Physics 513, Autumn Quarter 2017 Electrodynamics: Homework Assignment 6 Due November 9 either 11:00am in class or 10:45am in the instructor's mailbox.

1. A spherical shell is known to have fixed potential $\Phi_{0} \cos (\theta)$. Now place a point charge Q at the center and find the potential everywhere.
2. A dipole \mathbf{P} is outside and a distance d from the center of a grounded sphere. You can assume the dipole is directed radially. Find the resulting potential.

3a A certain charge distribution $\rho(r)$ has a finite spatial extent. Show that the dipole moment of this charge distribution is
$\mathbf{P}=-3 \varepsilon_{0} \iiint \mathbf{E}(\mathbf{r}) d v$
3b. Now suppose the charge in problem 3a is entirely outside some volume V of finite spatial extent. Show that the electric field $\mathbf{E}(p)$ at a point p within the volume is
$\mathrm{E}(p)=\frac{1}{V} \iiint \mathrm{E}(\mathrm{r}) d v$
These are classic problems done in numerous texts. Hint: Since the distribution is finite in extent, there is some sphere which contains all the charge. There are several ways to do these: one way is to start by replacing $\mathbf{E}(\mathbf{r})$ with integral expression over charge density. The Smythe solution to I do not believe is logically sensible.
4. 2D electrostatics. A long hollow cylinder conductor of radius R is split into two half-cylinders through its axis. One half-cylinder is at potential Φ_{1}, the other at potential Φ_{2}. Find the potential within the cylinder. The end-on geometry is

You will likely need an infinite-series solution. There is a claim this series can be summed, but I have not worked it out. I solved this via separation-of-variables into cylindrical coordinates. There is a claim the solution can also be obtained with Green's Function techniques.

