Electrodynamics I: Assignment 7. Due November 14 at 11:00am in class or 10:45am in the instructor's mailbox.

1. a. Find the "exterior-problem" Green's function in spherical coordinates with a spherical boundary of radius R. b. Verify your Green's function satisfies the boundary conditions in r and r at R and the surface at infinity. c. Verify your Green's function's reciprocal properties of r and r ' are satisfied. d. Verify or argue your Green's functions satisfies Laplace's equation.
2. Find the electrostatic potential inside a very long grounded cylinder of radius R whose axis coincides with the z-axis and containing a point charge q at the origin. For those I confused by the integration bounds I used in class, you may find clarity from the normalization (Jackson equation 3.95) $\int_{0}^{\xi_{0}}\left[J_{0}(c \xi)\right]^{2} \xi d \xi=\frac{\xi_{0}^{2}}{2}\left[J_{1}\left(c \xi_{0}\right)\right]^{2}$. Notice how a higher-order Bessel function appears in the normalization.
3. Variant of Jackson problem 3.9. A hollow right circular cylinder of radius R has its axis coincident with the z-axis and its ends at $z=0$ and $z=L$. The potential of the end faces is zero, the potential of the cylindrical surface is a constant Φ_{0}. Find the potential inside the cylinder. You will probably want to choose the periodic coordinate in the z-direction, meaning that separation constant has the opposite-from-usual sign, and the Bessel functions become Modified Bessel functions (Jackson equations 3.100-101).
4. Work out the problem we discussed in class: Consider nested concentric cones whose apexes coincide. The inner cone, defined by half-angle β, is at ground. The outer cone, defined by half-angle α, is at potential Φ_{0}. a. Show that the Legendre functions of the first kind (the kind regular at the origin) cannot provide a solution. b. Find the potential everywhere between the cones. c. Verify your solution satisfies the boundary conditions. Jackson does not tabulate the irregular solutions of Legendre's equation. Here's a table from Abramowitz \& Stegun:

