Physics 513, Electrodynamics I
Department of Physics, University of Washington
Autumn quarter 2020
October 6, 2020, 11am
On-line lecture

Administrative:
1. Homework 1 posted on faculty.washington.edu/ljrberg/AUT20_PHYS513

Lecture: Electrostatics review I.
Coulomb’s law.
The electric field E.
Gauss’s law.
\(\nabla \cdot \mathbf{E} \) & \(\nabla \times \mathbf{E} \) (electrostatics).
The electric (scalar) potential \(\Phi \).
Boundary conditions and Green’s theorem.
Surface singularities.
Electrostatics Review I

(this should be familiar)

Start with Coulomb's Law in Vacuum

\[F_2 = \frac{1}{4\pi \varepsilon_0} \| q_1 q_2 \| \frac{\vec{r}}{r^2} \]

SEE HOMEWORK FOR SIGN.

\(\vec{r} \) is the "displacement vector from \(q_1 \) to \(q_2 \).

\(\varepsilon_0 \) is the "permittivity of free space"

\[\varepsilon_0 = \frac{10^{-7} \text{ farads}}{\text{meter (MKSA)}} \]

\(4\pi c^2 \)

Coulomb's Law contains:

- Like Charges Repel, Opposite Attract,
- Varies with the magnitude of each charge,
- Varies as \(\frac{1}{r^2} \),
- Directed along the line joining the charges.
It's observed the total force contributed by many charges is a vector sum.

\(\nabla \cdot \vec{E} = \rho/\varepsilon_0; \quad \nabla \times \vec{E} = 0, \)

(We'll come back to this.)

A few differential vector identities:

Your homework has

\[\nabla \frac{1}{|\vec{r} - \vec{r}'|} = -\nabla \frac{1}{|\vec{r} - \vec{r}'|} \]

We'll also use

\[\nabla^2 \frac{1}{\vec{r}} = -4\pi \delta(\vec{r}) \]

\[\nabla^2 \{ g(|\vec{r} - \vec{r}'|) \} = -\nabla \{ g(|\vec{r} - \vec{r}'|) \} \]

\[\nabla |\vec{r} - \vec{r}'| = \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|}, \quad \{ \nabla r = -\nabla' r = r \} \]

\[\nabla \cdot (\vec{r} - \vec{r}') = 3 \quad \{ \nabla r = 3 \} \]
Electric Field \vec{E} in Vacuum

\vec{E} is defined in terms of the force on a test charge via

$$\vec{E} = \lim_{q \to 0} \frac{\vec{F}}{q} \quad \text{(force/charge)}.$$

This expression is the same in all systems of units, but units of \vec{E} differ.

$$\vec{E} \text{[volts/meter]} \quad \text{(MKSA)}.$$

The $\lim_{q \to 0}$ ensures the test charge won't disrupt the sources of the field. There can certainly be obviously an E-field where there's no charge q; \vec{E} is how you measure \vec{E}.

Notice $\lim_{q \to 0}$ in the definition of \vec{E} can cause problems in describing elementary charge.

For such processes fields are "described" in terms of its sources, "assuming" macroscopic laws remain valid.
For those referencing Landau & Lifshitz, they use \mathbf{E} for the microscopic field and \mathbf{E} for the macroscopic field. They introduce dielectrics in this way.

With \mathbf{E} a scalar, as experiment suggests, \mathbf{E} is a vector,
\[
\mathbf{E} = \frac{1}{4 \pi \epsilon_0} \mathbf{r} \frac{1}{r^2} = -\frac{1}{4 \pi \epsilon_0} \nabla \frac{1}{r}
\]

For distributed point charges
\[
\mathbf{E} = \frac{1}{4 \pi \epsilon_0} \sum_i z_i \mathbf{r}_i \frac{1}{r_i^2}
\]

For a continuous charge distribution
\[
\mathbf{E}(\mathbf{r}) = \frac{1}{4 \pi \epsilon_0} \int \int \int \mathbf{r}(\mathbf{r}) \frac{\mathbf{r}(\mathbf{r}_i \mathbf{r}_j)}{r^2(\mathbf{r}, \mathbf{r}_i \mathbf{r}_j)} \text{d}V
\]
Simple example: E inside a uniformly-charged shell

Method 1. Evaluate the net force from two opposite patches. The surface charge grows as distance r^2 from the field point, also the force falls as $1/r^2$; the net force is zero. $E = 0$ inside, more on this later.

