1. A variant of Jackson problem 1.12. Consider a system of point charges \(\{ q_i \} \), and potentials \(\{ \Phi_i \} \) where \(\Phi_i \) is the potential at the position of \(q_i \) taking into account all the other charges except the charge \(q_i \). Derive a form of Green’s Reciprocation Theorem:

\[
\sum_i \Phi_i q'_i = \sum_i \Phi'_i q_i
\]

where the primed notation indicates a different set of charges and its associated potentials at the same points.

2. Recall in class the surface term in Jackson equation 1.44 can be written as

\[
\Phi(r) = - \int \Phi_s \sigma_{is} dA'
\]

where \(\sigma_{is} \) is the surface charge induced by a unit Green’s function point charge. Show that this expression may be obtained from the result of problem 1. Perhaps you could show the discrete-charge version of the above expression then simply extend the result to a continuous surface.

3. Consider a plane geometry. (NB., the Green’s functions for non-planar geometries are discussed in Jackson chapter 3.)

 a. What is the Green’s function for this geometry? Use cylindrical coordinates with the plane containing the origin, \(z \) the distance above the plane, and \(\rho \) the cylindrical radial coordinate. Hint: the similar image-charge problem should be reviewed.

 b. With this Green’s function, what is the corresponding induced charge on the plane?
c. Suppose the plane has potential \(\Phi_s = \frac{q_0}{2\pi \varepsilon_0 \left(\frac{\rho^2 + z_0^2}{z_0^3} \right)^{3/2}} \frac{1}{\rho} \frac{e^{-\rho/z_0}}{\rho} \),
where \(q_0 \) and \(z_0 \) are constants. Using the Green’s Function from (a), find the potential at position \((\rho=0, z=z_0)\).

[ver 04Oct10 11:30]