Physics 513, Autumn Quarter 2018 Electrodynamics: Homework Assignment 1. Due October 4 either 11:00am in class or 10:45am in the instructor's mailbox.

This is a relatively straightforward problem set.

1. Helmholtz theorem. A 3-dimensional vector field \mathbf{V} satisfies $\boldsymbol{\nabla} \cdot \mathbf{V}=\mathrm{s} \quad$ and $\quad \boldsymbol{\nabla} \times \mathbf{V}=\mathbf{c} \quad($ where $\quad \boldsymbol{\nabla} \cdot \mathbf{c}=0)$.
a. Show that \mathbf{V} has solutions $\mathbf{V}=-\nabla \phi+\nabla \times \mathrm{A}$ and volume integrals $\phi(\mathbf{r})=\frac{1}{4 \pi} \int \frac{s\left(\mathbf{r}^{\prime}\right)}{r\left(\mathbf{r}, \mathbf{r}^{\prime}\right)} d \tau^{\prime} \quad$ and $\quad \mathbf{A}(\mathbf{r})=\frac{1}{4 \pi} \int \frac{\mathbf{c}\left(\mathbf{r}^{\prime}\right)}{r\left(\mathbf{r}, \mathbf{r}^{\prime}\right)} d \tau^{\prime}$.

Two subtleties:
b. Why do we demand $\nabla \cdot \mathbf{c}=0$?
c. To show (a), you may want to invoke the Divergence Theorem. But $\nabla(1 / r)$ is singular at $r=0$. How can you "get around" this singularity?
2. The scalar potential Φ in terms of charge density ρ over all space is given by Jackson eqn 1.17. However, you can find the potential even if the charge density is only known within some closed surface S and the boundary values of the potential (or their derivatives) are known on the surface S.

Find an expression for the potential in terms of the charge density ρ within the volume bounded by S and Φ and $\nabla \Phi$ on S. Hint: you might use Green's Theorem (Jackson eqn 1.35)
3. Jackson problem 1.7. Two long, cylindrical conductors of radii a_{1} and a_{2} are parallel and separated distance d, which is large compared with either radius. Show that the capacitance of this [transmission line, as we shall see] is given approximately by $C \approx \pi \epsilon_{0}\left(\ln \frac{d}{a}\right)^{-1}$, where a is the geometrical mean of the two radii.
4. Variant of Jackson problem 1.9. Calculate the attractive force per unit length between the conductors of problem 3 under the condition:
(a) fixed charge per length on the conductor; (b) fixed potential difference across the conductors.
[ver 27sep18 16:30]

