Electrodynamics: Homework Assignment 6. Due November 8 either 11:00am in class or 10:45am in the instructor's mailbox.

1. Variant of Jackson problem 3.9. A hollow right circular cylinder of radius R has its axis coincident with the z-axis and its ends at $z=0$ and $z=L$. The electrostatic potential of the end faces is zero and the potential of the cylindrical surface is a constant Φ_{0}. Find the electrostatic potential inside the cylinder. You will probably want to choose the periodic coordinate in the z-direction, meaning that separation constant has the opposite-from-usual sign, and the Bessel functions become Modified Bessel functions (Jackson equations $3.100-101$). You might ponder the great simplification afforded by the extra condition that the electrostatic potential on the cylindrical surface is constant instead of being an arbitrary function of ϕ and z.
2. Consider a point charge q at the origin. Find the electrostatic potential in cylindrical coordinates at a field point (ρ, ϕ, z).
3. Complete a simplified version of the example we did in class: Find the electrostatic potential inside a grounded cylinder of radius R whose axis coincides with the z-axis and containing a point charge q at the origin. You may find useful an identity from the normalization (Jackson equation 3.95) $\int_{0}^{\xi_{0}}\left[J_{0}(c \xi)\right]^{2} \xi d \xi=\frac{\xi_{0}^{2}}{2}\left[J_{1}\left(c \xi_{0}\right)\right]^{2}$.
