Phys. 513
Mid-term Exam
Fall 2018

Problem 1 Solution V1.0.

Inside the sphere (r < R) there's Poisson's equation for the "inside" potential $\Phi_<$:

$$\nabla^2 \Phi_<(r, \theta) = -\frac{\rho_0(r)}{\varepsilon_0}.$$

Outside the sphere (r > R) there's Laplace's equation for the "outside" potential $\Phi_>$:

$$\nabla^2 \Phi_>(r, \theta) = 0.$$

Solutions having azimuthal symmetry have form

$$\Phi_< = \frac{q_0}{r} + \sum A_k r^k P_k(\cos \theta)$$

(The $1/r^2$ solutions are excluded in considering the $\Phi_<(r \to \infty)$ limit).

$$\Phi_> = \sum \frac{B_k}{r} r^{k+1} P_k(\cos \theta).$$

Apply boundary conditions

$$\Phi_<(r=R, \theta) = \Phi_>(r=R, \theta) = \Phi_0 \cos \theta.$$
Given \(n \neq 0 \):
- \(A_n = -\frac{Q}{4\pi \varepsilon_0 R} \)
- \(A_1 = \frac{Q}{R} \)
- \(A_n (n \neq 0, n \neq 1) = 0 \)
- \(B_1 = \frac{Q R^2}{2} \)
- \(B_n (n \neq 1) = 0 \), so

\[
\Phi_\infty = \frac{Q}{4\pi \varepsilon_0} \left(\frac{1}{R} - \frac{1}{R^2} \right) + \Phi_0 \frac{R}{R^2} \cos \theta,
\]

\[
\Phi_\infty = \Phi_0 \frac{R^2}{R^2} \cos \theta.
\]

Check:

a) These are by construction and examination solutions to Laplace's equation (outside the charge);

b) The \(r = R \) boundary condition is satisfied, so outside the charge the solution is unique.

c) Near the charge \(\nabla^2 \Phi \)
satisfies Poisson's equation.

So, the solution is sensible.
PROBLEM 2 SOLUTION V1.0

1. Start with $\vec{\nabla} \cdot \vec{E} = \rho / \varepsilon_0$, then insert the expression for \vec{E}, giving

$$\vec{\nabla} \cdot \vec{E} = \frac{-k \rho}{r^2}$$

Refer to Jackson "front cover" identity $\vec{\nabla} \cdot \vec{A} = \vec{A} \cdot \vec{\nabla} + \nabla \cdot \vec{A}$, so

$$\vec{\nabla} \cdot \vec{E} = \frac{-k \rho}{r^2} + \vec{\nabla} \cdot \vec{E} = \frac{-k \rho}{r^2}$$

Thinking of the potential $1/r$ from a point charge, we replace $1/r$ with $-\vec{\nabla} 1/r$. The second term is then Poisson's equation.

The gradient in the first term is evaluated directly:

We then have

$$-\frac{M}{r^2} \hat{r} - \frac{k \rho}{r^2} \hat{r} + 4\pi \varepsilon_0 \hat{r} = \frac{\rho}{\varepsilon_0}$$

or $\rho = -\varepsilon_0 \frac{M}{r^2} e^{-kr} + 4\pi \varepsilon_0 \hat{r} \delta(r)$.
b. The second term in \((a)\) is a charge of magnitude \(4\pi \varepsilon_0 m\) placed at \(r = 0\). The first term is a spherically-symmetric opposite-signed charge distribution that rises in distance. Graphically, this is

\[\rho(r)\]

Charge at \(r = 0\):
Magnitude \(4\pi \varepsilon_0 m\)

Spherically-symmetric, opposite sign (6a) magnitude of density

\[\varepsilon_0 \frac{4\pi}{r^2} e^{-kr}\]

c. Apply Gauss's law to the spherical surface at \(r \to \infty\):

\[\frac{Q_{\text{total}}}{\varepsilon_0} = \iiint E \cdot \hat{n} \, dA\]

\[= \int_0^\infty \int_0^{2\pi} \int_0^\infty E \cdot \hat{n} \, r \, dr \, d\theta \, d\phi\]

\[= 4\pi \frac{mc}{r^2} r^2 \]

\[\to 0 \text{ total charge}\]
Problem 3 Solution v1.0

You are free to choose different coordinates)

a. The 2D geometry is

Here, the problem is translation invariant in \(z \), \(I \) is the intersection point of the plates, and \(\phi_0 \) the small angle.

In this figure any plane (which appears as a straight line in the figure) passing through \(I \) is an equipotential (via symmetry).

Hence, the potential depends only on \(\phi \) (ignoring fringe fields).

b. The potential obeys Laplace's equation (in 2D cylindrical coordinates)
\[\nabla^2 \Phi = \frac{1}{r^2} \frac{d}{d\phi} r^2 \frac{d}{d\phi} \Phi, \quad \text{where it's a total derivative as there's no } r \text{- dependence.} \]

This has solution \(\Phi(\phi) = C_0 + C_1 \phi \)

with \(C_0, C_1 \) constants.

Apply boundary conditions:

\[\left. \Phi(\phi=0) = 0, \quad \Phi'(\phi=\phi_0) = \Phi_0 \right. \]

\[C_0 = 0, \quad C_1 = \Phi_0 / \phi_0 \]

Now, from the geometry,

\[\tan \phi_0 = \frac{8}{L} \quad \text{and} \quad \tan \phi = \frac{y}{x + 8w/\phi}, \quad \text{hence} \]

\[\phi(x,y) = \Phi_0 \phi_0 = \Phi_0 \arctan \frac{y}{x + 8w/\phi} \]

C. Put charge \(+Q \) on the lower plate,

Put zero charge on the upper plate.

The (no-fringe) electric field is purely along \(\Phi \):

\[E = -\nabla \Phi = -\frac{1}{r} \frac{d}{d\phi} r^2 \Phi = -\frac{1}{r} \Phi_0 \phi' \]
On the lower plate, \mathbf{E} is in the y direction (normal to the plate) and the surface charge σ is

$$\sigma / \varepsilon_0 = |E| = \frac{\Phi_0}{\Phi_0} \frac{1}{xw/\varepsilon + x}$$

where we used $r = xw/\varepsilon + x$ for a field point on the lower plate (see figure in (a)).

Now find the total charge per length on the lower plate

$$\sigma / \text{length} = \int_0^L \sigma \, dx$$

$$= -\varepsilon_0 \int_0^L \frac{\Phi_0}{\Phi_0} \frac{1}{xw/\varepsilon + x} \, dx$$

$$= -\varepsilon_0 \left[\frac{\Phi_0}{\arctan \sqrt{L}} \right]_0^L \frac{1}{xw/\varepsilon + x} \, dx$$

$$= -\varepsilon_0 \left[\frac{\Phi_0}{\arctan \sqrt{L}} \right]_0^L \frac{\ln \left(\frac{w + \varepsilon}{\varepsilon} \right)}{w}$$

The capacitance is the ratio of the charge to potential:

$$C = \frac{\varepsilon_0 / \text{length}}{\text{length} / \arctan \sqrt{L}} \ln \frac{w + \varepsilon}{\varepsilon}$$