Method 2. If indeed there were an E field inside, it must be radial and not depend on angular variables θ & ϕ.

But such a field would require charge inside, so $E = 0$ inside.
This brings us to Gauss's Law.

We'll consider a point charge Q inside an arbitrary closed surface ("the surface of a potato"):

What is the solid angle $d\Omega$ subtended by dA?

$$d\Omega = \frac{dA \cdot \hat{\mathbf{n}}}{r^2}$$

accounts for orientation of patch.

Now, evaluate the electric flux leaving dA

$$E \cdot \hat{\mathbf{n}} \, dA = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \, dA \cdot \hat{\mathbf{n}}$$

$$= \frac{1}{4\pi \varepsilon_0} \, Q \, d\Omega$$
Now, find the total electric flux leaving the entire surface

\[\oint E \cdot n \, dA = \oint \frac{1}{4\pi \varepsilon_0} \, \partial \cdot \Omega \]

\[= \frac{q}{\varepsilon_0} \]

This is obviously the integral form of Gauss's law; it follows from Coulomb's law. Notice Gauss's law is valid for any closed surface, even multiply-connected ones.
If \mathbf{E} is outside the surface, the integral vanishes. (This is obvious for the spherical surface in "Method 1" earlier.)

For the differential form of Gauss's Law, apply the Divergence Theorem.

$$ \iiint \mathbf{E} \cdot \mathbf{n} \, d\mathbf{a}' = \iiint \nabla \cdot \mathbf{E} \, dV' $$

$$ = \frac{1}{\varepsilon_0} \iiint \rho \, dV' $$

Since this holds for any surface, set integrals equal:

$$ \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} $$

This is one of Maxwell's equations. Notice to find \mathbf{E} you need $\mathbf{\rho}$ and the boundary conditions... more on this later.
Now recall \(E = -\frac{1}{4\pi\varepsilon_0} \nabla \cdot \frac{1}{r} \).

Also recall the curl of the gradient of a scalar vanishes, so

\[\nabla \times \mathbf{E} = 0 \quad \text{(statics)} \]

This is another Maxwell equation, a term in Faraday's law.

Your homework includes the Helmholtz theorem: A vector field \(\mathbf{E} \) is (almost) completely determined by its divergence and curl, since \(\nabla \times \mathbf{E} = 0 \), the electrostatic field from \(\nabla \cdot \mathbf{E} = \rho/\varepsilon_0 \) is (almost) completely determined by \(\rho \).
We can also find the static equations by brute force directly from Coulomb's law:

\[E(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \iiint \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \, d\mathbf{r}' \]

\[= -\frac{1}{4\pi\varepsilon_0} \iiint \nabla \cdot \frac{1}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}' \]

with \(\nabla \) acting on field points.

\[\nabla \cdot E = -\frac{1}{4\pi\varepsilon_0} \iiint \nabla \cdot \frac{1}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}' \]

Since \(\nabla^2 \frac{1}{|\mathbf{r} - \mathbf{r}'|} = -\frac{4\pi\delta(\mathbf{r} - \mathbf{r}')}{\varepsilon_0} \)

\[= \frac{1}{\varepsilon_0} \iiint \delta(|\mathbf{r} - \mathbf{r}'|) \, d\mathbf{r}' \]

\[= \rho / \varepsilon_0 \quad \text{Gauss's law.} \]

Similarly

\[\nabla \times E = -\frac{1}{4\pi\varepsilon_0} \iiint \rho(\mathbf{r}') \frac{\nabla \times \nabla}{|\mathbf{r} - \mathbf{r}'|^3} \, d\mathbf{r}' \]

\[= 0 \quad \text{since the curl of the gradient vanishes.} \]
Notice $\nabla \times \vec{E} = 0$ plus Stoke's Theorem gives $\oint \vec{E} \cdot d\vec{r} = 0$ (statics).

Since $\vec{F} = q \vec{E}$,

$\oint \vec{F} \cdot d\vec{r} = 0$ (statics),

so $\oint \vec{F} \cdot d\vec{r}$ is path independent.

