as in F* has same form as in
—ecB, ¢B, 0 LE, " | —-B, B, 0 -1E, Gaussian units Gaussian units
~E. —E, —E. 0 ~E. —FE, —E, 0 _

. . L 11]' . ij :
I oF i (Z)_Ff - E:ap—z -7
arr e dzi & < *

* In some textbooks employing Gaussian units j is measured in esu.
that j appears with a factor 1/c.

In that case the equations

are those given here except
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TaBLe 1-3

DEFINITION OF FIELDS FROM SOURCES (MKS SYSTEM)

Equivalent covariant

zeparated

Electric Magnetic . .

_ description

Vacuum (all sources JE oF" jj

. V- E =p/ VXB = i+ €0 o L

“accessible”) preo X Ha <“ €0 6t> duxt €0

Material media, sources p+ p, . . . JE By 1 g
V-E = £ VXB = poli+tinv+ir+ e = = — (' +iw
€0 at axt €0

Inaceessible sources de- (—v.P) OP OF op 1 oMY
fined from auxiliary E=21 7V P vxB = molj+ VM4 — 4 e — = —\|j + ==
€0 €0 at at drt €0 . dxt

function

Do}ﬁnition of partial D = «E — (—P) H = B _ M H7 = F"7 — M7
field Ho

TField (f.quati(ms in YD =, VXH =+ aD (')H’:" _ jj
media at azt

89V

I XIAONH4dY
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TaBLE I-4. USEFUL NUMERICAL RELATIONS
ﬁ I
A, Some atomic constants.*
cgs cgs ] .
Gaussian Heaviside-Lorentz mks Name
& 1 P 1 o2 1 Fine structure
ke 137.039 4mhe  137.039 dmhceg  137.039 constant
o2 2 o2 .
< = 281776 s = 281776 | —— = 2.81776 | Classicalelec-
me 4mme 4rmegme? " .
_13 _13 _15 ron radius
X 10 em X 10 em X 10 m |
a < o !
i 4rt? 4mweoh”
o B 5.29166 e = 5.29166 e = 5.29166 Bohr radius
%X 107 em % 107% em X 107" m
B. Relations useful if energy of a particle is measured in electron volts.*

Ey for electron

Eo

moc? = 0.51097 Mev
moc2 = 938.21 Mev

for proton

1. “Magnetic rigidity” Bp of particle of kinetic energy T carrying charge e.

cgs Gausstan mhks
s : .
10 VT2 + 2TE T2 + 2T 24 2TE
Bo = 20 i arE ~ Y T 2ME | g VT2 2TEy VTR 2TE,

300 c 3Xx 108

2. Tension 7 of wire carrying current / having same orbit in magnetic field as
particle of kinetic energy 7' carrying electronic charge e.

cgs Gaussian i mks

o 200 e = IWT?2+ 2TE,

r = WTTT 2B x 10 VT2 4 2TE T””EOI

3. Velocity u, momentum p, kinetic energy 7, total energy E.

-—— =coshf = —+ 1 = e R T
f:o ¢ * l’zof \ I:o \/17;4 (112//[\2) !
2 2 .
fﬁ:sinh@=\/@+21 =\(£> — 1 =—#£Li
E Eg Ey Fq VU 2 ey
s =) 2
3 — tanh 6 = QTEQ + T2 _ A% ES — E() cp |
¢ T+ FEo E \ ((‘p)Q g i
| _ |
| » A2
Lo cohe —1 = L -k = \/Zi) 11
£o V1= (12 e Fo Fo |

* The numerical values here are consistent with those given by J. W, AL
Dullond and E. R. Cohen, loc. cit.




