
Electrodynamics I: Assignment 1 
Due no later than October 12 at 4:00 pm 
Pacific time. 
On-line submission procedure: 
1. Scan your solutions as a single PDF file 
2. Name your file HW1-lastname.pdf 
3. Attach your file to an email… 
4.  … with subject line HW1-lastname … 
5.   … and send the email to 
ljrosenberg@phys.washington.edu 
 
1. Discrete transformations. In lecture we briefly mentioned the 
invariance of electrodynamics under the interchange of the sign of the 
charge: “C” parity. Electrodynamics is also invariant under parity “P” 
and time-reversal “T” operations. What we mean by “invariant” under 
a transformation in this context is that the dynamical equations 
maintain the same form under the transformation. 
 
a. Show this invariance of electrodynamics under “P” and “T” 
transformations by explicitly demonstrating the invariance of one of 
the dynamical Maxwell equations of I.1a or I.1b. 
 
b. Recall Faraday rotation: a material is threaded by a magnetic field 
H. Polarized plane waves propagating in the material in a direction 
perpendicular to H have their polarization rotated as they traverse the 
material. You might expect from T-invariance that on reversing time 
(“running the film backwards” whilst preserving the direction of H) the 
reversed plane wave would reverse its rotation, but the rotation 
direction is preserved. This seems to naively violate T-invariance. 
What is the source of this apparent T-violation? (This is very useful in 
optical and microwave applications: There’s a 3-port device called a 
“circulator” where all electromagnetic power incident on port-1 exits 
port-2 and all power incident on port-3 exits port 1.You might expect 



from T-invariance that all power incident on port-2 exits port-1 since 
that is the time-reversed situation, but instead all power exits port-3.) 
 
2. Helmholtz theorem. Suppose a 3-dimensional vector field V had 
divergence and curl 
𝛁 ∙ 𝐕 = s    and    𝛁 × V=c    (where   𝛁 ∙ 𝐜 = 0)  where s is a scalar 
function and c is a vector function. 
 
a. Show that V has solutions   𝐕 = −∇ϕ+∇×A   where 

𝜙(𝐫) = 4
56 ∫
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:(𝐫,𝐫9)

𝑑𝜏 ′    and    𝐀(𝐫) = 4
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𝑑𝜏 ′ 
where the volume integrals extend over all space. 
 
Two subtleties: 
b. Why do we demand ∇ ∙ 𝐜 = 0? 
c. To show (a), you may want to invoke the Divergence Theorem. But 
∇(1 𝑟⁄ ) is singular at r=0. How can “get around” this singularity? 
 
This is an important theorem. It allows us to construct fields from 
potentials. It also explains why the static electric field only needs the 
gradient of the scalar potential and why the dynamical magnetic field 
only needs the curl of the vector potential. 
 
3. In expressions like Jackson eqn 1.5 the field point is x and a 
source point is x’. The vector operator Ñ, acting on field coordinates 
has components  𝜕 𝜕𝑥E⁄ . In terms of  Ñ, what’s the corresponding 
vector operator Ñ’ acting on source coordinates with components 
𝜕 𝜕𝑥′E⁄ ? This is a frequently-used identity. 
 
4. Surface singularities. There are two main types of surface 
singularities: a “charge layer” and a “dipole layer”. 
 
a. Dipole layer. Two closely-separated charge layers of equal and 
opposite sign of charge densities form a sheet, not necessarily a 
planar sheet, with dipole moment per unit area d. Outside the sheet 
what’s the potential arising from this dipole layer? 
 



b. In the case where d is uniform and normal to the surface, find the 
potential. The potential in terms of W, the solid angle subtended by 
the sheet as “viewed” by the field point, is simple. We’ll use this same 
reasoning to find Ampère’s law from the current-loop’s geometry. 
 
c. What is the discontinuity of the potential on crossing the sheet? 
 
d. What is the discontinuity of the normal derivative of the potential on 
crossing the sheet? 
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