Each would contribute the same.

"Electrostatic fields are conservative".

Obviously, charged particles can be given enormous kinetic energies and returned to their starting point (in, e.g., a cyclotron, or a battery); so there exist (non-static) non-conservative electric fields.
Electrostatic Potentials

Since $\nabla \times \mathbf{E} = 0$ (statics), we have $\mathbf{E} = -\nabla \Phi$

Q: Why? **A:** **Heaviside** Theorem.

$$\Phi = \frac{1}{4\pi\varepsilon_0} \iiint \frac{2}{r^2} \, dV'$$

Q: Why? **A:** **Heaviside** Theorem. For later in magnetostatics

$$\mathbf{A} = \frac{\mu_0}{4\pi} \iiint \frac{\mathbf{J}}{r^2} \, dV'$$

Q: Why? **A:** **Heaviside** Theorem.

Also, since $\nabla \cdot \mathbf{E} = \rho/\varepsilon_0$,

$$\nabla^2 \Phi = -\rho/\varepsilon_0$$ Poisson's Equation

or $\nabla^2 \Phi = 0$ (where $\rho = 0$; Laplace's Equation).
Much of electrostatics comes down to finding solutions to Laplace's or Poisson's equation (and if desired \(\mathbf{E} \) from \(-\nabla \Phi\)).

Classical Boundary-Value Problem.
Find \(\Phi \) in terms of \(\Phi \) within a volume plus either \(\Phi \) or \(\frac{\partial \Phi}{\partial n} \) (the surface potential or the gradient of the surface potential).

Specify \(\Phi \) \(\Rightarrow \) **Dirichlet Problem**
Specify \(\frac{\partial \Phi}{\partial n} \) \(\Rightarrow \) **Neumann Problem**

Specifying \(\Phi \) on on part of the surface and \(\frac{\partial \Phi}{\partial n} \) on the remainder is logically sound, but very challenging (it's seen in diffraction problems).

Specifying \(\Phi \) and \(\frac{\partial \Phi}{\partial n} \) on the same surface is usually, but not always, over-specifying the problem.
Another classic problem is finding Φ arising from charge and dipole discontinuities. These are related to the previous problem (see homework for the dipole layer problem).

Q: Why is a charge layer related to the Neumann boundary-value problem?

A: \[- \nabla \Phi \]

Heuristically:
\[E^0 = -\nabla \Phi, \]

but from Gauss's law:
\[E \cdot \hat{n} = \frac{1}{\varepsilon_0} \sigma, \] so
\[\frac{1}{\varepsilon_0} E \cdot \hat{n} = -\hat{n} \cdot \nabla \Phi \sim \int_{\partial \Sigma} \frac{\Phi}{ds}. \]
Some comments on boundary conditions:

I. Dirichlet problem \((\Phi_s)\)

\[\Phi_s = 0, \text{ e.g.} \]

Notice \(E_{ll} |_s = 0\).

II. Neumann problem \((\frac{d\Phi}{dn})_s\)

Notice

\[E_{ll} |_s = 0 \]

\[\frac{d\Phi}{dn} |_s = 0, \text{ e.g.} \]
Surface Singularities
(Also see homework.)

Recall \(\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, dV' \) _all space_

This has distributed sources \(\rho \), but no boundary. Suppose the integration only extends out to a closed boundary. That is, for the closed surface, we desire \(\Phi \) in terms of sources \(\rho \) _within the surface plus \(\Phi \) _on the surface_.

We'll use Green's theorem
(Jackson Eqn 1.35)

\[
\iiint (\phi \nabla^2 \phi - \nabla \phi \cdot \nabla \phi) \, dV = \oint (\phi \nabla^2 \phi - \nabla \phi \cdot \nabla \phi) \cdot \mathbf{n} \, dA
\]
We assign \(\phi \to \Phi \), \(\psi \to \frac{1}{r} \).

This leads to terms in Green's Theorem:

\[
\nabla^2 \frac{1}{r} = -4\pi \delta(r^3)
\]

\[
\nabla^2 \Phi = -\frac{\rho}{4\pi \epsilon_0}
\]

so Green's Theorem reads:

\[
-4\pi \int \int \int (\Phi \delta(r^3) - \frac{1}{r} \frac{\rho}{4\pi \epsilon_0}) \, dV = \oint \oint \oint \left(\Phi \frac{r}{r^2} - \frac{\nabla \Phi}{r} \right) \cdot \hat{n} \, dA
\]

Hence:

\[
\Phi(r^3) = \frac{1}{4\pi \epsilon_0} \int \int \int \frac{\rho(r^1)}{|r^1 - r^1|} \, dV
\]

\[
-\frac{1}{4\pi} \oint \oint \oint \frac{\nabla \Phi}{|r^1 - r^1|^3} \cdot \hat{n} \, dA
\]

\[
+ \frac{1}{4\pi} \oint \oint \oint \frac{\nabla \Phi}{|r^1 - r^1|} \cdot \hat{n} \, dA
\]

Recall

\[
\nabla \Phi \cdot \hat{n} = \frac{d\Phi}{dn}
\]
On homework, you'll apply this to a dipole layer with dipole moment per unit area \(\vec{p} \).

Recall the potential arising from a "point" dipole:

\[
\Phi(\vec{r}) = \frac{1}{4\pi \varepsilon_0} \frac{\vec{p} \cdot (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^{3}}
\]

(608 A^3 "1/\rho^2")

For a distributed surface ("layer") of dipole:

\[
\Phi(\vec{r}) = \frac{1}{4\pi \varepsilon_0} \int \vec{p}' \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^{3}} \, dA',
\]

This is pretty complicated. The homework looks at a layer with \(\vec{p} \) constant and aligned according to \(\vec{n} \). I pick this sign convention:

\[
\vec{\gamma}
\]

--- + + + + + ---

--- --- --- --- --- ---
Skipping steps, the resulting potential for a surface is:

\[\Phi(\mathbf{r}) = -\frac{1}{4\pi \varepsilon_0} \int \frac{\mathbf{\hat{n}} \cdot (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \, dA' \]

We've seen part of the integrand before: \(\mathbf{r} \cdot \mathbf{\hat{n}} \, dA = \rho \)

so

\[\Phi(\mathbf{r}) = -\frac{1}{4\pi \varepsilon_0} \int \frac{|\mathbf{r}'| - \rho}{|\mathbf{r} - \mathbf{r}'|^2} \, dA' \]

Notice a geometric discontinuity: the solid angle \(\Omega \) changes by \(4\pi \) as you cross the surface (\(-2\pi\) in front of you to \(+2\pi\) in back of you). Hence \(\Phi \) is discontinuous by \(|\mathbf{r}'|/\varepsilon_0 \) on crossing the dipole layer.
What about the change in potential on crossing a surface-charge layer σ?

Apply Gauss's law to a small piece of the surface:

$$\varepsilon \cdot \mathbf{E} = \sigma / \varepsilon_0$$

$$\Delta \varepsilon \cdot \mathbf{n} = \sigma / \varepsilon_0$$

$$\Delta \left[(-\nabla \Phi) \cdot \mathbf{n} \right]_S = \sigma / \varepsilon_0$$

$$- \Delta \frac{d \Phi}{d n} \bigg|_S = \sigma / \varepsilon_0$$

Here, it's the normal derivative of Φ that picks up a discontinuity σ / ε_0 on crossing the surface-charge layer.
GREEN'S THEOREM THEREFORE GIVES US IN TERMS OF \(D \) AND \(T \):

\[
\Phi(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int_D \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} \, dV'
+ \frac{1}{4\pi \varepsilon_0} \int_{\partial D} \left(\mathbf{r} - \mathbf{r}' \right) \cdot \hat{n} \, dA'
+ \frac{1}{4\pi \varepsilon_0} \int_{\partial D} \frac{\mathbf{E}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|^3} \, dA'
\]

WITH \(\Phi_s = \frac{\sigma}{\varepsilon_0}, \quad \frac{\partial \Phi}{\partial n}|_s = 0 \).

SCHEMATICALLY

Dipole layer

\(\Phi \)

\(\Theta \)

\rightarrow DISTANCE

SURFACE CHARGE LAYER

\(\Phi \)

\(\Theta \)

\rightarrow DISTANCE

WE'LL CONSIDER VOLUME DISTRIBUTIONS OF POLARIZATIONS IN THE CONTEXT OF DIELECTRICS.